
Semantic Web Engineering

Matthias Hert
hert@ifi.uzh.ch

 Fr. 10:15-12:00, Room 2.A.10

© Gerald Reif HS 2010 2

Web Ontology Language

Ontology vocabulary

Logic

Proof

D
ig

ita
l S

ig
na

tu
re

Trust

Unicode URI

XML + NS + XML Schema

RDF + RDF Schema

© Gerald Reif HS 2010 3

Programming with RDF and OWL

  Java Platform:
  Jena: Open source project initiated by HP

http://jena.sourceforge.net/
  Sesame: Open source framework for storage,

inferencing and querying of RDF data
http://www.openrdf.org/

  OWL API: Open source API for OWL
http://owlapi.sourceforge.net/

© Gerald Reif HS 2010 4

Programming with RDF and OWL

  .NET Platform: SemWeb
  C# based RDF library for the .NET platform
  RDF/XML & N3 input/output, storage, querying &

(limited) inferencing
http://razor.occams.info/code/semweb/

  PHP: RAP
  RAP is a software package for parsing, querying,

manipulating, serializing and serving RDF models
http://www4.wiwiss.fu-berlin.de/bizer/rdfapi/

  C: Redland
  http://librdf.org/

  …

© Gerald Reif HS 2010 5

Jena Framework

  Jena is a Java framework for building Semantic Web
applications.

  It provides a programmatic environment for RDF, RDFS
and OWL, including a rule-based inference engine.

  Jena is open source and grown out of work of the HP
Labs Semantic Web Program.

  The Jena Framework includes:
  An RDF API
  Reading and writing RDF in RDF/XML, N3, N-Triples, Turtle
  An OWL API
  In-memory and persistent storage
  SPARQL and RDQL – query languages for RDF

© Gerald Reif HS 2010 6

The Jena RDF API

  Statement centric methods for manipulating an RDF
model as a set of RDF triples

  Resource centric methods for manipulating an RDF
model as a set of resources with properties

  Cascading method calls for more convenient
programming

  Built in support for RDF containers - Bag, Alt and Seq
  Enhanced resources - the application can extend the

behavior of resources
  Integrated parsers and writers for RDF/XML, N3, N-

Triples and Turtle
  Support for typed literals

© Gerald Reif HS 2010 7

Jena:
Creating Graphs and Statements
  An RDF graph in Jena is called Model
// create an empty Model

Model model = ModelFactory.createDefaultModel();

  Create a resource
Resource johnSmith = model.createResource("http://

somewhere/JohnSmith");

  Create a property
Property hasName = model.createProperty("http://

example.com/terms#hasName");
  Add the property hasName to the resource johnSmith
johnSmith.addProperty(hasName, "John Smith");

http://somewhere/JohnSmith John Smith #hasName

© Gerald Reif HS 2010 8

Jena: Built-in Properties

  Jena has built-in Properties for common ontology
vocabularies
  i.e. RDF, RDFS, OWL, vCard, DC, etc.

  Defined in Java package: com.hp.hpl.jena.vocabulary
  vCard Ontology

  Ontology vocabulary to define electronic business cards
  Originally defined in RFC 2426
  Used namespace:

 http://www.w3.org/2001/vcard-rdf/3.0#
  vCard Ontology definition:

http://www.w3.org/TR/vcard-rdf
  i.e. properties such as: #Given, #Family, #N (Name), #FN

(FullName)

© Gerald Reif HS 2009 9

// some definitions
String personURI = "http://somewhere/JohnSmith";

String givenName = "John";
String familyName = "Smith";
String fullName = givenName + " " + familyName;

// create an empty Model
Model model = ModelFactory.createDefaultModel();

// create the resource
// and add the properties cascading style
Resource johnSmith
 = model.createResource(personURI)

 .addProperty(VCARD.FN, fullName)
 .addProperty(VCARD.N,
 model.createResource()

 .addProperty(VCARD.Given, givenName)
 .addProperty(VCARD.Family, familyName));

Complex Graph with blank nodes

Resource johnSmith

 = model.createResource(personURI)

 .addProperty(VCARD.FN, fullName)

 .addProperty(VCARD.N,

 model.createResource()

 .addProperty(VCARD.Given, givenName)

 .addProperty(VCARD.Family, familyName));

© Gerald Reif HS 2010 10

Jena: Statements

  Each arc in an RDF Model is called a statement.
  Each statement asserts a fact about a resource.
  A statement has three parts:

  The subject is the resource from which the arc leaves
  The predicate is the property that labels the arc
  The object is the resource or literal pointed to by the arc

  The Jena Model interface defines a listStatements() method
which returns an StmtIterator, a subtype of Java's Iterator over
all the statements in a Model.

  StmtIterator has a method nextStatement() which returns the
next statement from the iterator.

  The Statement interface provides accessor methods to the subject,
predicate and object of a statement.

© Gerald Reif HS 2010 11

Jena: Writing and Reading RDF

  The Jena Model interface defines a write() method which writes
the RDF graph to an Output Stream.

  Syntax:
  write(OutputStream os, String base, String RDFSyntax)

  Syntax currently supported by Jena:
  "RDF/XML" ("RDF/XML-ABBREV"), "Turtle" ("TTL"),

 "N-TRIPLE" and "N3"
  The Jena model interface defines also a read() method to read

RDF from an Input Stream.
  Syntax:

  read(InputStream os, String base, String RDFSyntax)
  Supported syntax like with write()

© Gerald Reif HS 2010 12

Jena: Navigating and Manipulating
the RDF graph
  Jena provides many methods to navigate

the RDF graph
  i.e., model.getResource(uri),
stat.changeObject(some_value_or_URI),
stat.getObject(), etc.

  For more look at the Jena API
  http://jena.sourceforge.net/javadoc/index.html

  With addProperty() new properties can
be added to a Resource.

© Gerald Reif HS 2010 13

Jena: Querying the RDF Graph

  The Model.listStatements() method, which lists all the
statements in a model. Its use is not recommended on
very large Models.

  Model.listSubjects() is similar, but returns an iterator
over all resources that have properties, i.e., are the
subject of some statement.

  Model.listSubjectsWithProperty(Property p, RDFNode
o) will return an iterator over all the resources which
have property p with value o.
  Parameters can be null as a wildcard

  It is better to use a Selector to query RDF graphs.

© Gerald Reif HS 2010 14

The Jena Selectors Interface

  The SimpleSelector implements the Selector Interface.
  The SimpleSelector constructor takes three arguments

Selector selector =
 new SimpleSelector(subject, predicate, object)

  This selector will select all statements with a subject that
matches subject, a predicate that matches predicate and
an object that matches object.
  If a null is supplied in any of the positions, it matches

anything;
  otherwise they match corresponding equal resources or

literals.

© Gerald Reif HS 2009 15

SimpleSelector Example

  Select all the resources with a VCARD.FN property whose value
ends with "Smith"
StmtIterator iter = model.listStatements(
 new SimpleSelector(null, VCARD.FN, (RDFNode) null) {
 public boolean selects(Statement s)
 {return s.getString().endsWith("Smith");}
 });

  This sample code uses a neat Java technique of overridding a
method definition inline when creating an instance of the class.
  Here the selects(...) method checks to ensure that the full

name ends with "Smith".
  It is important to note that filtering based on the subject, predicate

and object arguments takes place before the selects(...)
method is called, so the extra test will only be applied to matching
statements.

Reasoning in Jena

  Jena comes with several build in
reasoners (RDFS, OWL)

  Other resoners such as pellet can be used
  More on the Jena reasoning support:

  http://jena.sourceforge.net/inference/

© Gerald Reif HS 2010 16

Simple Example: RDFS Reasoning
String termsNS = "http://example.com/terms#";

String instanceNS = "http://example.com/terms#";

Model rdfsExample = ModelFactory.createDefaultModel();

Property subProp = rdfsExample.createProperty(termsNS, "subProp");

Property superProp = rdfsExample.createProperty(termsNS, "superProp");

rdfsExample.add(subProp, RDFS.subPropertyOf, superProp);

rdfsExample.createResource(instanceNS + "a").addProperty(subProp, "foo");

rdfsExample.write(System.out, "Turtle");

InfModel inf = ModelFactory.createRDFSModel(rdfsExample);

Resource a = inf.getResource(instanceNS+"a");

System.out.println("Statement: " + a.getProperty(superProp));

© Gerald Reif HS 2010 17

Simple Example: OWL Reasoning
Model schema = ModelFactory.createDefaultModel();
Model data = ModelFactory.createDefaultModel();

schema.read("file:JenaReasoningExample.owl", "RDF/XML");

data.read("file:data.rdf", "Turtle");

Reasoner reasoner = ReasonerRegistry.getOWLReasoner();

reasoner = reasoner.bindSchema(schema);

InfModel infmodel = ModelFactory.createInfModel(reasoner, data);

infmodel.write(System.out, "RDF/XML");

© Gerald Reif HS 2010 18

