Universitat Zirich HS 2016
Institut fur Informatik Dr. Michael Bohlen

Student Name: Dzmitry Katsiuba
Matriculation Number: 14-705-354

Informatik-Vertiefung
Datenbanken
MonetDB

About MonetDB

MonetDB is an open source column-oriented database management system developed at
the Centrum Wiskunde & Informatica (CWI) in the Netherlands. It was designed to
provide high performance on complex queries against large databases, such as combining
tables with hundreds of columns and millions of rows. MonetDB distribute several server
and client programs. For solving my task i needed following programs:

1. monetdbd - The MonetDB Database Server daemon.Once started it runs in the
background and facilitates, amongst others, management of local (and remote)
mserverd’s.

2. mserverb - The MonetDB server, version 5. It runs as a console program. Client
programs (except monetdb) connect to this server process.

3. mclient - A command-line program to interactively communicate to a running
mserverd process.

Parsing the query

After entering a query into the mclient, the query is analysed in order to detect the
predefined keywords (tokens). The tokens help the YACC parser generator to generate a
shift-reduce parser. The input to Yacc is a grammar (sql_parser.y) with snippets of C4++
code ("actions") attached to its rules.

As soon as the rule is recognised, the parser calls the code snippets associated with this
rule. This snippets help to build a symbol tree, which has following elements: selectNode,
symbol, symbdata, dlist, dnode. The hierarchy and organisation of elements is shown in
figure 1.

Symbol
SelectNode
int token
int distinct symtype type Symbdata
inti_val
—)' symbol limit
wrd w_val
symbol offset
Ind |_val
symbol sample sql_subtype type_val
symbol where S
symbol groupby —)' dlist Ival
symbol having
£ orcety
intont
dhodeln
Dnode
symtype type
symbdata data

dnode next

Figure 1: Symbol tree elements

Building a symbol tree
SELECT * FROM SCALAR,_ SQR(tablel);

To make parsing through the example query possible, it was necessary to define a new
token, add additional rule to existing grammar, and write snippets of code for this rule.
After parsing and executing the corresponding code the symbol tree shown in figure 2 is
produced:

SELECT * FROM SCALAR_SQR (table1)

int token (SQL_SELECT)

symtype type (type_symbol)

symbdata data

v

int token (SQL_FROM)

symtype type (type._list)

v

int token (SQL_SCALAR_SQR)

symtype type (type_list)
[gata |

v

int token (SQL_NAME)

symtype type (type_list)

———

Figure 2: Symbol tree

Building a relation tree

In order to make first optimisation on the tree possible, after the symbol tree is build, it is
converted to a relation tree. This optimisation looks on the tables, which will be involved
in producing the results, and optimise the operations on this tables. At this point all
symbols will be transformed to relations, depending on the tokens in them. Tokens from
symbols will not just be taken for the relations, groups of operations are formed instead.
This groups allow better analysing of query and finding optimisation options. Relations
are connected with each other or base elements (with help of 2 "children")and have the
structure as shown in figure 3. Child connections help to build a relation tree.

Relation
sql_ref ref
operator_type
int nrcols
char flag
char card
char processed
char subquery

Y Y

| relation | | relation |

Figure 3: Relation tree element

To implement the SCALAR__SQR function it was necessary to add a new function which
helps to deal with the new operation and build an appropriate relation tree.

According to the task, the input for SCALAR_SQR function is one table with some
numeric columns. After parcing the query the name of the table will be saved in one
symbol (symbol with a table reference). That means, after symbol-relation transformation
is done our relation tree will also have only one child.

project
| sqr op
| | table(sys.tablel) [tablel.zahll | COUNT

1) []
) [tablel.zahll |

The resulting relation tree from SCALAR_ SQR symbol tree looks like in Figure 4:

Tt

SCALAR_SQR

Figure 4: Relation/Query tree

Building a statement tree

Statement tree is a special property of MonetDB. It is an intermediate step between
relation tree and low-level execution plan (MAL-Plan). Compared to relation tree, where
we have an overview of table operations, statement tree describes the column operations for
every point of relation tree. For SCALAR,__SQR function i could use the existing column
operations of Project and Table(Alias) statements (see figure 4). The SCALAR_SQR
statement was to be implemented.

SCALAR_ SQR statement takes the very left relation from the relation tree (because we
have only one table as input). In the next step it takes all numeric columns from the
input table and creates a list of aliases. Aliases make it also possible to change column
names, if the user wants it. After that, for every column from that list a scalar_sqr
function is called, which multiplies every column by the column itself. The information
in columns is saved in form of Binary Association Tables (BATs). There is a module in
MonetDB, that contains the commands and patterns to manage BATs. So i used the
existing BAT-Algebra-commands (multiplication of 2 BATs) to become the results. The
results are again collected in one list, which is later used in the projection statement.

The resulting statement tree from SCALAR_SQR relation tree looks like in Figure 5 (tree
for a table with 3 numeric columns A, B, C):

No optimisation takes place at this level.

)

st_project
~—
.
st_list
[st_scalarsqr st_scalarsqgr [st_scalarsqr
[st_alias [st_alias [st_alias

Figure 5: Relation/Statement tree

Example

sql> select * from tablel;

1
2
3
3 tuples (0.296ms)
sql> select * from SCALAR_SQR(tablel);

1
4
9
3 tuples (1.293ms)

Giving EXPLAIN before our query to the mclient shows us an execution plan of that
query. In our example we can see, how the system reads the table, calculates and gives
out the result. The highlighted line is the point of actual execution of SCALAR__SQR
functionality.

function user.s6_ lautoCommit=true():void;

X_ 34:void := querylog.define("select * from scalar_sqr(tablel);","default_ pipe",22);
X_ 18 := bat.new(nil:oid,nil:str);

X_ 26 := bat.append(X__18,"sys.tablel");

X_ 21 := bat.new(nil:oid,nil:str);

X_ 28 := bat.append(X_ 21,"zahll");

X_ 22 := bat.new(nil:oid,nil:str);

X_ 29 := bat.append(X_22,"int");

X_ 23 := bat.new(nil:oid,nil:int);

X_ 31 := bat.append(X_ 23,32);

X _ 25 := bat.new(nil:oid,nil:int);

X_ 33 := bat.append(X_ 25,0);

X_ 2 := sql.mve();

C__3:bat[:0id,:0id] := sql.tid(X__2,"sys","tablel");

X_ 6:bat[:0id,:int] := sql.bind(X__2,"sys","tablel","zahl1",0);
(C_9,r1_9) := sql.bind(X_2,"sys","tablel","zahll1",2);
X__12:bat[:0id,:int] := sql.bind(X__2,"sys","tablel","zahl1",1);
X_ 14 := sql.delta(X_6,C_9,r1_9,X 12);

X__15 := algebra.leftfetchjoin(C_3,X__14);

X_ 16 := batcale.*(X_15,X_15);
sql.resultSet(X_26,X_ 28X 29X 31,X_33,X_16);

end user.s6_ 1;

