
Semantic Web Engineering

Gerald Reif
reif@ifi.unizh.ch

 Fr. 10:15-12:00, Room 2.A.10

Organizational Stuff

  Today only ~45 Min lecture

  No lecture on November 12, 2010

  Lecture on November 29, 2010 takes
place in Andreasstrasse AND 3-48

© Gerald Reif HS 2010 2

© Gerald Reif HS 2010 3

Web Ontology Language

Ontology vocabulary

Logic

Proof

D
ig

ita
l S

ig
na

tu
re

Trust

Unicode URI

XML + NS + XML Schema

RDF + RDF Schema

© Gerald Reif HS 2010 4

Definition: Ontology

  This definition includes:
  The specified concepts must be defined explicitly.
  The concepts are formally specified.
  There must be a shared agreement on the ontology.
  There might be more than one ontology for a domain.

  In general, an ontology describes formally the
vocabulary to talk about a domain of discourse.

  The ontology consists of a finite list of terms and
relationships between these terms.

An ontology is an explicit and formal specification of a
shared conceptualization.

© Gerald Reif HS 2010 5

Requirements for Ontology
Languages 1/2
  Well-defined syntax

  Necessary for machine processing of information;
known from programming languages.

  Formal Semantics
  A formal Semantics describes the meaning of

knowledge precisely. Achieved by using logic.
  Convenience of expression

  Provide a simple syntax to represent the logic
constraints.

© Gerald Reif HS 2010 6

Requirements for Ontology
Languages 2/2
  Efficient reasoning support

  The use of formal semantics allows to reason about the
knowledge:
  Check the consistency of an ontology.
  Check for unintended relationships.
  Automatically classify instances in classes.

  Checks like the preceding ones are valuable for
  designing large ontologies, where multiple authors are involved
  integrating and sharing ontologies from various sources

  Sufficient expressive power
  Use as much logic to be able to express the wanted

constraints, but still keep it computational complete.

© Gerald Reif HS 2010 7

Limitations of RDF and RDF Schema
  RDF/RDFS allow to define Classes, properties, class and property

hierarchies, and domain and range restrictions.
  Several Features are missing:

  Cardinality constraints on properties.
  A Person has exactly two Parents.

  Local scope of properties. In RDFS we cannot declare range restrictions
that apply to some classes only.
  A cow eats only plants, while other animals my eat meat, too.

  Disjointness of classes.
  Male and Female are disjoint.

  Boolean combination of classes. New classes are defined by combining
other classes using union, intersection, and complement.
  The class Person is defined by the disjoint union of the classes Male

and Female.
  Special characteristics of properties.

  To declare a property transitive ("greater than"), unique ("is mother of"),
inverse ("eats" and "is eaten by").

© Gerald Reif HS 2010 8

The Web Ontology Language OWL

  The limitations of RDF lead to research on more
advanced ontology languages.
  DAML: DARPA Agent Markup Language; US initiative
  OIL: Ontology Inference Layer; European initiative.
  DAML+OIL joint US/European initiative.

  The W3C Web Ontology Working Group
  DAML+OIL was the starting point for the group.

  Web Ontology Language (OWL)
  W3C recommendation since 10 February 2004
  http://www.w3.org/TR/owl-semantics/

© Gerald Reif HS 2010 9

OWL Related W3C Documents
  The OWL Overview gives a simple introduction to OWL by providing a

language feature listing with very brief feature descriptions;
http://www.w3.org/TR/owl-features/

  The OWL Guide demonstrates the use of the OWL language by providing
an extended example. It also provides a glossary of the terminology used in
these documents; http://www.w3.org/TR/owl-guide/

  The OWL Reference gives a systematic and compact (but still informally
stated) description of all the modeling primitives of OWL;
http://www.w3.org/TR/owl-ref/

  The OWL Semantics and Abstract Syntax document is the final and formally
stated normative definition of the language;
http://www.w3.org/TR/owl-semantics/

  The OWL Web Ontology Language Test Cases document contains a large
set of test cases for the language; http://www.w3.org/TR/owl-test/

  The OWL Use Cases and Requirements document contains a set of use
cases for a web ontology language and compiles a set of requirements for
OWL. http://www.w3.org/TR/webont-req/

© Gerald Reif HS 2010 10

Combining OWL with RDF Schema

  Ideally, OWL would extend RDF Schema
  Consistent with the layered architecture of the

Semantic Web

  But simply extending RDF Schema would
work against obtaining expressive power
and efficient reasoning
  Combining RDF Schema with logic leads to

uncontrollable computational properties

© Gerald Reif HS 2010 11

Three Species of OWL

  W3C’sWeb Ontology Working Group
defined OWL as three different
sublanguages:
  OWL Full
  OWL DL
  OWL Lite

  Each sublanguage geared toward fulfilling
different aspects of requirements

© Gerald Reif HS 2010 12

OWL Full

  It uses all the OWL languages primitives
  It allows the combination of these primitives in

arbitrary ways with RDF and RDF Schema
  e.g. impose a cardinality constraint on the class of all

classes, essentially limiting the number of classes that
can be described in an ontology.

  OWL Full is fully upward-compatible with RDF,
both syntactically and semantically

  OWL Full is so powerful that it is undecidable
  No complete (or efficient) reasoning support

© Gerald Reif HS 2010 13

OWL DL

  OWL DL (Description Logic) is a sublanguage of
OWL Full that restricts application of the
constructors from OWL and RDF
  Application of OWL’s constructors’ to each other is

disallowed
  Therefore it corresponds to a well studied description logic

  OWL DL permits efficient reasoning support
  But we lose full compatibility with RDF:

  Not every RDF document is a legal OWL DL document.
  Every legal OWL DL document is a legal RDF document.

© Gerald Reif HS 2010 14

OWL Lite

  An even further restriction limits OWL DL to a
subset of the language constructors
  E.g., OWL Lite excludes enumerated classes,

disjointness statements, and arbitrary cardinality.
  The advantage of this is a language that is

easier to
  grasp, for users
  implement, for tool builders

  The disadvantage is restricted expressivity

© Gerald Reif HS 2010 15

Upward Compatibility between OWL
Species
  Every legal OWL Lite ontology is a legal OWL DL ontology.

  Every legal OWL DL ontology is a legal OWL Full ontology.

  Every valid OWL Lite conclusion is a valid OWL DL conclusion.

  Every valid OWL DL conclusion is a valid OWL Full conclusion.

© Gerald Reif HS 2010 16

OWL Compatibility with RDF Schema

  All varieties of OWL use
 RDF for their syntax

  Instances are declared
 as in RDF, using RDF
 descriptions

  and typing information
 OWL constructors are
 specialisations of their
 RDF counterparts

rdfs:Resource

rdfs:Class rdf:Property

owl:Class

owl:DatatypeProperty

owl:ObjectProperty

© Gerald Reif HS 2010 17

What are Description Logics?

  A family of logic based Knowledge Representation
formalisms

  Historic background
  Practical: Semantic networks, frame systems
  Formal: First Order Logic (FOL)

  Decidable fragment of FOL
  Describe domain in terms of concepts (classes), roles

(relationships) and individuals
  Provision of inference services

  Sound and complete decision procedures for key problems
  Implemented systems (highly optimized)

  OWL Web ontology language based on SHIQ DL

18

DL Example

  Every human has human children:
∃hasChild.Human ⊑ Human

  A man that is married to a doctor and has at
least five children, all of whom are
professors:

Human ⊓ ¬Female ⊓ ∃married.Doctor ⊓ (≥5 hasChild) ⊓ ∀hasChild.Professor

Human

= individual
hasChild

hasChild

© Gerald Reif HS 2010

© Gerald Reif HS 2010 19

DL Architecture

Knowledge Base

Tbox (schema)

Abox (data)

Man ≡ Human ⊓ Male

Happy-Father ≡ Man ⊓ ∃ has-child

Female ⊓ …

John : Happy-Father

〈John, Mary〉 : has-child In
fe

re
n

ce
 S

y
st

e
m

In
te

rf
a
ce

20

Necessary and Sufficient Condition

  Necessary condition:
 Dog ⊑ Animal (Dog is a subclass of Animal)
  Being a Animal is a necessary condition of being a Dog,

but is not sufficient.

  Sufficient condition:
 CarOwner ≡ (Person ⊓ ∃owns.Car) (equivalent class)
  CarOwners must be a Person who owns a Car

(necessary conditions as above), but in addition, any
Person who owns a Car must also be a CarOwner.

© Gerald Reif HS 2010

© Gerald Reif HS 2010 21

OWL as DL: Class Constructors

  XML Schema datatypes

Constructor DL Syntax Example

intersectionOf C1 ⊓ … ⊓ Cn Human ⊓ Male

unionOf C1 ⊔ … ⊔ Cn Cat ⊔ Dog

complementOf ¬C ¬ Male

oneOf {x1} ⊔ … ⊔ {xn} {john} ⊔ {mary}

allValuesFrom ∀ P.C ∀ hasSon.Male

someValuesFrom ∃ P.C ∃ owns.Car

maxCardinality ≤ n P ≤ 2 hasChild

minCardinality ≥ n P ≥ 1 hasChild

© Gerald Reif HS 2010 22

OWL Syntax
E.g., Person ⊓ ∀ hasChild.Doctor ⊓ ∃ hasChild.Doctor

intersectionOf(Person
 restriction(hasChild allValluesFrom Doctor) restriction
(hasChild someValuesFrom Doctor))

 <owl:Class>

 <owl:intersectionOf rdf:parseType="Collection">
 <owl:Class rdf:about="#Person"/>
 <owl:Restriction>

 <owl:allValuesFrom rdf:resource="#Doctor"/>
 <owl:onProperty>
 <owl:ObjectProperty rdf:ID="hasChild"/>

 </owl:onProperty>
 </owl:Restriction>
 <owl:Restriction>
 <owl:onProperty>

 <owl:ObjectProperty rdf:about="#hasChild"/>
 </owl:onProperty>
 <owl:someValuesFrom rdf:resource="#Doctor"/>
 </owl:Restriction>

 </owl:intersectionOf>
 </owl:Class>

DL Syntax

OWL/XML Syntax

Abstract Syntax

OWL 2 Syntaxes

There are several
syntaxes to serialize OWL
2 ontologies.

The RDF/XML syntax is
the only syntax that is
mandatory to be
supported by all OWL 2
tools.

More examples:
http://www.w3.org/TR/
owl2-primer/

© Gerald Reif HS 2010 23

© Gerald Reif HS 2010 24

Open and Closed Worlds
  Open World Assumption (OWA)

  We cannot assume that all information is known about all the
individuals in the domain.

  Being unable to prove that an individual a is an instance of X
does not justify our concluding that a is not an instance of X.

  Closed World Assumption (CWA)
  If we cannot deduce that an individual a is an instance of X

then we can assume that a is an instance of (complementOf X).
  Drawback

 unionOf (A complementOf (A))
  It may be the case that we cannot determine (given the

information at our disposal) exactly which of the two it is an
instance of. Although an OWL reasoner should always answer
yes to the question “is a an instance of (unionOf (A
(complementOf A)))”, it may answer no to both “is a an instance
of A” and “is a an instance of (complementOf A)”.

© Gerald Reif HS 2010 25

OWL as DL: Axioms
Axiom DL Syntax Example

subClassOf C1 ⊑ C2 Human ⊑ Animal ⊓ Biped

equivalentClass C1 ≡ C2 Man ≡ Human ⊓ Male

disjointWith C1 ⊑ ¬C2 Female ⊑ ¬ Male

sameAs {x1} ≡ {x2} {President} ≡ {G.W.Bush}

differentFrom {x1} ⊑ ¬ {x2} {john} ⊑ ¬ {peter}

subPropertyOf P1 ⊑ P2 hasDaughter ⊑ hasChild

equivalentProperty P1 ≡ P2 cost ≡ prise

inverseOf P1 ≡ P2
- hasChild ≡ hasParent-

transitiveProperty P+
 ⊑ P ancestor+

⊑ ancestor

functionalProperty T ⊑ ≤1P T ⊑ ≤ 1 hasMother

inverseFunctionalProperty T ⊑ ≤1P- T ⊑ ≤ 1 SSN-

reflexive knows

irreflexible isMotherOf

symetric isSibling

antisymetic isChildOf

© Gerald Reif HS 2010 26

Unique Name Assumption (UNA)

  The Unique Name Assumption (UNA) says that any two
individuals with different names are different individuals.

  OWL semantics does not make the UNA
  There are mechanisms in the language

(owl:differentFrom and owl:AllDifferent) that allow
us to assert that individuals are different.

© Gerald Reif HS 2010 27

Reasoning

  Modern reasoners use the Tableau
Algorithm
  Try to build a tree like model by decomposition

uses tableau rules corresponding to
constructors in logic (e.g., ⊓, ∃)

  Some steps are nonterministic (e.g. ⊔)
  In practice, this means search

  Examples use the Pellet or Fact++
reasoner and the Protègè interface

© Gerald Reif HS 2010 28

OWL Pizza Example

  Explaning OWL and DL with the help of the
"Pizza" ontology.

  Full description of the example can be found in
"The Practical Guide To Building OWL
Ontologies Using The Protègè-OWL Plugin and
CO-ODE Tools"
http://www.co-ode.org/resources/tutorials/ProtegeOWLTutorial.pdf

  Slices are partly (or mostly) taken from "A
Practical Introduction to Ontologies & OWL" from
Nick Drummond and Matthew Horridge
University of Manchester

© Gerald Reif, Universität Zürich and
 Nick Drummond and Matthew Horridge, University of Manchester

© Gerald Reif HS 2010 29

Ontology Engineering

  Ontology Engineering stands for the process of modeling
an ontology for the domain of discourse.

  Most often it is not the domain expert that formalises
their knowledge – because of the complexity of the
modelling it is normally a specialist “knowledge engineer”
Hopefully, as tools get easier to use, this will change.

  Having access to experts is critical for most domains.
  Our domain of discourse is Pizza making.

  Luckily, we are all experts in Pizzas, so we just need some
material to verify our knowledge…

© Gerald Reif, Universität Zürich and
 Nick Drummond and Matthew Horridge, University of Manchester

© Gerald Reif HS 2010 30

OWL Constructs

Person Country

Class (concept)

Animal

Individual (instance)

Belgium

Paraguay

China
Latvia

Elvis

Hai

Holger

Kylie

S.Claus

Rudolph

Flipper arrow = relationship
label = Property

lives_in

lives_in

lives_in

ha
s_

pe
t

© Gerald Reif, Universität Zürich and
 Nick Drummond and Matthew Horridge, University of Manchester

© Gerald Reif HS 2010 31

OWL Constructs: Classes

Eg Mammal, Tree, Person, Building, Fluid, Company
  Classes are sets of Individuals
  aka “Type”, “Concept”, “Category”
  Membership of a Class is dependent on its logical description, not its

name
  Classes do not have to be named – they can be logical expressions

– eg things that have colour Blue
  A Class should be described such that it is possible for it to contain

Individuals (unless the intention is to represent the empty class)
  Classes that cannot possibly contain any Individuals are said to be

inconsistent

© Gerald Reif, Universität Zürich and
 Nick Drummond and Matthew Horridge, University of Manchester

© Gerald Reif HS 2010 32

OWL Constructs: Properties

Eg hasPart, isInhabitedBy, isNextTo, occursBefore
  Properties are used to relate Individuals
  We often say that Individuals are related along a given property
  Relationships in OWL are binary:

 Subject predicate Object
 Individual a hasProperty Individual b
 nick_drummond givesTutorial Manchester_ProtegeOWL_tutorial_29_June_2005

  N-ary relationships can be modelled with workarounds in OWL

© Gerald Reif, Universität Zürich and
 Nick Drummond and Matthew Horridge, University of Manchester

© Gerald Reif HS 2010 33

OWL Constructs: Individuals

Eg me, you, this tutorial, this room
  Individuals are the objects in the domain
  aka “Instance”, “Object”
  Individuals may be (and are likely to be) a member of

multiple Classes

© Gerald Reif, Universität Zürich and
 Nick Drummond and Matthew Horridge, University of Manchester

© Gerald Reif HS 2010 34

…
  Is a knowledge modelling environment
  Is free, open source software
  Is developed by Stanford Medical Informatics
  Core is based on Frames (object oriented)

modelling
  Has an open architecture that allows other

modelling languages to be built on top
  Supports development of plug-ins to allow

backend / interface extensions

© Gerald Reif, Universität Zürich and
 Nick Drummond and Matthew Horridge, University of Manchester

© Gerald Reif HS 2010 35

Protégé-OWL

© Gerald Reif, Universität Zürich and
 Nick Drummond and Matthew Horridge, University of Manchester

© Gerald Reif HS 2010 36

Class Hierarchy
Structure as asserted by the ontology engineer
Subsumption hierarchy

owl:Thing is the root class

© Gerald Reif, Universität Zürich and
 Nick Drummond and Matthew Horridge, University of Manchester

© Gerald Reif HS 2010 37

Subsumption

  Superclass/subclass relationship, “isa”
  All members of a subclass can be inferred to be

members of its superclasses
owl:Thing: superclass of all OWL Classes

B

A
•  A subsumes B
•  A is a superclass of B
•  B is a subclass of A
•  All members of B are also
members of A

© Gerald Reif, Universität Zürich and
 Nick Drummond and Matthew Horridge, University of Manchester

© Gerald Reif HS 2010 38

Class Editor
Class documentation, and annotation (for class meta-data)

Disjoints

Conditions Widget

© Gerald Reif, Universität Zürich and
 Nick Drummond and Matthew Horridge, University of Manchester

© Gerald Reif HS 2010 39

Creating Disjunct Classes

  Create classes for Pizzas, Bases
and Toppings

  Put Toppings into several
subclasses

  Make classes disjoint with siblings
  Wizard to create class hierarchies:

 Toos Create Class hierarchies…

© Gerald Reif, Universität Zürich and
 Nick Drummond and Matthew Horridge, University of Manchester

© Gerald Reif HS 2010 40

Meaning Disjunct Classes

  OWL Classes are assumed to overlap.	

  We therefore cannot assume that an individual is not a
member of a particular class simply because it has not
been asserted to be a member of that class.	

  In order to separate a group of classes we must make
them disjoint from one another.	

  In our above example Pizza, PizzaTopping and PizzaBase

have been made disjoint from one another.	

  This means that it is not possible for an individual to be a

member of a combination of these classes - it would not make
sense for an individual to be a Pizza and a PizzaBase!	

© Gerald Reif, Universität Zürich and
 Nick Drummond and Matthew Horridge, University of Manchester

© Gerald Reif HS 2010 41

Consistency Checking
  We’ve just created a class that doesn’t really make

sense
  MeatyVegetableTopping subclass of MeatTopping and

VegetableTopping
  What is a MeatyVegetableTopping?

  We’d like to be able to check the logical consistency
of our model

  This is one of the tasks that can be done
automatically by software known as a Reasoner

  Being able to use a reasoner is one of the main
advantages of using a logic-based formalism such as
OWL (and why we are using OWL-DL)

© Gerald Reif, Universität Zürich and
 Nick Drummond and Matthew Horridge, University of Manchester

© Gerald Reif HS 2010 42

Reasoners

  Reasoners are used to infer information that is not explicitly
contained within the ontology and to check its consistency.

  You may also hear them being referred to as Classifiers
  Standard reasoner services are:

  Consistency Checking
  Subsumption Checking
  Equivalence Checking
  Instantiation Checking

  Reasoners can be used at runtime in applications as a querying
mechanism (esp. useful for smaller ontologies)

  We will use one during development as an ontology “compiler”. A
well designed ontology can be compiled to check its meaning is that
intended.

© Gerald Reif, Universität Zürich and
 Nick Drummond and Matthew Horridge, University of Manchester

© Gerald Reif HS 2010 43

Accessing the Reasoner

© Gerald Reif, Universität Zürich and
 Nick Drummond and Matthew Horridge, University of Manchester

© Gerald Reif HS 2010 44

Reasoning about our Pizzas

  When we classify an ontology we could just use the
“Check Consistency” button but we’ll get into the habit
of doing a full classification as we’ll be doing this later

  The reasoner dialog will pop up while the
reasoner works

  When the reasoner has finished, you will see an
inferred hierarchy appear, which will show any
movement of classes in the hierarchy

  If the reasoner has inferred anything about our model,
this is reported in the reasoner dialog and in a separate
results window

  Inconsistent classes turn red

© Gerald Reif, Universität Zürich and
 Nick Drummond and Matthew Horridge, University of Manchester

© Gerald Reif HS 2010 45

Disjointness

  OWL assumes that classes overlap

MeatTopping VegetableTopping

= individual

►  This means an individual could be both a MeatTopping and
a VegetableTopping at the same time

►  We want to state this is not the case

© Gerald Reif, Universität Zürich and
 Nick Drummond and Matthew Horridge, University of Manchester

© Gerald Reif HS 2010 46

Disjointness

  If we state that classes are disjoint

MeatTopping VegetableTopping

= individual

►  This means an individual cannot be both a MeatTopping and
a VegetableTopping at the same time

►  We must do this explicitly in the interface

© Gerald Reif, Universität Zürich and
 Nick Drummond and Matthew Horridge, University of Manchester

© Gerald Reif HS 2010 47

Why is MeatyVegetableTopping
Inconsistent?
  We have asserted that a MeatyVegetableTopping is a

subclass of two classes we have stated are disjoint

  The disjoint means nothing can be a MeatTopping and a
VegetableTopping at the same time

  This means that MeatyVegetableTopping can never contain
any individuals

  The class is therefore inconsistent
  This is what we expect!

  It can be useful to create classes we expect to be inconsistent to
“test” your model – often we refer to these classes as “probes” –
generally it is a good idea to document them as such to avoid
later confusion

© Gerald Reif, Universität Zürich and
 Nick Drummond and Matthew Horridge, University of Manchester

© Gerald Reif HS 2010 48

What are we missing?

  This is not a semantically rich model
  Apart from “is kind of” (subsumption) and “is not kind

of” (disjoint, we currently don’t have any other
information of interest

  We want to say more about Pizza individuals, such as
their relationship with other Individuals

Pizza PizzaTopping

= individual hasTopping

hasTopping

hasTopping

© Gerald Reif, Universität Zürich and
 Nick Drummond and Matthew Horridge, University of Manchester

© Gerald Reif HS 2010 49

Relationships in OWL

  In OWL-DL, relationships can only be formed
between Individuals or between an Individual
and a data value.
(In OWL-Full, Classes can be related, but this cannot be reasoned with)

  Relationships are formed along Properties
  We can restrict how these Properties are used:

  Globally – by stating things about the Property itself
  Domain - Range

  Or locally – by restricting their use for a given Class
  Class restrictions

© Gerald Reif, Universität Zürich and
 Nick Drummond and Matthew Horridge, University of Manchester

© Gerald Reif HS 2010 50

OWL Properties

  Object Property – relates Individuals
  Datatype Property – relates Individuals to

data (int, string, float etc)
  Annotation Property – for attaching

metadata to classes, individuals or
properties

© Gerald Reif, Universität Zürich and
 Nick Drummond and Matthew Horridge, University of Manchester

© Gerald Reif HS 2010 51

Properties Tab: Property Browser
 Note that Properties can be in a
hierarchy

© Gerald Reif, Universität Zürich and
 Nick Drummond and Matthew Horridge, University of Manchester

© Gerald Reif HS 2010 52

Creating Properties

  We tend to name properties using camelNotation with a lowercase
letter to begin

  We often create properties using 2 standard naming patterns:
  has… (eg hasColour)
  is…Of (eg isTeacherOf) or other suffixes

  This has several advantages:
  It is easier to find properties
  It is easier for tools to generate a more readable form

(see tooltips on the classes in the hierarchy later)
  Inverses properties typically follow this pattern

eg hasPart, isPartOf

  Our example hasTopping fits into this

© Gerald Reif, Universität Zürich and
 Nick Drummond and Matthew Horridge, University of Manchester

© Gerald Reif HS 2010 53

Property Characteristics 1/4

  Functional: at most individual as object

  Inverse functional: at most one individual as subject

© Gerald Reif HS 2010 54

Property Characteristics 2/4

  Transitive: If the property P relates individual a to individual b, and
also individual b to individual c, then we  
can infer that individual a is related  
to individual c via property P.#

  Symmetric: The property P relates individual a to individual b then
individual b is also related to individual a via property P.

Property Characteristics 3/4

  antisymetric: If a property P is antisymmetric, and the property
relates individual a to individual b then individual b cannot be related
to individual a via property P.

  reflexive: A property P is said to be reflexive when the property must
relate individual a to itself.

© Gerald Reif HS 2010 55

Property Characteristics 4/4

  irreflexive: If a property P is irreflexive, it can be described as a
property that relates an individual a to individualb, where individual a
and individualb are not the same.

© Gerald Reif HS 2010 56

© Gerald Reif HS 2010 57

Domain and Range - Observation 1/2

  OWL domains and ranges should not be viewed as
constraints to be checked.#

  They are used as “axioms” in reasoning.#
  For example if the property hasTopping has the domain set

as Pizza and we then applied the hasTopping property to
IceCream (individuals that are members of the class
IceCream), this would generally not result in an error. It would
be used to infer that the class IceCream must be a subclass
of Pizza!#

  An error will only be generated (by a reasoner) if Pizza is
disjoint to IceCream#

© Gerald Reif HS 2010 58

Domain and Range - Observation 2/2#

  It is possible to specify multiple classes as the range for
a property. #

  If multiple classes are specified in Protege the range of
the property is interpreted to be the intersection of the
classes.#
  For example, if the range of a property has the classes Man

and Woman listed in the range widget, the range of the
property will be interpreted as intersection of Man and
Woman.#

  The same observation holds for the specified
domain.#

© Gerald Reif HS 2010 59

Associating Properties with Classes

  We now have properties we want to use to describe
Pizza individuals.

  To do this, we must go back to the Pizza class and
add some further information

  This comes in the form of Restrictions
  We create Restrictions using the Conditions widget

  Conditions can be any kind of Class – you have already added
Named superclasses in the Conditions Widget. Restrictions are a
type of Anonymous Class

© Gerald Reif, Universität Zürich and
 Nick Drummond and Matthew Horridge, University of Manchester

© Gerald Reif HS 2010 60

Conditions Widget

© Gerald Reif, Universität Zürich and
 Nick Drummond and Matthew Horridge, University of Manchester

© Gerald Reif HS 2010 61

What does this mean?

  We have created a restriction: ∃ hasBase PizzaBase
on Class Pizza as a necessary condition

►  “If an individual is a member of this class, it is necessary that it
has at least one hasBase relationship with an individual from the
class PizzaBase”

Pizza PizzaBase
hasBase

hasBase

hasBase

hasBase

►  “Every individual of the Pizza class must have at least one base
from the class PizzaBase”

© Gerald Reif, Universität Zürich and
 Nick Drummond and Matthew Horridge, University of Manchester

© Gerald Reif HS 2010 62

What does this mean?

  We have created a restriction: ∃ hasBase PizzaBase
on Class Pizza as a necessary condition

Pizza PizzaBase
hasBase

hasBase

hasBase

hasBase

►  “There can be no individual, that is a member of this class, that
does not have at least one hasBase relationship with an
individual from the class PizzaBase”

© Gerald Reif, Universität Zürich and
 Nick Drummond and Matthew Horridge, University of Manchester

© Gerald Reif HS 2010 63

∃ hasBase
PizzaBase

Why?

  We have created a restriction: ∃ hasBase PizzaBase
on Class Pizza as a necessary condition

PizzaBase
hasBase

hasBase

hasBase

hasBase
hasBase

  Each Restriction or Class Expression describes the
set of all individuals that satisfy the condition

© Gerald Reif, Universität Zürich and
 Nick Drummond and Matthew Horridge, University of Manchester

© Gerald Reif HS 2010 64

Why? Necessary conditions

  We have created a restriction: ∃ hasBase PizzaBase
on Class Pizza as a necessary condition

►  Each necessary condition on a class is a superclass of that class

Pizza PizzaBase
hasBase

hasBase

hasBase

hasBase
hasBase

∃ hasBase
PizzaBase

►  ie The restriction ∃ hasBase PizzaBase is a superclass of Pizza

►  As Pizza is a subclass of the restriction, all Pizzas must satisfy
the restriction that they have at least one base from PizzaBase

© Gerald Reif, Universität Zürich and
 Nick Drummond and Matthew Horridge, University of Manchester

© Gerald Reif HS 2010 65

Creating Some Tasty Pizzas

  MargaritaPizza: Tomato, Mozzarella
  AmericanPizza: Tomato, Mozzarella,

Pepperoni
  AmericanHotPizza: Tomato, Mozzarella,

Pepperoni, JalapenoPepper
  SohoPizza: Tomato, Mozzarella, Olive,

Parmezan

© Gerald Reif, Universität Zürich and
 Nick Drummond and Matthew Horridge, University of Manchester

© Gerald Reif HS 2010 66

Restriction Types

∃ Existential,
someValuesFrom

“Some”, “At least one”

∀ Universal,
allValuesFrom

“Only”

∍ hasValue “equals x”

= Cardinality “Exactly n”

≤ Max Cardinality “At most n”

≥ Min Cardinality “At least n”

© Gerald Reif, Universität Zürich and
 Nick Drummond and Matthew Horridge, University of Manchester

© Gerald Reif HS 2010 67

Primitive Classes
  All classes in our ontology so far are Primitive
  We describe primitive pizzas
  Primitive Class = only Necessary Conditions
  They are marked as plain orange circles in the class

hierarchy

We condone
building a
disjoint tree of
primitive
classes

© Gerald Reif, Universität Zürich and
 Nick Drummond and Matthew Horridge, University of Manchester

© Gerald Reif HS 2010 68

Polyhierarchies
  By the end of this tutorial we intent to create a

VegetarianPizza
  Some of our existing Pizzas should be types of

VegetarianPizza
  However, they could also be types of SpicyPizza or

CheeseyPizza

  We need to be able to give them multiple parents in a
principled way

  We could just assert multiple parents like we did with
MeatyVegetableTopping (without disjoints)

BUT…
© Gerald Reif, Universität Zürich and
 Nick Drummond and Matthew Horridge, University of Manchester

© Gerald Reif HS 2010 69

Asserted Polyhierarchies
We believe asserting polyhierarchies is bad

let the reasoner do it!

► We lose some encapsulation of knowledge
► Why is this class a subclass of that one?

► Difficult to maintain
► Adding new classes becomes difficult because all subclasses may

need to be updated
► Extracting from a graph is harder than from a tree

© Gerald Reif, Universität Zürich and
 Nick Drummond and Matthew Horridge, University of Manchester

© Gerald Reif HS 2010 70

CheeseyPizza

  A CheeseyPizza is any pizza that has some
cheese on it

  We would expect then, that some pizzas
might be named pizzas and cheesey pizzas
(among other things later on)

  We can use the reasoner to help us produce
this polyhierarchy without having to assert
multiple parents

© Gerald Reif HS 2010 71

Creating a CheeseyPizza

  We normally create primitive classes and then migrate them to
defined classes

  All of our defined pizzas will be direct subclasses of Pizza
  So, we create a CheesyPizza Class (do not make it disjoint) and

add a restriction:
“Every CheeseyPizza must have at least one CheeseTopping”

  Classifying shows that we currently don’t have enough information
to do any classification

  We then move the conditions
from the Superclass block to
the Equivalent block which
changes the meaning

  And classify again…

© Gerald Reif HS 2010 72

Reasoner Classification

  The reasoner has been able to infer that
anything that is a Pizza that has at least one
topping from CheeseTopping is a
CheeseyPizza

  The inferred hierarchy is
updated to reflect this

© Gerald Reif HS 2010 73

Why?
Necessary & Sufficient Conditions
► Each set of necessary & sufficient conditions is an

Equivalent Class

►  CheeseyPizza is equivalent to the intersection of Pizza and
∃ hasTopping CheeseTopping

►  Classes, all of whose individuals fit this definition are found to be
subclasses of CheeseyPizza, or are subsumed by CheeseyPizza

Pizza
∃ hasTopping

CheeseTopping

CheeseyPizza

© Gerald Reif HS 2010 74

Untangling

  We can see that certain Pizzas
are now classified under multiple
parents

  MargheritaPizza can be found
under both NamedPizza and
CheeseyPizza in the inferred
hierarchy

Mission Successful!

© Gerald Reif HS 2010 75

Untangling

  However, our unclassified version of the
ontology is a simple tree, which is much
easier to maintain

  We’ve now got a polyhierarchy without
asserting multiple superclass relationships

  Plus, we also know why certain pizzas
have been classified as CheeseyPizzas

© Gerald Reif HS 2010 76

Untangling

  We don’t currently have many kinds of
primitive pizza but its easy to see that if we
had, it would have been a substantial task
to assert CheeseyPizza as a parent of
lots, if not all, of them

  And then do it all over again for other
defined classes like MeatyPizza or
whatever

© Gerald Reif HS 2010 77

Viewing polyhierarchies

  As we now have
multiple
inheritance, the
tree view is less
than helpful in
viewing our
“hierarchy”

© Gerald Reif HS 2010 78

OWLViz Tab

© Gerald Reif HS 2010 79

Using OWLViz to untangle

  The asserted hierarchy should, ideally, be a tidy
tree of disjoint primitives

  The inferred hierarchy will be tangled
  By switching from the asserted to the inferred

hierarchy, it is easy to see the changes made by
the reasoner

  OWLViz can be used to spot tangles in the
primitive tree and also disjoints (including
inherited ones) are marked (with a ¬)

© Gerald Reif HS 2010 80

Defined Classes

  We’ve created a Defined Class, CheeseyPizza

  Opposite to the Primitive Classes defined before.
  It has a definition. That is at least one Necessary and

Sufficient condition
  Classes, all of whose individuals satisfy this definition, can be

inferred to be subclasses
  Therefore, we can use it like a query to “collect” subclasses

that satisfy its conditions
  Reasoners can be used to organise the complexity of our

hierarchy
  It’s marked with an equivalence symbol in the interface
  Defined classes are rarely disjoint

© Gerald Reif HS 2010 81

Define a Vegetarian Pizza

  Not as easy as it looks…
  Define in words?

  “a pizza with only vegetarian toppings”?
  “a pizza with no meat (or fish) toppings”?
  “a pizza that is not a MeatyPizza”?

  More than one way to model this

We’ll start with the first example

© Gerald Reif HS 2010 82

Define a Vegetarian Pizza

To be able to define a vegetarian pizza as
a Pizza with only Vegetarian Toppings

we need:

1. To be able to create a vegetarian topping
This requires a Union Class

2. To be able to say “only”
This requires a Universal Restriction

© Gerald Reif HS 2010 83

  aka “disjunction”
  This OR That OR TheOther
  This ⊔ That ⊔ TheOther

Union Classes

A B
A ⊔ B includes all
individuals of class A and
all individuals from class B
and all individuals in the
overlap (if A and B are not
disjoint)

© Gerald Reif HS 2010 84

Covering Axioms

  Covering axiom – a union expression containing
several covering classes

  A covering axiom in the Necessary & Sufficient
Conditions of a class means:
the class cannot contain any instances other than
those from the covering classes.

  NB. If the covering classes are subclasses of the
covered class, the covering axiom only needs to be a
Necessary condition – it doesn’t harm to make it
Necessary & Sufficient though – its just redundant

© Gerald Reif HS 2010 85

Covering PizzaBase

  In this example, the class
PizzaBase is covered by
ThinAndCrispy or DeepPan

  “All PizzaBases must be
ThinAndCrispy or DeepPan”

  “There are no other types of
PizzaBase”

PizzaBase

DeepPan
ThinAndCrispy

PizzaBase ≡ ThinAndCrispy ⊔ DeepPan

© Gerald Reif HS 2010 86

Universal Restrictions

  We need to say our VegetarianPizza can
only have toppings that are vegetarian
toppings

  We can do this by creating a Universal or
AllValuesFrom restriction

  We’ll first look at an example…

© Gerald Reif HS 2010 87

Real Italian Pizzas

  “RealItalianPizzas only have bases that are
ThinAndCrispy”

  A Universal Restriction (“only”) is
added just like an
Existential one, but the
restriction type is different

  For now, this can be primitive – you can make it
defined if you like

© Gerald Reif HS 2010 88

What does this mean?

►  “If an individual is a member of this class, it is necessary that it
must only have a hasBase relationship with an individual from
the class ThinAndCrispy”

RealItalianPizza ThinAndCrispy hasBase

hasBase

hasBase

hasBase

  We have created a restriction: ∀ hasBase ThinAndCrispy on
Class RealItalianPizza as a necessary condition

© Gerald Reif HS 2010 89

What does this mean?

DeepPan RealItalianPizza ThinAndCrispy hasBase

hasBase

hasBase

hasBase

►  “No individual of the RealItalianPizza class can have a base
from a class other than ThinAndCrispy”

►  NB. DeepPan and ThinAndCrispy are disjoint

hasBase

  We have created a restriction: ∀ hasBase ThinAndCrispy on
Class RealItalianPizza as a necessary condition

© Gerald Reif HS 2010 90

Warning: Trivial Satisfaction

RealItalianPizza ThinAndCrispy hasBase

hasBase

hasBase

hasBase

►  “If an individual is a member of this class, it is necessary that it
must only have a hasBase relationship with an individual from
the class ThinAndCrispy, or no hasBase relationship at all”

Trivially
satisfied

by this
individual

►  Universal Restrictions by themselves do not state “at least one”

  If we had not already inherited: ∃ hasBase PizzaBase
from Class Pizza the following could hold

© Gerald Reif HS 2010 91

VegetarianPizza Classification

  Nothing classifies under VegetarianPizza

  Actually, there is nothing wrong with our definition of
VegetarianPizza

  It is actually the descriptions of our Pizzas that are
incomplete

  The reasoner has not got enough information to infer
that any Pizza is subsumed by VegetarianPizza

  This is because OWL makes the Open World
Assumption

© Gerald Reif HS 2010 92

Open World Assumption

  In a closed world (like DBs), the information we have is
everything

  In an open world, we assume there is always more
information than is stated

  Where a database, for example, returns a negative if it
cannot find some data, the reasoner makes no
assumption about the completeness of the information it
is given

  The reasoner cannot determine something does not hold
unless it is explicitly stated in the model

© Gerald Reif HS 2010 93

Open World Assumption

  Typically we have a pattern of several Existential
restrictions on a single property with different
fillers – like primitive pizzas on hasTopping

  Existential restrictions should be paraphrased by
“amongst other things…”

  Must state that a description is complete
  We need closure for the given property

© Gerald Reif HS 2010 94

Closure

  This is in the form of a Universal
Restriction with a filler that is the Union of
the other fillers for that property

  Closure works along a single property

© Gerald Reif HS 2010 95

Closure example: MargheritaPizza

 All MargheritaPizzas must have:
 at least 1 topping from MozzarellaTopping and
 at least 1 topping from TomatoTopping and
 only toppings from MozzarellaTopping or TomatoTopping

  The last part is paraphrased into “no other toppings”
  The union closes the hasTopping property on MargheritaPizza

© Gerald Reif HS 2010 96

Pizza Example Summary

You should now be able to:
  Create Defined Classes and classify using

a Reasoner to check expected results
  Create Covering Axioms
  Close Class Descriptions and understand

the Open World Assumption

© Gerald Reif HS 2010 97

Ontology Engineering

  Developing an ontology for a domain is a
complex task.

  Ontology engineering provides methodologies to
systematically define ontologies.

  Guidelines when to use a class or a property
and how to structure the classes in a subclass
hierarchy.

  Introduction in ontology engineering:
http://www.ksl.stanford.edu/people/dlm/papers/ontology-tutorial-noy-mcguinness.pdf

Why to develop an Ontology?

  To share common understanding of the
structure of information among people or
software agents

  To enable reuse of domain knowledge
  To make domain assumptions explicit
  To separate domain knowledge from the

operational knowledge
  To analyze domain knowledge

© Gerald Reif HS 2010 98

Developing an Ontology includes

  defining classes in the ontology
  arranging the classes in a taxonomic

(subclass–superclass) hierarchy
  defining properties and describing allowed

domains and ranges for these properties
  filling in the values for properties for

instances

© Gerald Reif HS 2010 99

Rules when defining an Ontology

  There is no one correct way to model a domain
  There are always viable alternatives. The best solution

almost always depends on the application that you have
in mind and the extensions that you anticipate.

  Ontology development is necessarily an iterative
process.

  Concepts in the ontology should be close to
objects (physical or logical) and relationships in
your domain of interest. These are most likely to
be nouns (objects) or verbs (relationships) in
sentences that describe your domain.

© Gerald Reif HS 2010 100

Defining the Skope of an Ontology
  Questions you should answer:

  What is the domain that the ontology will cover?
  For what we are going to use the ontology?
  For what types of questions the information in the ontology should

provide answers?
  Who will use and maintain the ontology?

  Define a set of competency questions
  A list of questions that a knowledge base based on the ontology

should be able to answer.
  These questions will serve as the litmus test later

  Does the ontology contain enough information to answer these types of
questions?

  Do the answers require a particular level of detail or representation of a
particular area?

  These competency questions are just a sketch and do not need to be
exhaustive.

© Gerald Reif HS 2010 101

Steps to the Ontology

  Consider reusing existing ontologies
  Enumerate important terms in the ontology
  Define the classes and the class hierarchy
  Define the properties, their domain and range
  Define the restrictions of the classes
  Create instances
  Check whether the ontology answers the

competency questions

© Gerald Reif HS 2010 102

