
11 Validating requirements!

❍  Every requirement needs to be validated  
(see Principle 6 in Chapter 2)!

❍  Validate content, form of documentation and agreement!
❍  Establish short feedback cycles!

❍  Use appropriate techniques!
❍  Exemplify and disambiguate with acceptance test cases!

Requirements Engineering I – Part II: RE Practices !© 2017 Martin Glinz! 212!

Validation of content!

Identify requirements that are!
●  Inadequate!
●  Incomplete or missing!
●  Inconsistent !
●  Wrong!

Also look for requirements with these quality defects:!
●  Not verifiable!
●  Unnecessary!
●  Not traceable!
●  Premature design decisions!

!
!Requirements Engineering I – Part II: RE Practices !© 2017 Martin Glinz! 213!

Validation of requirements artifacts!

Scope: checking the requirements artifacts(e.g., a systems
requirements specification or a collection of user stories) for
formal problems!

Identify requirements that are !
●  Ambiguous!
●  Incomprehensible !
●  Non-conforming to documentation rules, structure or format!

Requirements Engineering I – Part II: RE Practices !© 2017 Martin Glinz! 214!

Validation of agreement!

❍  Requirements elicitation involves achieving consensus
among stakeholders having divergent needs!

❍  When validating requirements, we have to check whether
agreement has actually been achieved!
●  All known conflicts resolved?!
●  For all requirements: have all relevant stakeholders for a

requirement agreed to this requirement in its documented
form?!

●  For every changed requirement, have all relevant
stakeholders agreed to this change?!

Requirements Engineering I – Part II: RE Practices !© 2017 Martin Glinz! 215!

Some validation principles!

General principles!
●  Work with the right people (i.e., stakeholders for requirements)!
●  Separate the processes of problem finding and correction!
●  Validate from different views and perspectives!
●  Validate repeatedly / continuously!

Additional principles for requirements [Pohl and Rupp 2011]!
●  Validate by change of documentation type  

e.g., identify problems in a natural language specification by
constructing a model!

●  Validate by construction of artifacts 
e.g., identify problems in requirements by writing the user
manual, test cases or other development artifacts!

Requirements Engineering I – Part II: RE Practices !© 2017 Martin Glinz! 216!

Requirements validation techniques!

Review!
●  Main means for requirements validation!
●  Walkthrough: author guides experts through the specification!
●  Inspection: Experts check the specification!
●  Author-reviewer-cycle: Requirements engineer continuously

feeds back requirements to stakeholder(s) for review and
receives feedback!

Requirements Engineering tools!
●  Help find gaps and contradictions!

Acceptance test cases!
●  Help disambiguate / clarify requirements!

Requirements Engineering I – Part II: RE Practices !© 2017 Martin Glinz! 217!

Requirements validation techniques – 2!

Simulation/Animation!
●  Means for investigating dynamic system behavior!
●  Simulator executes specification and may visualize it by

animated models!

Prototyping!
●  Lets stakeholders judge the practical usefulness of the

specified system in its real application context!
●  Prototype constitutes a sample model for the system-to-be!
●  Most powerful, but also most expensive means of

requirements validation!

Formal Verification / Model Checking!
●  ! Formal proof of critical properties!

Requirements Engineering I – Part II: RE Practices !© 2017 Martin Glinz! 218!

Reviewing practices!

❍  Paraphrasing!
●  Explaining the requirements in the reviewer’s own words!

❍  Perspective-based reading!
●  Analyzing requirements from different perspectives,  

e.g., end-user, tester, architect, maintainer,...!

❍  Playing and executing!
●  Playing scenarios!
●  Mentally executing acceptance test cases!

❍  Checklists!
●  Using checklists for guiding and structuring the review

process!
Requirements Engineering I – Part II: RE Practices !© 2017 Martin Glinz! 219!

Requirements negotiation!

❍  Requirements negotiation implies!
●  Identification of conflicts!
●  Conflict analysis!
●  Conflict resolution!
●  Documentation of resolution!

❍  Requirements negotiation can happen!
●  While eliciting requirements!
●  When validating requirements!

Requirements Engineering I – Part II: RE Practices !© 2017 Martin Glinz! 220!

Conflict analysis!

Identifying the underlying reasons of a conflict helps select
appropriate resolution techniques!

Typical underlying reasons are!
●  Subject matter conflict (divergent factual needs)!
●  Conflict of interest (divergent interests, e.g. cost vs. function)!
●  Conflict of value (divergent values and preferences)!
●  Relationship conflict (emotional problems in personal

relationships between stakeholders)!
●  Organizational conflict (between stakeholders on different

hierarchy and decision power levels in an organization)!
!

!
Requirements Engineering I – Part II: RE Practices !© 2017 Martin Glinz! 221!

Conflict resolution!

❍  Various strategies / techniques!
❍  Conflicting stakeholders must be involved in resolution!

❍  Win-win techniques!
●  Agreement!
●  Compromise!
●  Build variants!

❍  Win-lose techniques!
●  Overruling!
●  Voting!
●  Prioritizing stakeholders (important stakeholders override

less important ones)!
Requirements Engineering I – Part II: RE Practices !© 2017 Martin Glinz! 222!

Conflict resolution – 2!

❍  Decision support techniques!
●  PMI (Plus-Minus-Interesting) categorization of potential

conflict resolution decisions!
●  Decision matrix (Matrix with a row per interesting criterion

and a column per potential resolution alternative. The cells
contain relative weights which can be summarized per
column and then compared)!

Requirements Engineering I – Part II: RE Practices !© 2017 Martin Glinz! 223!

Acceptance testing!

DEFINITION. Acceptance – The process of assessing whether
a system satisfies all its requirements.!

DEFINITION. Acceptance test – A test that assesses whether a
system satisfies all its requirements.!

!

Requirements Engineering I – Part II: RE Practices !© 2017 Martin Glinz! 224!

Requirements and acceptance testing!

Requirements engineering and acceptance testing are
naturally intertwined!

❍  For every requirement, there should be at least one
acceptance test case!

❍  Requirements must be written such that acceptance tests
can be written to validate them!

❍  Acceptance test cases can serve!
●  for disambiguating requirements!
●  as detailed specifications by example!

Requirements Engineering I – Part II: RE Practices !© 2017 Martin Glinz! 225!

Choosing acceptance test cases!

Potential coverage criteria:!
❍  Requirements coverage: At least one case per requirement!

❍  Function coverage: At least one case per function!
❍  Scenario coverage: For every type scenario / use case!

●  All actions covered!
●  All branches covered!

❍  Consider the usage profile: not all functions/scenarios are
equally frequent / important!

Requirements Engineering I – Part II: RE Practices !© 2017 Martin Glinz! 226!

Requirements Engineering I – Part II: RE Practices !© 2017 Martin Glinz! 227!

12 Innovative requirements!

Satisfying stakeholders is not enough  
(see Principle 8 in Chapter 2)!

❍  Kano’s model helps identify...!
●  what is implicitly expected  

(dissatisfiers)!
●  what is explicitly required 

(satisfiers)!
●  what the stakeholders 

don’t know, but would  
delight them if they get it: 
innovative requirements!

!

[Kano et al. 1984] !

Requirements Engineering I – Part II: RE Practices !© 2017 Martin Glinz! 228!

How to create innovative requirements?!

Encourage out-of-the-box thinking!
❍  Stimulate the stakeholders’ creativity!

●  Imagine/ make up scenarios for possible futures!
●  Imagine a world without constraints and regulators!
●  Find and explore metaphors!
●  Study other domains!

❍  Involve solution experts and explore what’s possible with
available and future technology!

❍  Involve smart people without domain knowledge!
[Maiden, Gitzikis and Robertson 2004]!
[Maiden and Robertson 2005]	

13 Requirements management!

❍  Organize!
●  Store and retrieve!
●  Record metadata (author, status,...)!

❍  Prioritize!
❍  Keep track: dependencies, traceability!
❍  Manage change!

Requirements Engineering I – Part II: RE Practices !© 2017 Martin Glinz! 229!

13.1 Organizing requirements!

Every requirement needs!
❍  a unique identifier as a reference in acceptance tests,

review findings, change requests, traces to other artifacts,
etc.!

❍  some metadata, e.g.!
●  Author!
●  Date created!
●  Date last modified!
●  Source (stakeholder(s), document, minutes, observation...)!
●  Status (created, ready, released, rejected, postponed...)!
●  Necessity (critical, major, minor)!

Requirements Engineering I – Part II: RE Practices !© 2017 Martin Glinz! 230!

Storing, retrieving and querying!

Storage!
●  Paper and folders!
●  Files and electronic folders!
●  A requirements management tool!

Retrieving support!
●  Keywords!
●  Cross referencing!
●  Search machine technology!

Querying!
●  Selective views (all requirements matching the query)!
●  Condensed views (for example, statistics)!

Requirements Engineering I – Part II: RE Practices !© 2017 Martin Glinz! 231!

13.2 Prioritizing requirements!

❍  Requirements may be prioritized with respect to various
criteria, for example!
●  Necessity!
●  Cost of implementation!
●  Time to implement!
●  Risk!
●  Volatility!

❍  Prioritization is done by the stakeholders!
❍  Only a subset of all requirements may be prioritized!
❍  Requirements to be prioritized should be on the same level

of abstraction!
Requirements Engineering I – Part II: RE Practices !© 2017 Martin Glinz! 232!

Simple prioritization (by necessity)!

Ranks all requirements in three categories with respect to
necessity, i.e., their importance for the success of the system!

❍  Critical (also called essential, or mandatory)!
The system will not be accepted if such a requirement is not met!

❍  Major (also called conditional, desirable, important, or
optional)!
The system should meet these requirements, but not meeting
them is no showstopper!

❍  Minor (also called nice-to-have, or optional)!
Implementing these requirements is nice, but not needed!

Requirements Engineering I – Part II: RE Practices !© 2017 Martin Glinz! 233!

Selected prioritization techniques!

Single criterion prioritization!
❍  Simple ranking!

Stakeholders rank a set of requirements according to a given
criterion!

❍  Assigning points!
Stakeholders receive a total of n points that they distribute
among m requirements!

❍  Prioritization by multiple stakeholders may be consolidated
using weighted averages. The weight of a stakeholder
depends on his/her importance!

Requirements Engineering I – Part II: RE Practices !© 2017 Martin Glinz! 234!

Selected prioritization techniques – 2!

Multiple criterion prioritization!
❍  Wiegers’ matrix [Wiegers 1999]!

●  Estimates relative benefit, detriment, cost, and risk for each
requirement!

●  Uses these values to calculate a weighted priority!
●  Ranks according to calculated priority values!

❍  AHP (Analytic Hierarchy Process) [Saaty 1980]!
●  An algorithmic multi-criterion decision making process!
●  Applicable for prioritization by a group of stakeholders!

Requirements Engineering I – Part II: RE Practices !© 2017 Martin Glinz! 235!

13.3 Traceability!

DEFINITION. Traceability – The ability to trace a requirement!
(1) back to its origins,!
(2) forward to its implementation in design and code,!
(3) to requirements it depends on (and vice-versa).!
Origins may be stakeholders, documents, rationale, etc.!

Requirements Engineering I – Part II: RE Practices !© 2017 Martin Glinz! 236!

[Gotel and Finkelstein 1994]!

Stakeholders!
Documents!

Sources!
Requirements!
specification!

Solution!
Modules!

Requirements!
...!

Pre-!
traceability!

Post-!
traceability!

Rationale!

Test cases!
...!

Establishing and maintaining traces!

❍  Manually!
●  Requirements engineers explicitly create traces when

creating artifacts to be traced!
●  Tool support required for maintaining and exploring traces!
●  Every requirements change requires updating the traces!
●  High manual effort; cost and benefit need to be balanced!

❍  Automatic!
●  Automatically create candidate trace links between two

artifacts (for example, a requirements specification and a set
of acceptance test cases)!

●  Uses information retrieval technology!
●  Requires manual post processing of candidate links !

Requirements Engineering I – Part II: RE Practices !© 2017 Martin Glinz! 237!

13.4 Requirements evolution!

The problem (see Principle 7 in Chapter 2):!
Keeping requirements stable...!
... while permitting requirements to change!
!

Potential solutions!
●  ! Agile / iterative development with short development cycles

(1-6 weeks)!
●  ! Explicit requirements change management!

!
Every solution to this problem further needs requirements
configuration management!
Requirements Engineering I – Part II: RE Practices !© 2017 Martin Glinz! 238!

Requirements configuration management!

Keeping track of changed requirements!
❍  Versioning of requirements!

❍  Ability to create requirements configurations, baselines and
releases!

❍  Tracing the reasons for a change, 
for example!
●  Stakeholder demand!
●  Bug reports / improvement suggestions!
●  Market demand!
●  Changed regulations!

Requirements Engineering I – Part II: RE Practices !© 2017 Martin Glinz! 239!

Requirements change management!

Adhering to a strict change process!
(1) Submit change request!
(2) Triage. Result: [OK | NO | Later (add to backlog)]!
(3) If OK: Perform impact analysis!
(4) Submit result and recommendation to Change Control Board!
(4) Decision by Change Control Board !
(5) If positive: make the change, create new baseline/release,!
 (maybe) adapt the contract between client and supplier!
!

Change control board – A committee of client and supplier
representatives that decides on change requests.!

Requirements Engineering I – Part II: RE Practices !© 2017 Martin Glinz! 240!

Requirements change in agile development!

In agile and iterative development processes, a requirements
change request ...!

●  ... never affects the current sprint / iteration, thus ensuring
stability!

●  ... is added to the product backlog!

Decisions about change requests are made when prioritizing
and selecting the requirements for the subsequent sprints /
iterations!

Requirements Engineering I – Part II: RE Practices !© 2017 Martin Glinz! 241!

