Report Vertiefung Thesis, Fall 2012
SQL Implementation of the Centroid Decomposition
Method

Alessandro De Carli, 10-751-717

December 10, 2012

1 Introduction

In our digital era the annual amount information we produce is growing every year
[3] (Hilbert, Martin and Lépez, Priscila 2011). There’s a need for fast and scalable
algorithms to analyze this data and understand the correlations between the data. The
aim of my Vertiefung thesis was to compare the scalability of different implementations
of the centroid decomposition method.

The centroid decomposition decomposes a matrix into centroid factors and loading
vectors. As described in The Centroid Decomposition: Relationships between Discrete
Variational Decompositions and SVDs (Moody T. Chu and Robert E. Funderlich 2002)
[1] the centroid decomposition is an approximate singular value decomposition. This
approximation allows a faster computation than full singular value decomposition. The
singular value decomposition allows us to find correlations inside data matrices.

In section 2 I begin with the formal definition of the centroid decomposition. In
section 3, I show how the centroid decomposition can be implemented in SQL using two
different approaches. In section 4 I compare the different implementations of the centroid
decomposition algorithm concerning their execution times. In section 5 I conclude this
report with a discussion about further optimizations and thoughts.

2 Definition
The Centroid Decomposition decomposes a given Matrix X into loading vectors b and the

according centroid vectors v. The sum of the multiplication of all loading and centroid
vectors will result in the initial matrix X:

=1

¢ is the number of centroid vectors to compute. In all here mentioned implementa-
tions ¢ = m, where m is the number of columns in the matrix X.

3 Implementation

3.1 Algorithm

The algorithm of the centroid decomposition method takes as input a matrix X and
returns as output a matrix B containing the loading vectors and a matrix V' containing
the centroid vectors. The algorithm is described in Figure 1

input : X - input matrix m x n

input : e- number of factors

output: B - loading matrix composed of ¢ loading vectors
output: V - centroid factors matrix composed of ¢ factor vectors

1 repeat
z 2:=1; // vector of m ones
3 d := diag(XX7"); // diagonal of covariance matrix XX7T
4 wi=XTz;
G k=10
i repeat
T gi=a-— (z-X-w}; // - - stands for dot product
8 y ;= max(e); // maximum element of e
8 k:=idz(e,y); // index of maximum element of e
10 if ¥ =0 then
11 z(k) := —z(k); // change sign of k-th element
12 if z(k) =1 then
13 w=w+row(d k)"
J/ row(A,k) - k-th row of matrix A
14 else
16 w=w — row(A, R:ZIT;
16 else
17 k=0
18 until (&!=0);
19 vi=w/lwll
20 b= Aw;
21 col(V,n—¢) =,

22 col(B,n—¢):=b
23 X=X W'
24 until fe=0) ;

Figure 1: Algorithm of Centroid Decomposition

3.2 Data structure

The first challenge is to represent those matrices in SQL relations. In order to illustrate
the different representations let me take the following matrix shown in figure 2 as an
example.

4 =7 5
2 3 1
-1 0 =2

Figure 2: A matrix with 3 rows and 3 columns

In 3.2.1 and 3.2.2 the matrix shown in figure 2 is represented into relations using two
different approaches.

3.2.1 Relational representation

The first idea was to transform the input matrix X to a relation with n tuples of m
values as shown in table 1. Since tuples are stored in arbitrary order inside a relational
database, this representation needs an index (row_number) to maintain order. This
representation is visualized in table 1.

coll | col2 | col3 | row_number
4 -7 5 1
2 3 1 2
-1 0 -1 3

Table 1: Relational representation of a matrix as a SQL relation

The pros and contras of this representation are:
e Pros

— Easy to understand
— Fast INSERT’s

e Contras

— Order of tuples completely arbitrary — needs an order index
— Cannot use SELECT statements to perform needed matrix calculations —
PL/SQL loops needed

This representation is not usable, because the needed matrix calculations cannot be
implemented using SQL queries.

3.2.2 Indexed representation

Each value of the matrix has one corresponding tuple in the relation. The matrix is
represented with 2 indexes one for the column and one for the row. This representation
is visualized in table 2.

val | row_index | column_index
4 1 1
-7 1 2
5 1 3
2 2 1
3 2 2
1 2 3
-1 3 1
0 3 2
-1 3 3

Table 2: Indexed representation of a matrix as a SQL relation

The pros and contras of this representation are:
e Pros:

— Ability to perform matrix calculations using SELECT’s

— Indices allow fast and easy access to values
e Contras:

— Uses more storage
— More INSERT’s needed

The advantage that let me choose this representation is that all needed matrix calcu-
lations can be implemented with SQL SELECT statements. Both PL/SQL implemen-
tations of the centroid decomposition method use this representation.

3.3 Transforming the given dataset

For the scope of this work the dataset was given. Each entry in the dataset has a
timestamp (ts) and an id linking the entry to specific series (series_id). The dataset’s
relation can be seen in table 3.

Not all series have the exact same amount of rows, but the series have the same
granularity of timestamp (t;11 = t; + 2). The dataset was incomplete, some series
missed several timestamps. Before the computation could start the dataset had to be
transformed into a usable input matrix.

series_id ts val
100 11034 | 1.889232
110 2 1.208321
104 40 2.029293
104 120 | 0.779081

Table 3: Extract of the given dataset

INSERT INTO input_matrix(val,series_id,ts) (
SELECT val,series_id,ts FROM (
SELECT o.val,r.series_id,r.ts
FROM observation o RIGHT OUTER JOIN (
SELECT n AS ts,m AS series_id FROM (
SELECT rownum-1 n FROM dual CONNECT BY level-1 <= 10000
),

SELECT rownum m FROM dual CONNECT BY level <= 3
)
WHERE MOD(n,2) OANDm >0) r
ON o.series_id = r.series_id AND o.ts = r.ts

)
)

The query above returns us a table with series 1, 2 and 3 each with timestamp 0 to
1000, missing values are filled with a NULL due to the OUTER JOIN. The knowledge of
the timestamp’s granularity and series_id’s incremental step is used to efficiently generate
an input relation out of the incomplete dataset. Without this knowledge all distinct
values for both indexes need to be retrieved, which is a costly operation. The input now
has the in 3.2.2 discussed representation. ts is the index for the rows and series_id is the
index for the columns.

3.4 Algorithm calculations

The CDECOMP() SQL implementation had the aim to consist out of just SQL queries
and loops. In fact only the maximum value of e and its index is stored as a variable.
This first SQL implementation did not perform well because of the SELECT’s inside
the loop that generate a lot of disk 10O, if the needed values are not cached. That’s
why in the optimized SQL implementation CDECOMP_BULK_COLLECT() the aim
was to reduce the disk IO and to cache as many needed values as possible. CDE-
COMP_BULK_COLLECT() is much faster than its predecessor as can be seen in figure
6. The disadvantage is that it’s implemented using Oracle’s BULK COLLECT, no other
database system provides this operation, making the implementation an Oracle depen-
dent solution. Cursors are not an option because they don’t perform as good in loops
[2] (Feuerstein 2012).

To show the difference of the two SQL implementations let me compare some parts
of the implementations:

e In line 7 (figure 1) we calculate the e vector, which includes a matrix multiplication
and a vector subtraction.

— In the CDECOMP() implementation this calculation is accomplished by the
following SQL query:

SELECT d.val-zxw.val as val, zxw.ts
FROM d_vector d,(
SELECT xw.val*z.val as val,xw.ts as ts
FROM (
SELECT sum(w.val*i.val) as val, i.ts
FROM w_vector w,input_matrix i
WHERE w.series_id=i.series_id
GROUP BY i.ts
) Xw, z_vector z
WHERE z.ts=xw.ts
) zZwx
WHERE d.ts = zxw.ts

The multiplication of the X with w is performed by grouping by the row
index (ts) and joining by the column index (series_id). A join and a value-
by-value subtraction make the vector’s subtraction. The result is a relation
representing a vector, each row is indexed with a series_id.

— CDECOMP_BULK_COLLECTY() solves the same problem with this PL/SQL

snippet:
max_value := -999999999;
max_value_index := -1;

FOR k in O..(xw_var.count-1) LOOP

xw_var (k+1) :=0;
END LOOP;
FOR k in O..(values_count-1) L0OOP

xw_var (TRUNC (k/ (column_count)+1))

:= xw_var (TRUNC (k/ (column_count))+1)
+ (x_var(k+1)*w_var(MOD(k,column_count)+1));

END LOOP;
FOR k in O..(xw_var.count-1) LOOP

IF max_value < (d_var(k+1) - (z_var(k+1)*xw_var(k+1))) THEN

max_value := d_var(k+1) - (z_var(k+1)x*xw_var(k+1));
max_value_index := k+1;
END IF;
END LOOP;

The CDECOMP _BULK_COLLECT() implementation performs the multipli-
cation using MOD(k,column_count)+1) and TRUNC(k/(column_count)+1)
to get the appropriate values while looping through the values of X. The
values of X are bulk collected inside x_var in a previous part of the imple-
mentation. The vector subtraction is made while searching the maximum
value. Since we are only interested in the maximum value of e there is no
need to store the whole e vector.

e In line 13 and 15 (figure 1) we calculate the w vector needed for the next iteration.

— The CDECOMP() implementation performs this calculation with following
SQL query:

SELECT w.val+z.val*ir.val AS val, w.series_id AS series_id
FROM w_vector w, (
SELECT val, series_id
FROM input_matrix
WHERE ts = ¢‘index of maximum e_vector value’’
) ir, z_vector z
WHERE w.series_id = ir.series_id
AND z.ts = ‘‘index of maximum e_vector value’’

X’s row holding the index of maximum e_vector value is added or subtracted
to w’s value depending on z’s value on that index. A join on series_id allows
us to calculate the new value row-by-row.

— CDECOMP_BULK_COLLECTY() solves the same problem with this PL/SQL
snippet:

FOR k in O..(column_count-1) LOOP
w_var (k+1)
:= w_var (k+1)+(2*z_var (max_value_index)
*x_var (((max_value_index-1)*column_count)+1+k));
END LOOP;

The multiplication of max_value_index with column_count allow us to navigate
directly to the first value of the needed row of X.

As we can see in the first implementation the data representation in indexes is a great
support. Matrix multiplications can be easily implemented with JOIN’s and GROUP
BY’s. The second implementation exploits the data representation, in the way that it
stores only an ordered list of the values. By knowing the number of columns and rows
we can treat this 1-dimensional list as a 2-dimensional matrix.

4 Comparison of implementations

This section provides an empirical comparison between the 3 different implementations.
The Java implementation was provided by the supervisor of this Vertiefung and computes
the calculations in memory. In both SQL implementations the Oracle server handles
memory management.

4.1 Runtime complexity

The centroid decomposition method has a complexity of O(kn?) for a rank-k approxi-
mation (Chu, Moody T. and Funderlic, Robert E. 2002) [1]. The here mentioned im-
plementations set k to be the number of columns (m) — O(mn?). This means that the
execution time should grow linearly when increasing m and quadraticaly when increasing
n.

4.2 Running time

All results were measured on horatio as SQL server and econbase as client. This means
econbase computed the Java implementation and horatio both SQL implementations.
Both machines run in the same (UZH) network, which allowed me to reduce the network
delay. The econbase machine has more computing power than the horatio machine. Both
machines are running on the same amount of memory (4 GB).

In the algorithm (figure 1) there are 3 variable points to run an empirical comparison:

e The number of rows X has (n)
e The number of columns X has (m)

e The number of centroid vectors we want to calculate (c)

The implementations set the number of centroid vectors to be equal to the number
of columns the X has (¢ = m). In the following graphs the measured time is plotted
in milliseconds. Each point represents the average of at least 4 observations taken from
independent executions.

Because I was not the only user of the Oracle server, every computation was executed
multiple times, by doing this the probability of getting “wrong” times because of the
load can be reduced.

4.2.1 Changing the number of rows

The number of columns is fixed to 2. The number of rows is doubled on every step
(ti+1 = 2t;) until reaching a maximum of 32768 rows.

Figure 3 shows us that with 4096 rows the CDECOMP() SQL implementation takes
around 4 minutes. Because of this long time the CDECOMP() SQL implementation has
been excluded in the next plots.

CDecomp Execution Time

o
=3
S
=3
o "
[3Y Implementations
—— Java °
e saL
8 --+-- SQL bulk collect
S
=3
S
«
5 8
@
E 3
=~ ©
o -
£
c
2 38
g 8
g 8
[N
o o
=3
S -
3 e
o e
---------- .
O | e @ § gt . -

Number of rows

Figure 3: An overview of all implementation’s execution times

CDECOMP_BULK_COLLECT Execution Time Java Execution Time

5e+06
1

Implementations
—+— SQL bulk collect
SQL bulk collect - quadratic regression

4e+06
1

Execution time (ms)
3e+06

1
Execution time (ms)

2e+06
1

1e+06
10000 20000 30000 40000 50000 60000 70000
I

0
L

0e+00
L

T T T T T T T T T T T T T T
0 5000 10000 15000 20000 25000 30000 0 5000 10000 15000 20000 25000 30000

Number of rows Number of rows

Figure 4: Execution times in detail with quadratic regression

The Java implementation seemed to be linear in the first plots (figure 3), after adapt-
ing the axis we can see that it is quadratic as well (right graph figure 4). Both graphs
show that the algorithms fit nicely to a quadratic regression, the significance measured

by R? is almost 1 (table 4).

implementation function adjusted R?
Java y = 54.32 + 0.1617z + 0.000045332% 0.9999
SQL bulk collect y = 256 — 3.452z + 0.0040862 0.9999

Table 4: Significance of the regression functions shown in figure 4

The regression functions shown in table 4 allow us to estimate how long the calcu-
lation takes for any given row number (n). The runtime complexity O(mn?) mentioned
in 4.1 indicates a quadratic function of n, this has been confirmed by the results shown
in table 4.

Ration between execution times

70

- ——————
.

|

-

40 50
| |

Factor

30
|
.

T~

10
~

Implementations
/ —— Ratio beteween SQL bulk collect and Java

T T T T T T T
0 5000 10000 15000 20000 25000 30000

Number of rows

Figure 5: Ratio of java over bulk collect’s execution time (e.g. factor 3 means the java
implementation is 3 times faster)

One way to compare the implementation’s execution times is by computing the ratio
between the two. Figure 5 shows us by which factor the Java implementation is faster
than the bulk collect SQL implementation.

4.2.2 Changing the number of columns

The number of rows is fixed to 1024. The number of columns is increased by 1 on every
step (ti+1 = t; + 1) until reaching a maximum of 100 columns.

The CDECOMP() implementation has been excluded from these results, because in-
creasing the number of columns increases the number of iterations (from line 1 to line 24)

10

Execution time (ms)
4e+05 6e+05 8e+05 1e+06

2e+05

0e+00

Figure 6: An

Execution Times

Implementations
——

Java
- SQL bulk collect |

0 20 40 60 80 100

Number of columns

overview of both implementation’s execution times.

and takes to much time to execute. Figure 6 shows that the Java implementation per-
forms a lot better, even when increasing the number of columns. Both implementations
show linear trends.

Execution time (ms)

2e+05 4e+05 6e+05 8e+05 1e+06

0e+00

Figure 7:

CDECOMP_BULK_COLLECT Execution Time Java Execution Time
Implementations M Implementations
7| [~ saL bulk collect —— Java
- SQL bulk collect - linear regression . S - Java- linear regression
ol § h
.
i=3
o
8
=]
—_ <~
@
E
o
£ 8|
§ .
=1
3
i g
- < . i
- . et
IR M - ';..m"‘/
o . Py =3 . -
o g .
N l s et . - I\ e w"“‘"
P R R o h
o o’ .
P sttt
rtversnasterst PR e
T T T T T T T T T T T
0 20 40 60 80 100 0 20 40 60 80 100
Number of columns Number of columns

Execution times in detail with linear regression

11

In figure 7 both graphs show some points not fitting the linear trend. When compar-
ing table 5 with table 4 we see that we have less significant regression functions. This
makes the execution times less predictable.

implementation function adjusted R?
Java y = —870.310 — 174.935z 0.8835
SQL bulk collect y = —74116 4 5020z 0.3866

Table 5: Significance of the regression functions shown in figure 7

As already mentioned some points do not fit the linear trend. When changing from
the average execution time to the minimal execution time those points persist. Even
with those points a linear trend can be seen. Since we increase m this corresponds to
the runtime complexity of O(mn?).

5 Conclusion

Even though the optimized SQL implementation is a lot faster than its predecessor, it’s
not scalable. Having to wait 81 minutes for the computation of 32768 rows x 2 columns
is not acceptable. The Java implementation performs a lot better in this case with just
1 minute for the same computation. All implementations fit to a quadratic regression,
which does not play in favor of scalability. It’s nice to see how the theoretical complexity
shows up in the results.

The reason for the slow SQL performance is not due to the queries per-se, but because
the queries are executed inside loops. This generates a lot of Disk IO as was shown by
the results of comparing the optimized SQL implementation with the first one. It’s
unclear whether BULK COLLECT without LIMIT’s stores the whole data in the main
memory, but it certainly allows us to access the whole collected dataset faster than when
retrieving it via SQL query (figure 3).

The Java implementation computes everything directly in the main memory. This
makes it run out of memory quickly. On the other hand this approach reduces the number
of I0’s and makes it very fast. The speed is acceptable even for larger datasets. One
way to improve this algorithm’s scalability would be to reduce memory consumption.
This is definitely possible as could be noticed in the SQL implementation.

I assume that a very good way to improve this algorithm’s performance would be to
run all matrix computations on hardware that is designed for matrix computations. More
specifically on graphic cards. Graphic cards deal very efficiently with matrix calculations
[4] (Larsen, E. Scott and McAllister, David 2001). It would be very interesting to run
the same empirical comparisons with a graphic card based algorithm.

Another optimization approach would be to distribute the computation (between
line 6 and 18), which is not a trivial task because each iteration is dependent from the
previous one.

12

Bibliography

[1] Moody T. Chu and Robert E. Funderlic. The centroid decomposition: Relationships
between discrete variational decompositions and SVDs. SIAM Journal on Matrix
Analysis and Applications, 23(4):1025-1044, January 2002.

[2] Steven Feuerstein. On cursor FOR loops. http://www.oracle.com/technetwork /issue-
archive/2008/08-nov/068plsql-088608.html.

[3] Martin Hilbert and Priscila Lopez. The world’s technological capacity to store,
communicate, and compute information. Science, 332(6025):60-65, April 2011.

[4] E. Scott Larsen and David McAllister. Fast matrix multiplies using graphics
hardware. In Proceedings of the 2001 ACM/IEEE conference on Supercomputing
(CDROM), Supercomputing '01, page 55-55, New York, NY, USA, 2001. ACM.

13

