
Design, Implementation and Testing of the
Temporal Swiss Database

Yannick Widmer
Facharbeit 3P.

April 19, 2011

Contents
1 Introduction 2

2 Deriving current database design. 3

3 Introducing temporal information. 7

4 Improvement to the overall design. 9

5 Complete ER Diagram 11

6 Implementation and Testing 12

1



1 Introduction
This work is about the feed database called «Schweizerischee Futtermitteldaten-
bank» of the «Bundesamt für Landwirtschaft (BWL)».
For optimal feeding of domestic animals, farmers and agriculture companies of
Switzerland need information about the content of nutrients and minerals in dif-
ferent feed types. This information is measured and then stored in the database.
However, the database stores only averaged value of multiple measures and that
is not enough for enhanced statistical analysis.

The first task was to make an ER model of the current database. The dif-
ficulty of this task was that the only information available was an SQL scheme
of the database that was designed just to fit the assignment and not to be easy
to maintain, extend or to understand. Also this scheme wasn’t in the form, as
one may be used to in SQL so things as relations and aggregation where hard
to see and understand. So after a process of understanding the first result was
an ER Diagram of the database.

After that, the second task was to change things of the Diagram to enhance
the current database design and fit a little more the standards of data modelling.
And then to make the mentioned statistical analysis possible in future, temporal
information had to be added.

The lat task was to implement a part of the database, to fill in dummy data
and to test some query’s on it to estimate the efficiency of the new design.

2



2 Deriving current database design.
The first Task was to derive an ER-Diagramm from the current database, the
only available information was an SQL scheme. From this the task was to find
out what are the entity set the relation among them and for what each stands
for in the real world.

This part was hard because there was very few information. Further it was
hard to understand the meaning of entity sets and attributes because of the
complicated names they had. As an example consider ’DI_Range’ of table ’tbl-
datainput’. The text segment presented below is an example of how tables in
SQL schema of the feed database are defined:

/*Table structure for table ‘tbl_datainput‘ */
DROP TABLE IF EXISTS ‘tbl_datainput‘;
CREATE TABLE ‘tbl_datainput‘ (

‘ID_tbl_DataInput‘ int(10) unsigned NOT NULL auto_increment,
‘ref_FeedSpecNr‘ int(10) unsigned NOT NULL,
‘DI_SourceType‘ int(2) unsigned NOT NULL,
‘ref_tbl_Formulas‘ varchar(50) character set latin1 collate latin1_german1_ci default NULL,
‘ref_Components‘ int(10) unsigned default NULL,
‘ref_Units‘ int(10) unsigned default NULL,
‘DI_Value‘ varchar(20) character set latin1 collate latin1_german1_ci default NULL,
‘DI_Range‘ varchar(50) character set latin1 collate latin1_german1_ci default NULL,
‘DI_decimalplace‘ int(1) unsigned default NULL,
‘DI_SD‘ float default NULL,
‘DI_NumberOfValues‘ int(10) default NULL,
‘ref_terms‘ int(10) unsigned default NULL,
‘DI_timestamp‘ timestamp NULL default NULL,
PRIMARY KEY (‘ID_tbl_DataInput‘),
KEY ‘tbl_DataInput_FKIndex2‘ (‘ref_tbl_Formulas‘),
KEY ‘tbl_DataInput_FKIndex1‘ (‘ref_FeedSpecNr‘)

) ENGINE=MyISAM AUTO_INCREMENT=244772 DEFAULT CHARSET=latin1 COLLATE=latin1_general_ci;

Then the key challenge was to correctly identify relationships among the
entity sets. The relations are made by index, for example a table has an ID
’F_FeedSpecNr’ Then another table, which is in a relation with this, has an
index ’ref_FeedSpecNr’ called ’tbl_DataInput_FKIndex1’.

In total the SQL scheme of the feed database has 12 tables and 85 attributes.
Each table has an artificial primary key ’ID’. Also, all names and tokens are
stored in the tree different languages, French, German and English, so they’re
multivalued in the ER-Diagramm. The result of the investigation is the following
data requirements description and the scheme.

3



Data requirements and ER diagram. After a precise analysis, we get
the following ER diagram that is illustrated in the next two Figures.

attribgroups

attributes

feedgroup
feed

units

unitgroups

datainput

formulas

qualityparameter

componentgroups

species

components

profiles

Name

SourceType

ID AttribGoups
Name

ID Attributes

FeedSpecNr

ref_terms

Name

ID FeedGroupName

OutputLevel

OutputLine

ID Formulas

Expression

Description

RunLevel

SourceType

ref_terms

timestamp

decimalplace

Range

SD

Value

NumberOfValues

ID datainput

ID Units
Token

kgConverter

Name Id UnitGroups

ID Profiles

Public

Name

ID QualityParameter

ref_terms

SD

Formula

ModificationDate

ValueType Decimalplaces

NumberOfValues

autoRemaks

ID COmponentgroups

Name

OutputOrder

Name

ID Species

ID Components Name

Token

ref_terms

std_decimalplace
OutputOrder

PlausibilityChackFormula

feedcomponents

Value

Valuenotrounded

ID FeedComponents

Figure 1: Entity sets and their attributes

4



attribgroups attributes

feedfeedgroup

datainput

formulas

units

feedcomponents

qualityparameter

componentgroups

species

components

profiles

unitgroups

feedattributes

is in

is in

Relation

uses

parent son

is in

connect

for

compprofiles

is in

1

N

N 

N

N

1N

1

N

1 

1

1 N

1

1 N

N

N

1 N

uses

for

N

1

1

1

1

1

Figure 2: Relationships among the entity sets

In total, there are 14 entity sets and 10 relationships among them.
FeedComponents entity set stores the aggregated measures of different com-

ponents which compose different feed types. First they make some chemical
investigation, then they take the mean values and store them as an entity of this
set. Each measure has a Value and Valuenotrounded, of components amount
measured in the feed, it is uniquely identified by its ID.

’Feed’ entity set represents different types of food used to feed domestic
animals as horses, cows and pigs. These are the feed which are analyzed, they
take some sample at different places for the investigation of the different types
of components. Some examples of entities are wheat, grass and corn. They all
have name and are uniquely identified by ’FeedSpecNr’.

FeedGroup. Different feeds types are organized into different groups which
are modeled by ’FeedGroup’ entity set. Additionally to that, an entity of ’Feed-
Group’ can also group different feed groups. Each ’FeedGroup’ has a name and
is uniquely identified by its ’ID’. In the web layout, position of each feed group
is characterized by ’OutputLine’ and ’OutputLevel’.

5



Attributes. Each feed has certain characteristics or ’attributes’. For example,
location and date of harvesting are attributes of wheat. Different feed types
may have different attributes. For example, for grass it is important to store
information about how and for how long it was dried (in an open air, in a closed
environment, ... .). However, this information is irrelevant for wheat. These
attributes are modeled as the entity set ’Attributes’, each entity has a name
and is uniquely identified by its ’ID’.

AttribuGroups. Similarly to feed types, attributes are organized into groups,
which are represented by ’AttribuGroups’ entity set. Each entity of it has a name
and is uniquely identified by it’s ’ID’. This time no group groups other groups.

Components entity set is uniquely identified by it’s ’ID’, has a name and
a token. Individual entity is a kind of nutrient or mineral which composes
some kind of animal feed. Further each has a ’std-decimalplace’ to reduce the
volume of stored information, Outputorder for the Layout on the page and a
PlausibilityCheckFormula, which is a mathematical equation used to check if
measures of this component is correct. An incorrect measure may occur in case
of a bad chemical investigation. Then, for the relations, which are implemented
by links, each has the attribute ref_terms.

ComponentGroups. Different components are also organized into groups,
which are represented by entity set ’ComponentGroups’. Each entity is uniquely
identified by it’s ’ID’ and has a name. In the web layout, position of each group
is determined by ’outputorder’.

Species entity set represents different animal species like for example cow or
horse. Each entity has a name and is uniquely identified by it’s ’ID’.

Profiles. For users the entity set ’Profiles’ stores feed assortment for species
and special diet, like «Wiederkuer Aminosure-Profil» which helps them to chose
the feed’s, each entity has a name and is uniquely identified by it’s ’ID’ and has
an attribute public.

Units entity set represents different measure units which are used to quantify
containment of components in an animal feed. Each ’unit’ has a token and is
identified by it’s ’ID’. Attribute kgConverter is a float number, which converts
given unit into kilograms.

UnitGroups represents groups of units, each group has a name and is uniquely
identified by it’s ’ID’.

’QualityParameter’. For each measure in FeedComponents an entity in ’Qual-
ityParameter’ is assigned. Each entity is uniquely identified by it’s ’ID’. Fur-
ther there are the entries: SD (Standard deviation), NumberOfValues which
represents how many values have been used to take the mean, Decimalplaces,
which is the standard decimal place of the amount of the component in this
feed, ValueType, Formula with which the aggregated value has been calculated,
ModificationDate and autoREmarks, some text about this value and how it has
been obtained.

’Formulas’ entity set represents an expression, where kgConverter is used
to convert the obtained result given, in the unit represented by tokens, in to
kilograms. These are used to calculate aggregated values with measured values.
Each Formula is uniquely identified by it expression.

6



"Datainput’ The entity set ’datainput’ does not have any connection with
data requirements. The system uses ’datainput’ table to collect an input from
the user: the user fills in a record into the table, then the system reads the
record and redistributes the input to other tables in the database and, then
the record is deleted. Each entity has an identifying key ID_DataInput and
a bunch of additional information: SourceType, Value, Range, decimalplace,
timestamp, SD (standard deviation) and NumberOfValues. This also has the
entry ref_terms.

3 Introducing temporal information.
The measurements are chemical investigation done on samples of feed taken from
the different attachment locations. Those investigations are done sporadically.
After an investigation, the labor fills an excel table which looks like the following:

Feed location arrival TSL RA RLB RLBT
Orge en grains Schweiz 22.10.1997 875.9 24.66034935 28.542071
Orge en grains 22.10.1997 29.20913284 30.1201389
Orge expandée Westschweiz 22.10.1997 28.62027131 32.5355685
ORGE APLATIE 1 11.12.1998 901.30 22.9668257

In this excel table one line represents one sample taken somewhere at a cer-
tain date, which are identified by the first attributes: Feed, arrival and Location.
Then, different tests can be done on this sample to decide the amount of one
nutrient in this sample, those are then filled in the corresponding line like TSL,
RA or RLB, which is just a small Outline of all nutrients which could be tested.
For one sample not all nutrients are tested, so the excel table has a lot of blanks.
And also some sample may be tested twice or more for the same nutrient, which
demands a hole new line.

In the current design of the database, different measures are taken with which
they calculate a mean value, which is then stored in the ’feedcomponents’ en-
tity set. In addition to the value we have some attributes, like the numbers of
measures, which tells how good this value corresponds to reality.

Important to mention is that the attribute Location isn’t represented at all
in the database.

The next step is to distinguish all samples and measurement in the new de-
sign of the database and to introduce information about the location.

For this issue we need a new entity set ’measurement’, which has the at-
tribute ’value’, which is the value obtained by the experiment. Then, ’measure-
ment’ is in relation with ’Component’ and ’Sample’, ’Component’ represents

7



which component has been tested and ’Sample’ should represent the real sam-
ples. ’Sample’ has the attribute ’arrival’ which is the date the sample has been
harvested and brought to the laboratory. Then, ’Sample’ has a relation with
the new entity ’Location’ and with ’Feed’. ’Location’ has the attributes ’name’
and an ’ID_Location’. And naturally each entity is uniquely identified by it’s
ID.

Component

Sample

Feed

Location

value

arrival

is a

from

name

feedSpecNr

ID_Location

name

ID_Component

Measurement

on

ID_Measurement

of

name

ID_Sample
1

N N

1

1

N

N

1

Figure 3: measure relation set

It is important to know that we omitted to list all the attributes of compo-
nents which are not of importance in this picture.

8



Now in this design our example data would look like this:

measurement
ID_Measurement Value ID_Sample ID_Component
1 875.9 1 1
2 24.66034935 1 2
3 28.542071 1 3
4 29.20913284 2 2
5 30.1201389 2 5
6 28.62027131 3 2
7 32.5355685 3 5
8 901.30 4 1
9 22.9668257 4 2

Component
ID_Component name_Component
1 TSL
2 RA
3 RLB
5 RLBT

Feed
feedSpecNr name
1 Orge en grains
2 Orge expandée
3 ORGE APLATIE 1

Sample
ID_Sample arrival ID_Location feedSpecNr
1 22.10.1997 1 1
2 22.10.1997 1
3 22.10.1997 2 2
4 11.12.1998 3

4 Improvement to the overall design.
Analysis ER diagram. The following points are the weakest parts of the
database design.

1. There is information about the web page Layout in the database since this
is functional requirement this shouldn’t be in the database;

2. Units shouldn’t be attached to the measurement because the unit will
always be the same for a component;

3. In the current design the ’componentgroup’ entity set just stores a name
and information for the layout. So this doesn’t store change in time.
Whereas the different components are grouped in to different groups for

9



the different diets of the different animals and this groups aren’t definitive
so each can change or disappear during time, but some times one would
like to know which component was in a group at a certain time.

4. There are different groups which have the same attributes so one could
group them, this means to make one abstract entity set group which would
represent all groups and so there would be less redundancy in the database;

To improve the design first all attributes about the web page Layout have
been removed.
Then units is now in relation with components.
And then the ’componentgroup’ entity set has been changed in function to
store the needed information. And to correct the last part. We take the new
’componentgroup’ set in order to make an abstract group and let inherit the
groups like ’unitgroup’, ’FeedGroup’ and ’AttribGroup’. All this is represented
in the next diagram:

units

unitgroups

is in

For

AttribGroup

FeedGroup

ComponentGroup

component

SourceType

Group

ID

Name Since

To

Is a

d

N

N

1

1

Figure 4: Modification for enhancement

10



5 Complete ER Diagram
Now the resulting design of the database is represented on the following dia-
grams. The colored attributes and Entity sets are the new one, and the uncol-
ored are those that haven’t changed.

UnitGroup

AttribGroup

FeedGroup

ComponentGroup

sourceType

Group

ID

name since

to

species

name

ID Species

profiles

ID Profiles public

name units

ID Units
token

kgConverter

components

ID Components

nameToken

std_decimalplace

plausibilityChackFormula

Location

ID Location

nameFeed

feedSpecNr
name

attributes

name

ID Attributes

formulas

ID Formulas

expression

description

runLevel

Sample

arrival

ID_Sample

Measurement

value

ID Measurement

Figure 5: attributes

This time we count 14 entity sets, 27 attributes and 13 relations. For the
entity sets three are gone and have been replaced by three others, the attributes
are reduced because we removed all layout information and finally owing to the
time information the relations incremented by three.

11



Feed

Units

UnitGroup

is in

on for

AttribGroup

FeedGroup

ComponentGroup

Component

Location

Sample

Group

Is a

d

N

1

1

is in

from
is a

feedattributes Attributes is in

for

Species

relation

has

Profiles

N

N

N

1

N 1

parent son

1

N

N

N

N

N

N

1

1

1

N

is in

N

1
Measurement

of

N

1

Figure 6: relational diagram

6 Implementation and Testing
In order to test the efficiency of the new design the part of the database de-
scribed in the section Introducing temporal information has been implemented
in postgresql. Then, dummy data has been filled in namely 62 component’s,
600 feed’s, 100 location’s, two sample’s per feed per year, 30 measurement’s per
sample and this for the years 1990 to 2011.

Now to test how good our design is let us try some query on it.

Let us, in order to decide where we want to get the next sample, look at
which component has been tested from which feed how many times in each lo-
cation in the last few years.

select Feed.name Component.name Location.name count(*)
from component natural join measurement natural join Sample natural
join Location natural join Feed
where Sample.arrival between ’1.1.2009’and ’31.12.2010
group by ID_Component ID_Feed ID_Location

In the next table we see how long it takes to give an answer to this query
for different time intervals:

12



first query
time interval time in ms
1.1.2009-31.12.2010 3660
1.5.2000-31.12.2011 23145
1.1.1990-31.12.2011 44593

Since this should be a fast query we want to speed it up by putting some
indexes, but after some attempt’s it seemed like this query can’t be easily
enhanced. Since the group by produces many groups. Maybe this could be
achieved with some views. However, let us concentrate on a second query.

Assume we want to know the mean measured value of a certain component
in a certain feed. This could be reached by the following query.

select avg(Value)
from component natural join measurement natural join Sample natural
join Feed
where Feed.Name = ’potatoes’ and Component.name = ’Sugar’
and arrival >= ’1.1.2008’

For the test we take some of the random names that have been generated
and look at different time ranges.

second query
since time in ms
1.1.2008 218
1.1.2000 217
1.1.1990 228

By putting an index on the foreign key ’sample_ID’ in the ’Measurement’
set we get the new times

second query
since time in ms
1.1.2008 25
1.1.2000 15
1.1.1990 25

So for further enhancement we would need more data because we wouldn’t
notice differences since the query is very fast by now. So after removing the
indexes we are able to try a third and last query. We could make one in order
to see changes in sugar in all nutrients over the years.

select distinc Feed.name avg(Value)
from component natural join measurement natural join Sample natural

13



join Feed
where Component.name = ’Sugar’ group by extract(year from Arrival)

This query took 754ms, after introducing an index on the foreign key com-
ponent_ID in ’Measurement’ we can reduce it to 610ms, other indexes just
affects the time lightly so again we would need a bigger amount of data to see
differences.

7 Conclusion
What we have done so far, we took an existing database more precisely it’s SQL
source code and derived the ER-diagram from it. Then we tried to understand
how it works and what could be changed to make it perform better and took
anything away which should not be in a database. Then we took a sample of
the excel table which contains the information which is filled in the database
and looked for information which is not in the database. So we introduced
Time information and altered a few things so that we now have a new database.
To insure us that the new design of the database is working fast enough we
implemented parts of the new design and filled in some dummy data. So we let
act some query’s on this database and checked if we could reduce the duration
of the query by introducing some indexes.

Now to continue, one should make some more experimentation on the new
design till we are sure that it will fill the tasks. Then it would be time to
implement the hole database. Like we have seen there is a few information
missing in the excel table, so before filling in the data in the database one
should complete these information. Then time would come to fill in the old
data followed by the new one and so one could make the wanted statistical
analysis.

In this project the hardest part was to derive the database design just having
a SQL code and the excel table, after that there was a lot of work to do for the
new design. Then to get satisfied by the new design there was also a lot of details
which had to be solved, so there was also a lot to do. For the implementation
I felt like it was not very hard work, but in fact time was also running during
this part maybe it’s because that was the part I learned the most that I felt like
it was not too hard working.

14


