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High-dimensional Scalar Function Visualization Using
Principal Parameterizations

Rafael Ballester-Ripoll · Gaudenz Halter · Renato Pajarola

Abstract Insightful visualization of multidimensional

scalar fields, in particular parameter spaces, is key to

many computational science and engineering disciplines.

We propose a principal component-based approach to

visualize such fields that accurately reflects their sensi-

tivity to their input parameters. The method performs
dimensionality reduction on the space formed by all

possible partial functions (i.e., those defined by fixing

one or more input parameters to specific values), which

are projected to low-dimensional parameterized mani-

folds such as 3D curves, surfaces, and ensembles thereof.

Our mapping provides a direct geometrical and visual

interpretation in terms of Sobol’s celebrated method for

variance-based sensitivity analysis. We furthermore con-

tribute a practical realization of the proposed method

by means of tensor decomposition, which enables accu-

rate yet interactive integration and multilinear principal

component analysis of high-dimensional models.

Keywords Scientific visualization · Sensitivity analy-

sis · Dimensionality reduction · Tensor decompositions

——————————————-

1 Introduction

Dimensionality reduction is a crucial data processing

step to interactively visualize and explore large complex

data sets. Visualizing parameter spaces is particularly
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challenging: multidimensional functions often appear

in engineering, finance or the life sciences, they arise

from different sources (such as black-box experiments,

simulations, or surrogate models), and they may ac-

cept a large or even infinite number of valid parameter

combinations [34].

In this context, sensitivity analysis [32] is one of the

most important tools for the understanding of parame-

ter spaces. In particular, the method of Sobol [36] is a

powerful framework for global sensitivity analysis and

interpretation of general multidimensional functions,

specifically models subject to hyperparameters or uncer-

tain variables as they move across their entire possible

range. However, the method only yields global indices

out of the variables of interest on their entire domain,

without revealing local details as they move within that

domain.

In this paper we aim to reconcile global and local sen-

sitivity analysis by depicting how the model’s behavior

evolves as these variables (and subsets thereof) take dif-

ferent specific values. At the same time, the dimensional-

ity reduction we propose is inspired by Sobol’s method in

the sense that we partition a model into orthogonal pro-

jected subfunctions that only depend on different subsets

of variables. Consider a domain Ω = Ω1×· · ·×ΩN ⊂ RN
over which N variables, x1, . . . , xN , vary. Let f : Ω → R
be a function on these variables. Given a subset of vari-

ables of interest, xi1 , . . . , xiK , we introduce a principal

parameterization with respect to these variables as a

mapping π : Ωi1 × · · · × ΩiK → RD that is as similar

as possible to the original f . We will detail the precise

desired notion of similarity in the central sections of

this paper. K is the number of variables of interest:

for K = 1 we produce parameterized curves in R3, for

K = 2 we produce surfaces (or equivalently, ensembles
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of curves), for K = 3 we produce volumes (or ensembles

of surfaces), etc.

As opposed to strategies that focus mainly on cer-

tain critical or topologically interesting points (for ex-

ample, local extrema for Morse-Smale complexes [20]),

our approach is a dimensionality reduction that takes

the full model f and its exponentially large domain Ω

into consideration, not unlike e.g. the active subspace

method [13]. This kind of catch-all approaches are good

at conveying context within a model and are thus at-

tractive for the so-called global-to-local user navigation

paradigm [34]. However, they have only been exploited

to a limited degree due to the curse of dimensionality.

For example, one often needs to compute multidimen-

sional integrals over the entire Ω. This task is typically

too computationally expensive to be supported in an

interactive visualization system.

To make this feasible and as a second contribution,

we design a system that is responsive in real time by

means of a convenient compact representation, namely

a low-rank tensor decomposition [30]. That way, one

can efficiently manipulate and integrate dense multidi-

mensional scalar functions and reconstruct (decompress)
regions of interest or derived properties interactively.

In principle, the proposed transformation could also be

computed using another backend numerical framework,

for instance (quasi-) Monte Carlo or sparse grid-based

approximate integration. Nonetheless, low-rank decom-

positions are a much more natural match for the pro-
posed dimensionality reduction, which is based in linear

projections (Sec. 3).

We provide a global-to-local navigation method that

first presents an overall summary and allows the user to
refine the view by incrementally adding variables to a

tuple of interest and, optionally, fixing other variables;

see Sec. 6 for further details. Fig. 1 summarizes the

modeling and visualization components of our system
that implements the proposed approach.

Notation

The hat notation x̂n refers to a list of variables where

xn is missing, as in x1, . . . , xn−1, xn+1, . . . , xN .

Given a function of interest f : Ω ⊂ RN → R,

we will refer to its slices as the functions that arise

by fixing some K ≥ 1 of f ’s variables. For example,

fx1(x2, . . . , xN ) = fx1(x̂1) is a function that maps RN−1
to R defined for each α as fx1=α(x̂1) := f(x1=α, x2, . . . , xN ).

For K ≥ 2 we have slices that fix two or more variables,

for example fxn,xm .

Tensors in this context are multidimensional data

arrays, including vectors, matrices, volumes and so forth.

Vectors and matrices are denoted using bold italic lower-

case (u) and roman uppercase (U) respectively, whereas

general tensors use calligraphic letters (T ).

2 Related Work

2.1 Parameter Space Visualization

Several visualization frameworks lend themselves well

to parameter space analysis. These include continuous

parallel coordinates [24], dimensional stacking [42], the

HyperSlice [43] and Sliceplorer [38] tools, etc. Others

are highly domain-specific, such as Tuner [37] for brain

segmentation or [10] for physically-based simulations. In

terms of the conceptual framework defined by the com-
prehensive survey by Sedlmair et al. [34], our proposed

approach is geared towards global-to-local exploration

and places a special emphasis on the sensitivity analysis

task. We refer the reader to [34] for a more inclusive lit-
erature overview and limit this section to our particular

scope and use cases.

In sensitivity-oriented visualization there is a pa-

rameter space f(x1, . . . , xN ) whose variables are either

freely tunable by the user (usually in a controlled experi-

mental or simulated environment) or naturally governed

by a probability density function (PDF). In the latter

case, the complexity that is due to the model function

f adds to that of its underlying PDF, which may or

may not be known in closed form. If one wishes to place

a strong emphasis on the PDF, one may take a set

of representative samples distributed accordingly and

then simply apply their favorite scattered data visual-

ization technique [29, 33]. Conversely, if only a set of

scattered samples is known from an otherwise dense

parameter space, a surrogate model may be fitted in

order to estimate the true model during interactive

visualization. This strategy provides more contextual

information than a bare-bones collection of scattered

points because a surrogate can be evaluated cheaply

at previously uncharted locations within the domain.

This enables, among others, derivative-based feature

visualization in points’ neighborhoods (gradients, ex-

tremal/saddle structure and other local properties) us-

ing for example flow-based scatterplots [12] or multiscale

lensing [35].

Here we focus on the case where the PDF is of

limited interest or even uniform, and especially, when

parameters may be set at will. Note that this is a com-

mon scenario in sensitivity analysis. In other words, we

are concerned with understanding and visualizing the

complexity ascribed to the multidimensional model f

itself, rather than to its parameters’ distribution. A pop-

ular approach is to track and visualize f ’s topological
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Fig. 1: Our system combines a stage for building the tensor representation of the underlying model of interest (left),

a numerical backend that performs the proposed dimensionality reduction via Alg. 1 (center), and an interactive

3D visualization frontend featuring multiple widgets (right).

properties; watershedding segmentation, Morse-Smale

complexes [20] and topological spines [14] belong to

this paradigm. Such methods are very sensitive to high-

frequencies and irregularities in the model, and they
often resort to a smoothing hyperparameter to filter out

noise and reveal topological features at different scales.

Contribution to the sample mean (CSM) plots [9] give

a very detailed account of the model’s average as a vari-

able moves, but disregard the high-order interactions of

the variable with other variables. In addition, CSM plots
cannot focus on variable tuples whereas our method can

(via the proposed PP-surfaces).

The active subspace method [13], which is very sim-

ilar to the structure tensor idea for images and vol-

umes [27], is perhaps one of the closest to our work: it is

also based on extracting principal directions of variance

within an L2 space and inner product. However, while

active subspaces arise from uncentered covariances be-

tween the model’s gradient components ∂f
∂x1

, . . . , ∂f
∂xN

across the domain Ω, our method uses the covariance

between all function slices, be it of single variables or

variable tuples. In particular, we are not limited solely

to global structure. Rather, we can look at variations
that occur as one or more input parameters evolve. This

is a crucial and novel feature that facilitates effective

global-to-local navigation as motivated earlier.

2.2 Sobol Method for Sensitivity Analysis

Several decades after its inception, Sobol’s method [36]

remains one of the most prominent for sensitivity analy-

sis of multidimensional scalar functions [17,32]. Its main

insight is to realize that every variable’s influence can

be decomposed into two orthogonal components:

• The first-order term Sn of a variable xn measures

how strongly the model’s average is affected when

xn changes. A purely first-order variable xn means

that we can separate it from f and write

f = g(xn) + h(x1, . . . , xn−1, xn+1, . . . , xN ). (1)

• The high-order term of a variable xn measures its

impact on the model that is not attributable to

changes of its average. Hence, a purely high-order

variable xn means that the function’s mean E[fxn ]

is not affected by changing xn.

Often, these two components show up together. Their

aggregation is the so-called total effect, denoted as STn .

The first-order index Sn gives a precise measure of its

variable’s isolated effect, but disregards any joint inter-

actions. On the other hand, the total effect STn accounts

for these, although it does not identify what orders of

interactions are prevalent and how partner variables are

interacting. Note that the Sobol components are defined

for tuples of variables as well.

Sobol’s method excells at robustly capturing joint

relationships among interacting groups of variables. For

example, while the presence of a strongly first-order

variable may destroy the local extrema of an otherwise

topologically rich function, it will not alter the Sobol

relative importances between the remaining variables.

However, a drawback of the method is that for each
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variable, or tuple thereof, its effect over the entire do-

main is summarized into a single scalar quantity. Thus,

it fails at reflecting changes at different specific values

of these variables. For instance, a variable may play

an overall important role, but only when it takes ex-

treme values, or it may be first-order in an interval and

high-order in another. The need to convey this impor-

tant, more fine grained information calls for a novel

visualization-oriented methodology that works well with

the principles of Sobol’s ANOVA framework. This is the

main motivation behind our method.

2.3 Tensor Metamodeling and Visualization

The dimensionality reduction technique we propose is
based on PCA projection in vector spaces of very high di-

mensionality. To cope with this computational challenge

we will use a framework known as tensor decomposition

that we briefly review here.
Tensor decompositions approximate arbitrary data

tensors (multidimensional arrays) as expansions of sim-

pler, separable tensors that can cope well with the curse

of dimensionality [28]. In the context of surrogate mod-

eling, tensors are often defined as discretizations of pa-

rameter spaces over regular grids, whereby each tensor

entry corresponds to one particular combination of pa-

rameters. For instance, given a simulation depending

on N = 8 parameters, we may discretize each axis into

64 possible values to yield a tensor with 648 ≈ 3 · 1014

elements. It is often possible to handle such massive ten-

sors succinctly using a suitable decomposition, so that

they never need to be managed in a raw explicit form.

In this paper we use the tensor train (TT) model [30],

which in recent years has been used increasingly for

surrogate modeling and visualization [4, 22,41] as well

as for sensitivity analysis [5, 6, 8]. Tensor model fitting

is an active research field, and multiple options exist

nowadays for either a given set of training samples or

when new data points can be sampled on demand. Here

we follow a precomputed metamodeling paradigm: the

surrogate is built offline, taking as many samples as

needed to ensure a sufficiently low estimated general-

ization error. No further samples are acquired during

visualization, and in particular no steering is considered

nor needed.

The techniques we present take advantage of the

unique strengths of tensor decompositions and, in par-

ticular, the TT model. Classical regressors such as Gaus-

sian processes (kriging) or radial basis functions are

popular for surrogate modeling in certain cases, e.g.

when the available ground-truth samples are fixed and

very limited in number. Nonetheless, they are less ade-

quate for the kind of multidimensional integration and

multilinear PCA projection required by the proposed vi-

sualization. The general idea of using compressed tensor

coefficients as features for model (post-)processing and

analysis is not new [25,44]. PCA is a long-established

framework that has been extensively used for dimen-

sionality reduction, including low-dimensional represen-

tation of image-typed data [39, 40], trajectory curves

over time [11, 18], and more. However, the proposed

sensitivity-aware projection and visualization for dense,

high-parametric models is new. We cover it in detail

over the next sections.

3 Proposed Dimensionality Reduction

Consider an N -dimensional parameter space represented

as a function f : Ω → R. In the multivalued case

f : Ω → RM one can handle each output 1, . . . ,M

separately or, if a joint analysis for all outputs is de-
sired, reduce the problem to the single-valued version

by stacking all outputs to form an extra dimension:

f : Ω × {1, . . . ,M} → R. For simplicity, let us also as-
sume that all inputs are continuous and scaled to [0, 1]

(alternative cases work analogously).

3.1 Single Variable Case

For the sake of clarity, let us start with K = 1, i.e.

there is only one variable of interest xn. Our goal is to

understand its effect on the multidimensional function f
or, in other words, the relationship between the (N −1)-

dimensional function slices fxn(x̂n) = f(. . . , xn, . . . ) as

xn changes between 0 and 1. Of course, each slice may

have a structure (almost) as complex as the original f ,

so their joint behavior is just as potentially intricate

and challenging.

We propose to consider the L2 space F of all func-

tions that map [0, 1]N−1 to R. Clearly, every slice fxn

0 ≤ xn ≤ 1 belongs to F . Let us summarize this collec-

tion of (infinite many) slices as a parameterized curve,

i.e. map each to a point in R3. We start by averaging

each slice over its remaining free variables to get a single

scalar, i.e. computing the global average of fxn for a
fixed xn. We call this function fn,

fn(xn) := E[fxn ] =

=

∫
[0,1]N−1

f(x1, . . . , xN ) d̄xn,
(2)

where d̄xn indicates that all variables except xn are

integrated.

Function fn captures the aggregated first-order be-

havior as per variable xn and hence determines the
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first-order Sobol index (Sec. 2.2), which is defined by

the variances of fn and f as Sn := Var[fn]/Var[f ]. Obvi-

ously, such an averaging still gives limited information on

fxn ’s inner workings as xn varies. The missing informa-

tion is contained in the residual function f−n := f − fn.

The slices of this residual are the zero-centered slices of

f and contain the higher-order information of f along

variable xn. In Sobol’s method the residual is impor-

tant, since its variance gives rise to the total index:

STn := Var[f−n]/Var[f ] + Sn.

The core part of our proposed mapping is to decom-

pose each original slice as the sum of two orthogonal

components, namely its average and the residual:

fxn(x̂n) = fn(xn) + fxn
−n(x̂n). (3)

Then, we represent those two parts as follows:

• One coefficient πx(xn) for the average at xn, i.e.

πx(xn) := fn(xn).

• Two coefficients πy(xn) and πz(xn) for the resid-

ual slice. Since that slice still depends on N − 1

continuous variables, we resort to a truncated basis

expansion. We choose an optimal basis in the L2

sense, namely the two leading eigenfunctions of the

Karhunen-Loève expansion (KLE) for the pairwise

covariance function between all residuals along xn:

Cov(α, β) := E[fxn=α
−n · fxn=β

−n ] for all α, β ∈ [0, 1].

This yields two scalar functions πy(xn) and πz(xn).

The discrete equivalent of this dimensionality reduc-

tion, i.e. when one wants to project a collection of

vectors onto 2D, is to keep the two leading eigenvec-
tors of the vectors’ covariance matrix.

In summary, each individual fxn is reduced to a

point in 3D (πx(xn), πy(xn), πz(xn)) and thus the set

of all xn ∈ [0, 1] is mapped to a parameterized curve in

R3 (see Fig. 2 for a simple example). Let us call this

1D-manifold a principal-parametrization or PP -curve.

Our dimensionality reduction is a subspace-constrained

KLE: we force a specific vector to appear in the basis,

and want to find others that best summarize the re-

maining subspace that is orthogonal to that vector. Our

choice of the fixed vector gathers absolute information,

since coordinate πx equals the slice’s mean. On the

other hand, the two other vectors to be sought encode

relative information as absolute positions (πy, πz) on

the yz-plane. While these absolute positions are not

directly interpretable, the distances between points are.

Although the fixed vector is not generally one of the

KLE’s leading eigenfunctions, it is still a reasonable ba-

sis choice in L2 terms and it often captures a significant

amount of the model’s variance.

3.2 Multivariate Case

We have just mapped a single variable’s correspond-

ing collection of function slices fxn onto a PP-curve, a

K = 1-dimensional manifold. The higher-dimensional

case (K ≥ 2) extends naturally from that. The main dif-

ference is that we now have collections of function slices

fxn,... that are indexed by two or more variables, and we

get functions that arise from fixing several variables and

are (N−K)-dimensional, e.g. fxn,xm for K = 2. As a re-

sult we no longer obtain parameterized curves but higher-

order PP-manifolds (surfaces, volumes, etc.) that are

again parameterized by triplets of multidimensional func-

tions, e.g. (πx(xn, xm), πy(xn, xm), πz(xn, xm)) : [0, 1]2 →
R.

In Fig. 3 we show an example parametrized surface

from the Damped oscillator model where we select the

two variables kp and zs of interest and get a PP-surface

in R3 given by all points (πx(kp, zs), πy(kp, zs), πz(kp, zs)).

An example considering three variables of interest is

shown in Fig. 5.

4 Geometric Interpretation

4.1 Approximate Isometries

The truncated KLE indicated above yields the projection

π that, by means of a reduced orthonormal basis, best

preserves a given collection of vectors in the L2 sense:

arg min
π

∑
u

‖u− π−1(π(u))‖2

In the above equation, π−1(·) is the expansion back

into the original multidimensional space using the same

basis. This means that distances between vectors are

also preserved well,

‖v− u‖ ≈ ‖π(v)− π(u)‖,

and likewise relative distance changes:

‖w− v‖ − ‖v− u‖ ≈ ‖π(w)− π(v)‖ − ‖π(v)− π(u)‖,

and similarly for any level of repeated subtraction. In

other words, notions like speed of change or acceleration

tend to be reflected well in the projected space as well.

This has important and desirable consequences from

a visualization point of view. For example, if a set of

function slices fxn for 0 ≤ xn ≤ 1 are all multiples of

each other, F , then its projection π : [0, 1] → R3 will

consequently evolve in a linear fashion too:
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Fig. 2: (a) A simple 3D model, B/W video of a static ball with a light source rotating around it, with coordinates

(x, y, t), shown as slices along a variable of interest (time t). (b) Principal parameterization for t, (πx(t), πy(t), πz(t)).

Since all video frames have the same average intensity, πx(t) is constant. The rotating pattern is captured as two

wavelike functions: (πy(t), πz(t)) = (A cos(ωt), A sin(ωt)). Each dot represents one discrete value of t = 0, 1, . . . , 63.

(c) Resulting 3D visualization of the resulting curve without explicitly showing the axes πy, πz. Since πx(t) is

constant the curve projects onto a single point on the x-axis, and since πy(t) and πz(t) are periodic the curve

describes a circle in the yz-plane.

Fig. 3: We use interwoven isolines to visually

track constant parameter values over our principal-

parametrization surface. By hovering over a point, the

user is shown its corresponding parameter values (here

kp and zs from the Damped oscillator model, Sec. 6)

along with its projected coordinate πx(kp, zs).

π(xn) = π(0) + xn · (π(xn)− π(0)) , 0 ≤ xn ≤ 1,

which is a straight line connecting the 3D points π(0)

and π(1).

Conversely, a curved projection π hints at a se-

quence of vectors that changes non-linearly. Sudden

changes in the curve mirror sudden changes also in the

original higher-dimensional F (as intuitively expected),

periodic behavior is mapped to rings, etc. Also, note

that the global mean of the model E[f ] coincides with

the barycenter of any principal parameterization in 3D,

which has the form (E[f ], 0, 0). Furthermore, the cosine

similarity u·v
‖u‖·‖v‖ is approximately preserved as well,

and is displayed in 3D as angles between vectors. To

help gain an intuition and demonstrate the expressive

power of the proposed parameterizations, we show a
number of examples in Figs. 4 and 5. All were taken

from the models listed later in Sec. 6.

Certainly, since we are projecting vectors of high

dimensionality onto three basis elements only, much of

the detail along the unimportant variables is likely to

be smoothened out. On the other hand, because the

resulting visualized manifold has as many dimensions

as there are variables of interest, the trajectories of

these variables are captured well and can be tracked

visually in full detail. For example, any sharp corner or

feature in a PP-curve π(xn) traces back unambiguously

to one specific value of its variable xn. We argue this

is a key strength of the proposed method: it is able to

abstract complex spaces over many dimensions while

still retaining full resolution along a few selected target

variables.

4.2 Global Sensitivity Analysis

As outlined in the introduction, there are several interest-

ing connections relating our projection π with the Sobol

indices [36] (see Sec. 2). Recall that for the Sobol index of

the n-th variable we have Sn ∝ Var[fn], whereas the to-

tal Sobol index STn accounts for both the first- and high-

order effects: STn ∝ Var[fn]+Var[f−n]. Furthermore, we

have that Var[fn] = ‖fn‖2 ∝ ‖πx‖2 (exact projection

on the x-axis) and Var[f−n] = ‖f−n‖2 ∝ ‖(πy, πz)‖2
(approximately; it is the projection on the yz-plane us-
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(a) No influence (b) Positive correlation (c) Negative correlation (d) Purely high-order effect

(e) Periodic behavior (f) Purely high-order effect
(g) First-order + higher-order,
little interaction (h) Mixed effects

Fig. 4: The proposed PP-curves and PP-surfaces capture a wide range of single- and multiple-effect patterns.

No correlation, as well as positive or negative correlations between the selected variable and the model’s (mean)

output, is shown in (a,b,c,d) by the relatively simple curves. Periodic and high-order effects of a single variable are
illustrated in (e) and (f). PP-surfaces are shown in (g) and (h). In (g), one variable has a small global influence as

revealed by the surface’s small spread around the x-axis (dark cyan isolines), while the other variable independently

exhibits a first-order contribution (light purple isolines). In all graphs, the x-axis is depicted as a black-and-white

arrow. The x coordinate indicates the model’s average over all abstracted variables for any specific values of the

parameterized target variables (color curves and surfaces).

ing a truncated expansion). Therefore, we can make the

following observations:

• The curve’s evolution along the x-axis mirrors the

corresponding slice’s mean value E[fxn ] as xn changes,

and Sn is proportional to the PP-curve’s variance

along that axis. In other words, by tracking the

curve’s πx coordinate while changing xn we can infer

the overall first-order behavior of our N -dimensional

model as that variable varies. In particular, the

correlation ρ between xn and the model output

equals that between xn and the PP-curve’s πx co-

ordinate: ρ(xn, f) = ρ(xn,E[fxn ]) = ρ(xn, πx(xn)).

Thus curves that point towards the right of the x-

axis indicate a positive correlation, and vice versa.

Any purely first-order variable xn (i.e. Sn = STn ) will

not cause any variation in the yz-plane, i.e. the curve

is mapped to a line segment that is perfectly aligned

to the x-axis. See also examples in Fig. 4(a,b,c,d,g).

• The higher-order component measures exclusively

the influence due to the interplay between the vari-

able of interest and the rest of variables. This in-

teraction is reflected as variations in the yz-plane.

The manifold’s second-order moment on that plane,

i.e. its summed squared distance to the x-axis, is

proportional to the difference between the total and

plain Sobol indices STn − Sn. For instance, a curve

orbiting far from the x-axis means its corresponding

variable has strong interactions with other variables.

Any purely high-order variable xn (i.e. that does not

influence the model’s average, with Sn = 0) does not

vary along the x-axis at all but only in the yz-plane,

e.g. as in Fig. 4(f).

• A periodic behavior of a variable on the model’s

output is mapped to closed curves, e.g. as in Figs. 2(c)

and 4(e).

• For two variables xn and xm (that is, K = 2) the
resulting PP-surface shows their joint effect on the

model’s mean value and their individual effects as

highlighted by surface isolines (Figs. 4(g,h) and 5).

For example, Fig. 4(g) shows a pair of variables (Fs
and ks) having a separable influence on the first-

and high-order effects of the model’s average respec-

tively, while Fig. 4(h) shows another pair (ms and

zs) exhibiting a mixed interacting effect.

• The total index STn measures the sum of average

and higher-order effects and is proportional to the

total second spatial moment (that is, including all

x, y, and z axes) of the principal parameterization.

In other words, the more spread out the parameteri-

zation is in all directions, the more global influence

its variable has on the model. Conversely, a tuple

of irrelevant variables will be collapsed into a point

(see also Fig. 5).
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(a) Linear effect

(b) Diminishing effect

Fig. 5: An ensemble of surfaces can show the effect of
three variables in one visualization. In (a) a linear effect

is shown with respect to changing the third variable Fs.

In (b) the contraction of the principal parametrization

surface with respect to increasing the third variable zp
means that the variables mp and S0 become irrelevant

for certain values of zp.

In a nutshell, first-order effects make the projected

PP-manifolds move along the x-axis, while high-order

interactions pull them away in various ways.

5 Practical Algorithm

5.1 Discretization

Given an infinite collection of functions, each of which

is an element of an infinite-dimensional vector space,

how can we find a good truncated basis for it? As a

first step, let us work on a discretely sampled version of

the problem, whereby we quantize the collection into a

number of representative bins. This makes the procedure

numerically tractable, namely via an eigensolver, so that

we can approximate the original function space’s KLE.

Essentially, given a parameter space with N inputs,

w.l.o.g. we discretize the input function f along each axis

using I bins to yield an N -dimensional data tensor T of

size IN . This way, function slices become tensor slices.

Instead of a continuous 3D parameterization (πx, πy, πz),

we then seek three corresponding discrete (coordinate)

tensors (X ,Y,Z), each of size IK . For example, for I =

64 and K = 3 we will obtain a triplet of 643 coordinate

volumes that can be visualized as e.g. an ensemble of

64 3D surfaces, each represented as a quadmesh of 642

vertices.

5.2 Algorithm Outline

For the ease of exposition, we assume that the K vari-

ables of interest are the first 1, . . . ,K. The dimensional-

ity reduction that we motivated in Sec. 3 boils down to

a three-step processing pipeline:

Stage A: The within-mean of each slice of f is computed

(to be used as x-coordinate during visualiza-

tion) and subtracted from the original. This

way we derive a new function f−1...K whose

slices are zero-centered.

Stage B: The cross-mean of f−1...K (i.e., its average

over target variables 1, . . . ,K) is subtracted

from each of its elements to yield a new col-

lection f−1...K . By doing so we are shifting

the collection’s origin of coordinates to its

barycenter as is often done in PCA to achieve

a more meaningful projection.

Stage C: We compute the two leading eigenfunctions of

the [0, 1]K × [0, 1]K → R covariance function

that maps every possible pair of elements of

f−1...K to their inner product. For each slice,

its coefficients in terms of this basis define its

embedding on the yz-plane.

See Fig. 6 for an example of the within- and cross-

means for dimension N = 3 and target variable x1.

Note that Stages A and B are orthogonal to each other:

the within-mean (Stage A) is computed as an average

over the non-target variables, whereas the cross-mean

(Stage B) is an average over the remaining target vari-

ables. See App. B for an illustrated flow chart of the

proposed algorithm.

x1

(a) Original f

x1

(b) Within-mean
f1

x1

(c) Cross-mean of
f−1

Fig. 6: Isosurface renderings for an example 3D function

f(x1, x2, x3) (a) with target variable x1. The within-

mean (b) is an average over axes x2, x3 that only varies

along x1, whereas the cross-mean (c) is an average over

axis x1 that only varies along x2, x3.
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The PCA truncation we just described also allows

us to compute the projection error for each point in a

principal parameterization: it is the distance between the

corresponding slice and its approximation ε(xn, xm) :=

‖fxn,xm − π−1(π(fxn,xm))‖, and is given by the sum

of squared truncated eigenvalues. The user can toggle

the color texture of principal surfaces back and forth

between isolines and projection error; an example in

Fig. 7.

(a) Isolines (b) ε(ms, ks)

Fig. 7: We provide two surface texture options: (a) inter-

woven parameter isolines; (b) PCA projection error ε at

each point. The model shown is the Damped Oscillator

with variables of interest ms and ks.

See Alg. 1 for a practical, discretized version of the

proposed algorithm. It relies on a range of expensive

tensor operations: computing means along several axes,

element-wise subtracting tensors, computing a large

covariance matrix C among many tensor slices, and

eigendecomposition of that matrix. In particular, the

entries of C require very large-scale dot products that

are non-trivial to compute. A classical method to esti-

mate such products is Monte Carlo (MC) integration,

which is simple but costly as it converges slowly [26]. In

addition, for higher values K, C may grow to become

a massive dense matrix with billions of entries, so its
eigendecomposition poses a challenge on its own. For

example, for K = 3 and a moderate discretization size

of 64 bins per dimension, the method must compute

the leading eigenvectors of a matrix of size 643 × 643.

While MC estimation may be sufficient in some cases

for offline dimensionality reduction and visualization, it

is hardly practical for interactive navigation, which is

the more desirable goal. A suitable algorithm, therefore,

is required as presented below.

5.3 Tensor Decomposition Algorithm

We propose to use tensor decomposition, and in particu-

lar the tensor train (TT) model, to represent and work

with our discretized parameter space. It is an extremely

convenient format for the problem at hand because:

Algorithm 1 Practical numerical procedure operating

on discrete tensors. Input: an N -dimensional function f

discretized as a tensor T of shape IN and 1 ≤ K < N

variables of interest (for simplicity, here assumed to be

the first 1, . . . ,K). Output: 3 tensors X ,Y and Z that

describe their discretized principal parameterization,

namely a K-dimensional manifold in R3. Note that

all tensors are manipulated in the tensor train format;

for more details on how to perform such operations

(subtraction, averaging, dot products, etc.) we refer the

reader to the seminal paper [30].

{Stage A}
1: // Within-mean of each slice: average over non-target

variables
2: T1...K := mean(T ;K + 1, . . . , N)

3: // Separate and subtract the within-mean
4: T−1...K := T − T1...K

{Stage B}
5: // Cross-mean among all slices: average over target vari-

ables
6: T−1...K := mean(T−1...K ; 1, . . . ,K)

7: // Separate and subtract the cross-mean
8: M := T−1...K − T−1...K

{Stage C}
9: // Compute covariances among all pairs of tensor slices

10: C := zeros(I, . . . , I) // Tensor of size I2K

11: for i1, . . . , iK = 1, . . . , I do
12: for j1, . . . , jK = 1, . . . , I do
13: C(i1, . . . , iK , j1, . . . , jK) = 〈Mi1···iK ,Mj1···jK 〉
14: end for
15: end for
16: C := reshape(C, IK × IK) // Covariance matrix

17: // Compute the two leading eigenpairs of C
18: ΛΛΛ,U := EIG(C; 2)

19: // Gather and return 3D parameterization tensors
20: X := T1...K // The x coordinate is exactly the within-

mean
21: Y := firstColumn(ΛΛΛ ·U) // Vector with IK elements
22: Y := reshape(Y, I × · · · × I)
23: Z := secondColumn(ΛΛΛ ·U) // Vector with IK elements
24: Z := reshape(Z, I × · · · × I)
25: return X ,Y,Z

(a) it can compress a full parameter space very com-

pactly, circumventing the curse of dimensionality; (b)

allows for very fast multidimensional integration [31];

and (c) can encode the covariance matrix needed in a

TT-compressed form of its own, from which principal

components are then easy to extract. The TT format

approximates each entry 1 ≤ i1, . . . , iN ≤ I of our dis-

cretized tensor T as a product of matrices,

T [i1, . . . , iN ] ≈ T (1)[i1] · ... · T (N)[iN ], (4)

where every T (n) is a 3D tensor known as core, namely

an array of I matrices T (n)[in] indexed by in; T (1) and
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T (N) contain row and column vectors, respectively. In

other words, the model’s behavior for any dimension

n and any value of in is completely governed by the

elements in its corresponding matrix T (n)[in].

The TT representation allows us to perform all re-

quired operations efficiently, provided that the input

parameter space itself is given discretized and in the TT

format. For instance, to compute a function’s average

along axes 1, ...,K one only needs to compute averages

of the corresponding cores T (1), . . . , T (K). Furthermore,

we do not actually require explicit expensive loops (cor-

responding to lines 11 to 15 in Alg. 1) to populate all

elements of the IK×IK covariance matrix C: we hold all

entries of this matrix in the tensor train format and ex-

tract its leading eigenpairs efficiently in the compressed

domain (see App. C).

Note that this framework also allows us to quantify

the relative error introduced by the PCA truncation,

which is a relation between the eigenvalues we keep and

the original norm of the covariance matrix: 1−
√
λ2
1+λ

2
2

‖C‖ ,

where λ1, λ2 are the two leading eigenvalues of C and

‖C‖ its Frobenius norm, i.e. square root of the sum of
its squared elements. This error was below 0.25 in all

parameterization extracted in this paper.

6 Results

We tested our methods and implementation on four

analytical models of varying complexity and dimension-

ality. For each of these models, we used an adaptive

sampling algorithm known as cross-approximation [31]

to built the corresponding TT metamodel. This step
corresponds to the Offline Learning Phase in Fig. 1. See

the App. A for more details on cross-approximation.

6.1 Software

We used Python 3.6, Flask, and Three.js to implement

the proposed algorithm in a webapp framework. All

visual results are displayed using a range of custom

widgets and diagrams, as demonstrated in Fig. 12 for

the Damped Oscillator example described in Sec. 6.5.

Our visualization frontend is implemented in JavaScript:

we use Three.js for 3D rendering and interaction with

the principal parameterizations, and Bootstrap with

JQuery for the user interface. The Flask server hosts our

numerical backend, which exploits the NumPy, ttpy [1],

and ttrecipes [2] libraries for tensor train manipulation.

The models used in this paper are all available in the

ttrecipes package.

6.2 Nassau County

Our first model is the voting system studied by Banzhaf [7],

which considers the six voting agents in the 1964 Nassau

County Board of Supervisors. In order for any political

motion to succeed, it must be backed by a coalition of

districts that reach a vote majority (58 votes or more).

In political sciences and game theory, the Banzhaf power

index [7] is often used to assess the true influence of

individual agents in a voting body. For each agent, its

index is defined as the fraction of all possible winning

coalitions in which it is a necessary member, i.e. the

coalition reaches a majority but would not do so with-

out that agent. Banzhaf argued that the three weakest

districts of Nassau County were actually powerless even

though they collectively held 22% of the total votes.

Since each district party can either be or not be in a

coalition, we model the problem using a binary variable

for each. The domain is thus Ω = {0, 1}6. We arrange

all possible coalitions in a tensor of size 26 = 64, where

each entry is 1 if the corresponding coalition would

reach majority and 0 otherwise. We then compute the

PP-curve corresponding to each district and visualize

them together in a single system of 3D coordinates; we

call this widget a curve array (Fig. 8).

Fig. 8: When applied to a majority voting system, our

parameterization yields the Banzhaf power index [7].

The powerless districts are the three leftmost curves,

which are simply zero-length segments.

Since each district’s variable can only take values 0

or 1, its PP-curve is just a line connecting two endpoints.

We have found the variance of these two points (i.e. the

segment’s squared length) to be proportional to their

corresponding district’s Banzhaf power index. In par-

ticular, the three PP-curves of Fig. 8 with zero length

(i.e. only their arrowhead is visible) identify the three

powerless districts: their votes have no influence on the

model’s output. On the other hand, the three Hamp-

stead districts are mapped to three equal straight lines,

indicating that they share the effective power evenly.
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6.3 Cell Cycle

As a second, more complex example we consider a 4D,

multivalued system of ordinary differential equations

(ODE), namely the Cell Cycle [19,21]. It models five pro-

tein concentrations (cyclin, protease, cdc2k, cyclin

inhibitor, and complex inhibitor) during cell divi-

sion. It is a time-dependent system, hence the temporal

axis t is particularly important as an explanatory vari-

able. The five system outputs are known to have an

oscillatory behavior around five stationary concentra-

tion levels, and our goal is to understand how three

uncertain input parameters (V1p, K6, and V3p) influence

those levels.

To perform this analysis using the proposed PP-

curves, we select t as our variable of interest and gather

all five outputs of the ODE into an extra dimension for

a joint analysis; the resulting tensor is five-dimensional.
This way, we force their five principal curves to share the

same 3D system of projected coordinates. Furthermore,

we add a slider to govern any of the three parameters

separately and thus add one extra degree of user in-

teraction. The slider can be adjusted in real time and
prompts an immediate update on the five curves dis-

played. Concentration K6 was found to have a strong

effect on the speed of change of several outputs; see

Fig. 9 for some example renderings.

Fig. 9: A dynamic 5-valued ODE modeling the cell
division cycle [19] and principal curves showing three

of the five output quantities with variable of interest t

(time) and two different values of the input parameter

K6.

As can be seen in Fig. 9, the PP-curves show how the

attractor point is different for each output and, further,

it is differently affected by K6. In particular, higher val-

ues of K6 lead to more similar stationary concentrations

of the proteins of interest. Besides compactly showing

the rate of evolution of each quantity as time progresses,

the proposed visualization also reflects periods of simi-

larity between two or more curves’ behaviors.

6.4 Robot Arm

Next, we use an 8D model measuring the distance from

the origin attained by a 4-segment robot arm that

can only move within a 2D plane [3]. Its variables are

L1, L2, L3, L4, which model the length in centimeters

of each segment, and φ1, φ2, φ3, φ4, which model the

angle of each elbow joint. The model output is periodic

w.r.t. those angles, which can all move between 0 and

2π. The first angle is non-influential because it rotates

the full arm and does not change the distance between

the arm’s tip and the origin. Other than φ1, we expect

strong interactions between the variables of this model,

given that the segments are connected to each other

and their lengths and angles affect the tip position in a

complex, high-order way.

We explore this model using two different visualiza-

tions. The first is a plot matrix: we combine all 1st and

2nd-order principal parameterization 1D or 2D mani-

folds in an N×N table where every entry (n,m) contains

the PP-surface for variables xn and xm. The special case

n = m yields its PP-curve. Similarly to the curve array,

the parameterizations are evenly spread on the yz-plane,

but their x axis has an absolute interpretation in all

cases. This visualization is inspired by the SPLOM (scat-

terplot matrix) and the HyperSlice [43] diagrams, which

arrange pair-wise relations in a square matrix fashion

and line up unary items along its diagonal.

The plot matrix generalizes and is more expressive

than the curve array. See Fig. 10a for an example using
the Robot Arm model. Note how periodic variables (the

angles φi) are mapped into closed curves along the di-

agonal. Each surface summarizes the pair of variables
it corresponds to; see the zoomed-in examples at the

bottom of Fig. 10. For example, a rectangular surface

(Fig. 10c) represents the interaction between two linear
variables. A cylinder (Fig. 10c) captures the joint behav-

ior of a periodic and a linear variable, and the cylinder’s

girth and height convey how strong their respective in-

fluences are on the model output. The dome in Fig. 10d

tells us that the influence of φ4 vanishes when L4 is

small, which reflects the fact that the last elbow angle

becomes irrelevant when the last robot arm segment is

very short.

Second, we also implement a contextual minimap

(Fig. 11) that extends the fanovaGraph sensitivity anal-

ysis chart [17]. It is a graph in a circular layout that

captures all first- and second-order Sobol indices of ei-

ther the whole function or any arbitrary function slice.

We furthermore use two palettes, one for darker and

one for lighter colors. The area of the darker inner cir-

cle within each variable’s node is proportional to its

first-order effect, while the lighter outer circle encodes
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(a) Plot matrix

(b) Rectan-
gular

(c) Cylindri-
cal (d) Dome

Fig. 10: Top: plot matrix diagram giving a compact

depiction of single and pair-wise effects (Robot Arm

model). The x axis is shown in black-and-white. The

user can navigate freely within the 3D scene in order

to magnify and observe details from any desired angle.

Hovering over a curve or surface highlights it and shows

its variables. Bottom: detail of three distinct surface

types.

its higher-order effect. The same applies to the curved

arcs connecting two nodes for order-2 indices using the
width instead of area.

We can see in Fig. 11 that the most influential vari-

ables (larger graph nodes) are the elbow angles, and

that the strongest interactions (wide arcs) occur be-

tween these variables. Note that, since φ1 has no effect,
its node is just a point (circle of radius zero).

6.5 Damped Oscillator

Third, we consider an 8D physical model known as the

Damped Oscillator [16]. It models a primary mass mp

connected to a wall by a spring and to a secondary mass

ms by another spring. The system is subject to a white-

noise impulse of strength S0 and the model output is

the peak force experienced by the secondary spring (the

higher this force, the more likely the system is to fail).

The other variables are the spring stiffnesses kp and ks,

the damping rates zp and zs, and the force capacity of

the secondary spring Fs.

Fig. 11: Our contextual radial graph (Robot Arm model)

displays all 1st- and 2nd-order Sobol indices for any

given values of the current active tuple of variables.

First- and high-order effects are shown as darker and
lighter colors, respectively.

To explore this model we have combined all features

previously discussed into an integrated web-based vi-

sualization application emphasizing the global-to-local

paradigm (Fig. 12). When the user selects a model to

be visualized, a plot matrix (as in Sec. 6.4) is launched

in the main view alongside with with an array of PP-

curves (Sec. 6.2). These widgets are furthermore linked

to the Sobol minimap (Fig. 11), which is initialized to

the overall model.

Navigation is governed by an active tuple of variables

that is empty at the beginning. By clicking a node or an

arc on the Sobol minimap, the user can select a variable

or pair thereof for further analysis. For instance, if we

select an arc connecting a first-order variable with a high-

order one, we expect their joint surface to be mostly

rectangularly tiled (as we showed in Fig. 4(g)). The

surface will be more or less bent depending on whether

there are further high-order interactions with even more

variables, as is signaled by the lighter part of their arc.

Alternatively, the user can select a tuple by clicking on

the parameterized surface directly in the plot matrix.

As soon as such a selection is made, the plot matrix

in the main view is minimized, and the corresponding

curve or surface visualization is maximized instead. Us-

ing a dropdown menu, the user can further select yet

another variable xl to a specific value xl := α, and up-

date this value interactively via a slider. Moving the

slider also updates the minimap, which then shows the

Sobol indices of the selected 1-variable function slice,
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Fig. 12: Snapshot of the entire application (Damped Oscillator model) and its most important features: (a)

model selector; (b) parameter selector; (c) spotlight; (d) curve array; (e) plot matrix toggle; (f) hoverable 3D

parameterizations; (g) selector and slider for an optional third parameter; (h) radial minimap; (i) selector for

optional ensembles of curves or surfaces; (j) surface texture menu.

as well as whatever curve or surface that is visible in

the right widget. A hover tool allows the user to investi-

gate the current principal parameterization. Hovering

over a surface makes a trajectory appear that displays

the 3D evolution of π(xn, xm, xl) as xl takes different

values. This system can show up to third-order interac-

tions smoothly, and thus goes one step beyond the plot

matrix of Sec. 6.4. The system responds interactively:

computing a principal parameterization takes well under

a second, whereas extracting Sobol indices from a tensor

train is a matter of milliseconds.

After looking at the curve array in the left-hand side

of Fig. 12, we notice that the arrows for mp and ms flow

in the against the x axis (depicted as a black-and-white

straight arrow). This leads to the insight that the higher

these masses the smaller the peak force becomes and,

therefore, the more robust the oscillator will be. On

the other hand, we see that the spring stiffnesses kp, ks
have a small impact as their arrows move largely perpen-

dicularly to the x axis. The radial minimap (Fig. 12h)

shows that, although Fs is the most influential variable,

it barely interacts with other variables – meaning that

the model can be simplified as the sum of a term de-

pending on Fs plus a term depending on the rest. Last,

the central widget shows the interaction between ms

and ks as we move mp (currently set to 2.191 in the

slider g). The highly obtuse angles between the magenta

and orange isolines tell us that variations in ms and ks
have effects that are largely opposing to each other.

6.6 Ebola Spread

We consider an 8-variable model of the Ebola virus

infection rate R0 in Liberia and Sierra Leone, based

on statistics from the 2014 outbreak [15]. The most

important goal in this scenario is ascertaining how re-

sources can be best allocated to reduce R0. According

to the authors of the study, the two variables that can

be influenced most easily to decrease the number of

infections are the hospitalization rate φ and the proper

burial rate ω. The rest mostly depend on environmental

factors, including β1, β2, β3 (infection parameters), ρ1
(mortality rate for unhospitalized patients) and γ1, γ2
(avg. disease duration without and with hospitalization,

respectively).

Fig. 14 shows two snapshots of the tool for this model.

As the model’s curve array shows (Fig. 13), there are

four variables that generally increase the rate R0 and

four that reduce it. It stands out that φ has a much

stronger effect than ω at reducing the rate R0. This

is precisely one of the main conclusions reached ana-

lytically in the study by Diaz et al. [15]. Furthermore,

we can use the proposed widgets to understand under

what circumstances this disparity is more or less acute.

The model is also interesting for its accelerations and
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decelerations. For example, variations in the hospital-

ization rate φ make much more of a difference for low φ,

whereas increasing an already high φ yields a vanishing

improvement only. In addition, the influence of other

variables changes drastically when φ varies. We can ex-

amine this scenario in depth by setting φ to a high value

in the slider to find out what other parameters would

then become useful at further reducing the infection

rate.

Fig. 13: The curve array summarizes the influence ex-

erted by each parameter. Depicted are all 8 parameters
for the Ebola Spread model. Parameters β1, β2, β3 and

ρ1 are roughly aligned with the x axis (black-and-white

arrow), which tells us that they correlate positively with

the model’s output (viral infection rate).

6.7 Comparison

Last, we comparatively analize the Robot Arm using the

CSM [9] and Sliceplorer [38] techniques, and we note that

the proposed PP-curve can better account for periodic

variables as shown in Fig. 15. Not only can our method

reflect local changes of selected parameters, but it does

so while succinctly encoding the remaining parameters’

contribution into (y, z) coordinates (instead of fixing,

randomly sampling, or averaging these contributions).

7 Conclusions

We have contributed a principal component-based di-

mensionality reduction for global-to-local visualization

and sensitivity analysis of dense parameter spaces. To

this end we consider the set of all possible slices of a

model f and project them onto two orthogonal com-

ponents in the spirit of Sobol’s decomposition method

for ANOVA. We summarize those components using

a few spatial coordinates to form various parameter-

ized manifolds including curves, surfaces, and ensembles

thereof.

In its simplest form, our algorithm boils down to

higher-order tensor PCA, on top of which we contributed

three conceptual and computational developments:

• The abstraction of taking function slices as the set of

vectors to project, including those that are defined

with respect to groups of variables and thus give rise

to multidimensional manifolds;

• We split the original L2 space into first- and high-

order subspaces so as to separately capture the dif-

ferent kinds of influences that variables (or groups

thereof) can have. This gives the proposed mapping

a direct interpretation in terms of the ANOVA de-

composition and the Sobol indices;

• We are aware that computing the principal compo-
nents of large collections of multidimensional dis-

cretized vectors (with e.g. billions of entries) is a

challenging task. We exploited a numerical frame-
work, the tensor train decomposition, that is key to

ensure responsiveness and interactivity within the

proposed visualization system. The parameter space

is cast as a tensor grid and approximated as a low-

rank expansion; we extract its principal subspaces

directly from the compressed domain.

The visualization diagrams made possible by those
ingredients are able to readily communicate interactions

between up to three input variables. They also provide

the user with discriminative information that allows him

or her to select interesting combinations of variables as

well as specific values for those variables. We identi-

fied how several types of inter-variable relationships are

mapped to specific patterns in 3D curves and shapes,

and how individual versus joint-variable effects stand out

from our visualization. Although our examples only con-

sidered uniformly distributed input variables, use cases

with non-uniform distributions are well contemplated

in the general framework of variance-based sensitivity

analysis and are supported in our implementation. To
the best of our knowledge, this is the first visualization

system that is able to communicate such structure in a

global-to-local, time-effective manner.

Future Work

As outlined in the introduction, in this paper we have

focused on dense parameter spaces. In particular, no scat-

tered data set (i.e. given collection of samples at fixed

locations) was considered as a ground-truth input. Al-

though we pursued an important domain of application,
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(a) Low transmission rate β1 (b) High transmission rate β1

Fig. 14: Ebola Spread : using the blue slider on the right sidebar, we vary the viral transmission rate β1 and study

its impact on the effectiveness of hospitalization rate φ (large dark blue curve arrows) at reducing Ebola infection

rate R0 (black axis). We see that φ is extremely important at high values of β1 as shown by the large blue curve in

(b), where it can halve the overall infection rate. Correspondingly, the dark blue node in the radial widget on the

right figure becomes the largest one in (b).

0 5

φ1

1

2

3

M
o

d
el

ou
tp

u
t

0 1

L1

0 5

φ2

0 1

L2

0 5

φ3

0 1

L3

0 5

φ4

0 1

L4

(a) Sliceplorer plots [38] for all eight variables.

0.0 0.5 1.0

Cumul. rel. freq. of φ2

0.00

0.25

0.50

0.75

1.00

F
ra

ct
io

n
of

th
e

ou
tp

u
t

m
ea

n

φ1 = 0.0

φ1 = 2.1

φ1 = 4.2

φ1 = 6.3

0.0 0.5 1.0

Cumul. rel. freq. of φ2

L1 = 0.0

L1 = 0.3

L1 = 0.7

L1 = 1.0

0.0 0.5 1.0

Cumul. rel. freq. of φ2

L2 = 0.0

L2 = 0.3

L2 = 0.7

L2 = 1.0

0.0 0.5 1.0

Cumul. rel. freq. of φ2

φ3 = 0.0

φ3 = 2.1

φ3 = 4.2

φ3 = 6.3

0.0 0.5 1.0

Cumul. rel. freq. of φ2

L3 = 0.0

L3 = 0.3

L3 = 0.7

L3 = 1.0

0.0 0.5 1.0

Cumul. rel. freq. of φ2

φ4 = 0.0

φ4 = 2.1

φ4 = 4.2

φ4 = 6.3

0.0 0.5 1.0

Cumul. rel. freq. of φ2

L4 = 0.0

L4 = 0.3

L4 = 0.7

L4 = 1.0

(b) CSM plots [9] for φ2 while varying the other seven parameters one at a time. (c) PP-curve for φ2.

Fig. 15: Robot Arm model analyzed with (a) Sliceplorer and (b) CSM, two prior techniques for parameter space

visualization. Although these methods are able to capture non-influential variables, such as φ1, and reflect how

strong the interactions between variables are, they do not support the visual analysis of variable tuples and do not

succinctly express properties such as periodicity, which can better be visualized by our PP-curve in (c).

the discrete case remains an equally attractive target.

We believe the proposed method is adaptable to this end:

instead of abstracting partial functions over the entire

domain, we can show parameterizations that summarize

regions or neighborhoods only, for example around fea-

ture points or samples from given scattered data. This

way we can combine the strengths of global/contextual

information (as is only made possible via surrogate mod-

eling) with local structural information as arising from

possibly complex sample distributions.

The current visualization system supports a limited

number of dimensions only; for example, a plot matrix

would become cluttered for a model with more than a

score of dimensions. Efforts to support higher dimen-
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sionality will have to focus more on this aspect, which

is more of a limitation than the numerical backend (the

tensor train decomposition has been used for hundreds

dimensions in the literature).

Appendix

A Details on Cross-approximation

Cross-approximation is a surrogate modeling technique that
incrementally builds a compressed TT tensor approximating
a target black-box function by evaluating the function at a
batch of samples per iteration. These samples are chosen in a
clever adaptive manner so as to minimize the model’s relative
error using the smallest possible number of evaluations. The
error is defined as ‖X̃−X‖/‖X‖, where X are the groundtruth
evaluations and X̃ is the model’s prediction. These samples
are also used as a validation set, and the process is stopped as
soon as the error is below a user-defined threshold ε. This is a
standard way to approximate the generalization error when
building compressed tensors, and the estimation is known [31]
to be reliable in practice.

We used ε := 10−4 in all cases, which required between
105 and 107 samples and resulted in a few seconds’ time to
build each TT metamodel. Although not needed for our work,
note that there are alternatives to cross-approximation for the
case when function evaluation is expensive [23].

In this paper we have used the implementation of cross-
approximation that is released in the ttpy Python toolbox [1].

B Step-by-step Illustration of the Algorithm

In Fig. 16 we show a flowchart of the proposed algorithm
using an intermediate visualization along all its steps. To this
end, we take a simplistic 3D use case function that is simple
to understand and can directly be displayed both as a 3D
rendering as well as a sequence of 2D slices.

C Operations in the TT Compressed Domain

The TT format allows for efficient computation of several
operations without having to explicitly decompress the tensor
it represents. This appendix covers the three main operations
that are leveraged in the paper.

Multidimensional Integrals

Suppose our original function is expressed as a TT with cores
T (1), . . . , T (N). To marginalize the n-th variable away (i.e.
compute the expected value along xn), one simply needs to

replace the core T (n) by T̂ (n) where

T̂ (n) :=
1

In

i=In∑
i=1

T (n)[i],

where In is the shape of the grid along dimension n. In other
words, we simply need to average the n-th core along its
second dimension.

Element-wise Arithmetics

If two tensors are in the TT format with cores T (1)
1 , . . . , T (N)

1

and T (1)
2 , . . . , T (N)

2 , then their element-wise sum T3 = T1+T2
is given by the following cores:

T (n)
3 [in] :=



(
T (1)
1 [i1]; T (1)

2 [i1]
)

if n = 1;(
T (n)
1 [in]; 0

0; T (n)
2 [in]

)
if n = 2, . . . , N − 1;

(
T (N)
1 [iN ]

T (N)
2 [iN ]

)
if n = N.

To subtract two tensors, it is enough to flip the sign of
the second one by flipping the sign of its first core, and then
sum them as above.

The operations just described allow us to obtain up toM
(line 8 from Alg. 1) in the TT format.

PCA Projection

In practice, once we have M, we found it more efficient to
compute its PCA projection in the compressed domain via the
SVD decomposition as follows. LetM, which represents a ma-
trix of size IK×IN−K , be given by TT coresM(1), . . . ,M(N).
We proceed as follows:

1. We left-orthogonalize [31] the TT. This is equivalent to
finding the RQ decomposition ofM, with the first K cores
representing the R part (a matrix of shape IK ×R, where
R is the K-th TT rank of M) and the remaining cores
the Q part (of shape R× IN−K).

2. We discard Q by keeping the first K cores only.

3. We perform rank-truncation [31] on the last rank in order
to decrease it to 3. This involves a SVD decomposition on
the last core and is equivalent to keeping the three leading
left singular vectors of R.

The resulting tensor has shape IK × 3, as desired, and
represents a mapping from the original IK grid to R3, i.e. a
discretized K-dimensional manifold, that is as close as possible
to M in the L2 sense.

Compliance with Ethical Standards

The authors declare that they have no conflict of interest. This
work involved no human participants or animals.

Data Availability Statement

The datasets generated during and analyzed during the current
study are available in the ttrecipes repository: https://github.
com/rballester/ttrecipes/tree/master/models. The code
for the method is available in https://github.com/ghalter/

pca-webapp-paper, and a deployed application can be found at
http://pcatestwebapp.westeurope.cloudapp.azure.com/.



High-dimensional Scalar Function Visualization Using Principal Parameterizations 17

=<latexit sha1_base64="+IsklY3qcGS4XX/7iyDGU+KKfOY=">AAAB6HicbVDLSgNBEOyNrxhfUY9eBoPgKexGQS9CwIvHBMwDkiXMTnqTMbOzy8ysEJZ8gRcPinj1S/wGb/6Nk8dBEwsaiqpuuruCRHBtXPfbya2tb2xu5bcLO7t7+wfFw6OmjlPFsMFiEat2QDUKLrFhuBHYThTSKBDYCka3U7/1iErzWN6bcYJ+RAeSh5xRY6X6Ta9YcsvuDGSVeAtSggVqveJXtx+zNEJpmKBadzw3MX5GleFM4KTQTTUmlI3oADuWShqh9rPZoRNyZpU+CWNlSxoyU39PZDTSehwFtjOiZqiXvan4n9dJTXjtZ1wmqUHJ5ovCVBATk+nXpM8VMiPGllCmuL2VsCFVlBmbTcGG4C2/vEqalbJ3Ua7UL0tV+jmPIw8ncArn4MEVVOEOatAABghP8AKvzoPz7Lw57/PWnLOI8Bj+wPn4AdBujaQ=</latexit>

=<latexit sha1_base64="+IsklY3qcGS4XX/7iyDGU+KKfOY=">AAAB6HicbVDLSgNBEOyNrxhfUY9eBoPgKexGQS9CwIvHBMwDkiXMTnqTMbOzy8ysEJZ8gRcPinj1S/wGb/6Nk8dBEwsaiqpuuruCRHBtXPfbya2tb2xu5bcLO7t7+wfFw6OmjlPFsMFiEat2QDUKLrFhuBHYThTSKBDYCka3U7/1iErzWN6bcYJ+RAeSh5xRY6X6Ta9YcsvuDGSVeAtSggVqveJXtx+zNEJpmKBadzw3MX5GleFM4KTQTTUmlI3oADuWShqh9rPZoRNyZpU+CWNlSxoyU39PZDTSehwFtjOiZqiXvan4n9dJTXjtZ1wmqUHJ5ovCVBATk+nXpM8VMiPGllCmuL2VsCFVlBmbTcGG4C2/vEqalbJ3Ua7UL0tV+jmPIw8ncArn4MEVVOEOatAABghP8AKvzoPz7Lw57/PWnLOI8Bj+wPn4AdBujaQ=</latexit>

+
<latexit sha1_base64="3j/ZlkjbxIry7WYVgqMJwuC/wKA=">AAAB6HicbVDLSgNBEOyNrxhfUY9eBoMgCGE3CnoMePGYgHlAsoTZSW8yZnZ2mZkVwpIv8OJBEa9+id/gzb9x8jhoYkFDUdVNd1eQCK6N6347ubX1jc2t/HZhZ3dv/6B4eNTUcaoYNlgsYtUOqEbBJTYMNwLbiUIaBQJbweh26rceUWkey3szTtCP6EDykDNqrFS/6BVLbtmdgawSb0FKsECtV/zq9mOWRigNE1Trjucmxs+oMpwJnBS6qcaEshEdYMdSSSPUfjY7dELOrNInYaxsSUNm6u+JjEZaj6PAdkbUDPWyNxX/8zqpCW/8jMskNSjZfFGYCmJiMv2a9LlCZsTYEsoUt7cSNqSKMmOzKdgQvOWXV0mzUvYuy5X6ValKP+dx5OEETuEcPLiGKtxBDRrAAOEJXuDVeXCenTfnfd6acxYRHsMfOB8/tSaNkg==</latexit>

t
<latexit sha1_base64="M+r9KgN+F6LMO+wCg1BgrdLUJpE=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeCF8FLC7YW2lA22027drMJuxOhhP4CLx4U8epP8ua/cdvmoK0PBh7vzTAzL0ikMOi6305hbX1jc6u4XdrZ3ds/KB8etU2casZbLJax7gTUcCkUb6FAyTuJ5jQKJH8Ixjcz/+GJayNidY+ThPsRHSoRCkbRSk3slytu1Z2DrBIvJxXI0eiXv3qDmKURV8gkNabruQn6GdUomOTTUi81PKFsTIe8a6miETd+Nj90Ss6sMiBhrG0pJHP190RGI2MmUWA7I4ojs+zNxP+8borhtZ8JlaTIFVssClNJMCazr8lAaM5QTiyhTAt7K2EjqilDm03JhuAtv7xK2rWqd1GtNS8r9bs8jiKcwCmcgwdXUIdbaEALGHB4hld4cx6dF+fd+Vi0Fpx85hj+wPn8AeQsjQU=</latexit>

y
<latexit sha1_base64="lgLq9p19t4PwJAg99pgjOlsWvo8=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeCF8FLC7YW2lA220m7drMJuxuhhP4CLx4U8epP8ua/cdvmoK0PBh7vzTAzL0gE18Z1v53C2vrG5lZxu7Szu7d/UD48aus4VQxbLBax6gRUo+ASW4YbgZ1EIY0CgQ/B+GbmPzyh0jyW92aSoB/RoeQhZ9RYqTnplytu1Z2DrBIvJxXI0eiXv3qDmKURSsME1brruYnxM6oMZwKnpV6qMaFsTIfYtVTSCLWfzQ+dkjOrDEgYK1vSkLn6eyKjkdaTKLCdETUjvezNxP+8bmrCaz/jMkkNSrZYFKaCmJjMviYDrpAZMbGEMsXtrYSNqKLM2GxKNgRv+eVV0q5VvYtqrXlZqd/lcRThBE7hHDy4gjrcQgNawADhGV7hzXl0Xpx352PRWnDymWP4A+fzB+vAjQo=</latexit>x

<latexit sha1_base64="8FYmtdNSqg/RLphHojTzxhucZ8Q=">AAAB6HicbVDLSgNBEOyNrxhfUY9eBoPgKexGQY8BL4KXBMwDkiXMTnqTMbOzy8ysGEK+wIsHRbz6Sd78GyfJHjSxoKGo6qa7K0gE18Z1v53c2vrG5lZ+u7Czu7d/UDw8auo4VQwbLBaxagdUo+ASG4Ybge1EIY0Cga1gdDPzW4+oNI/lvRkn6Ed0IHnIGTVWqj/1iiW37M5BVomXkRJkqPWKX91+zNIIpWGCat3x3MT4E6oMZwKnhW6qMaFsRAfYsVTSCLU/mR86JWdW6ZMwVrakIXP198SERlqPo8B2RtQM9bI3E//zOqkJr/0Jl0lqULLFojAVxMRk9jXpc4XMiLEllClubyVsSBVlxmZTsCF4yy+vkmal7F2UK/XLUvUuiyMPJ3AK5+DBFVThFmrQAAYIz/AKb86D8+K8Ox+L1pyTzRzDHzifP+o8jQk=</latexit>

Averages

Partials

Residuals

f(x, y, t)
<latexit sha1_base64="md6xS3i+Tiy9BwI8XCqHDZeo8nY=">AAAB8XicbVDLSgNBEOz1GeMr6tHLYBAihLAbBT0GvAheIpgHJiHMTmaTIbOzy0yvGEL+wosHRbz6N978GyfJHjSxoKGo6qa7y4+lMOi6387K6tr6xmZmK7u9s7u3nzs4rJso0YzXWCQj3fSp4VIoXkOBkjdjzWnoS97wh9dTv/HItRGRusdRzDsh7SsRCEbRSg9B4alIRkWCZ91c3i25M5Bl4qUkDymq3dxXuxexJOQKmaTGtDw3xs6YahRM8km2nRgeUzakfd6yVNGQm854dvGEnFqlR4JI21JIZurviTENjRmFvu0MKQ7MojcV//NaCQZXnbFQcYJcsfmiIJEEIzJ9n/SE5gzlyBLKtLC3EjagmjK0IWVtCN7iy8ukXi5556Xy3UW+cpvGkYFjOIECeHAJFbiBKtSAgYJneIU3xzgvzrvzMW9dcdKZI/gD5/MHpqWPnw==</latexit>

Raw 3D function

ft=1(x, y) = ft=1
<latexit sha1_base64="Bz6GBuOx3s8Dqw6rTyD168w5ugQ=">AAACAHicbVDLSsNAFJ3UV62vqAsXbgaLUEFKUgXdFApuBDcV7APaECbTSTt08mDmRiwhG3/FjQtF3PoZ7vwbp20WWj1w4cw59zL3Hi8WXIFlfRmFpeWV1bXiemljc2t7x9zda6sokZS1aCQi2fWIYoKHrAUcBOvGkpHAE6zjja+mfueeScWj8A4mMXMCMgy5zykBLbnmge+mULezysMpnpzgOs7frlm2qtYM+C+xc1JGOZqu+dkfRDQJWAhUEKV6thWDkxIJnAqWlfqJYjGhYzJkPU1DEjDlpLMDMnyslQH2I6krBDxTf06kJFBqEni6MyAwUoveVPzP6yXgXzopD+MEWEjnH/mJwBDhaRp4wCWjICaaECq53hXTEZGEgs6spEOwF0/+S9q1qn1Wrd2elxs3eRxFdIiOUAXZ6AI10DVqohaiKENP6AW9Go/Gs/FmvM9bC0Y+s49+wfj4BjehlOc=</latexit>

ft=0(x, y) = ft=0
<latexit sha1_base64="OdA7SHifMnrB/GZEtfB5kKS6WAM=">AAACAHicbVDLSsNAFJ3UV62vqAsXbgaLUEFKUgXdFApuBDcV7APaECbTSTt08mDmRiwhG3/FjQtF3PoZ7vwbp20WWj1w4cw59zL3Hi8WXIFlfRmFpeWV1bXiemljc2t7x9zda6sokZS1aCQi2fWIYoKHrAUcBOvGkpHAE6zjja+mfueeScWj8A4mMXMCMgy5zykBLbnmge+mULeyysMpnpzgOs7frlm2qtYM+C+xc1JGOZqu+dkfRDQJWAhUEKV6thWDkxIJnAqWlfqJYjGhYzJkPU1DEjDlpLMDMnyslQH2I6krBDxTf06kJFBqEni6MyAwUoveVPzP6yXgXzopD+MEWEjnH/mJwBDhaRp4wCWjICaaECq53hXTEZGEgs6spEOwF0/+S9q1qn1Wrd2elxs3eRxFdIiOUAXZ6AI10DVqohaiKENP6AW9Go/Gs/FmvM9bC0Y+s49+wfj4BjSHlOU=</latexit>

f t=0(x, y)
<latexit sha1_base64="mMTWkDsxB1t88OTr4QztKScw/Ws=">AAAB9HicbVBNS8NAEJ34WetX1aOXxSJUkJJUQS9CwYvgpYL9gDaWzXbTLt1s4u6mGEJ/hxcPinj1x3jz37htc9DWBwOP92aYmedFnClt29/W0vLK6tp6biO/ubW9s1vY22+oMJaE1knIQ9nysKKcCVrXTHPaiiTFgcdp0xteT/zmiErFQnGvk4i6Ae4L5jOCtZFc/yHVV/a49HSKkpNuoWiX7SnQInEyUoQMtW7hq9MLSRxQoQnHSrUdO9JuiqVmhNNxvhMrGmEyxH3aNlTggCo3nR49RsdG6SE/lKaERlP190SKA6WSwDOdAdYDNe9NxP+8dqz9SzdlIoo1FWS2yI850iGaJIB6TFKieWIIJpKZWxEZYImJNjnlTQjO/MuLpFEpO2flyt15sXqbxZGDQziCEjhwAVW4gRrUgcAjPMMrvFkj68V6tz5mrUtWNnMAf2B9/gBc85E0</latexit>

f t=1(x, y)
<latexit sha1_base64="6rs6TZL+C3X1m2hjJR1Z88SHHos=">AAAB9HicbVBNS8NAEJ34WetX1aOXxSJUkJJUQS9CwYvgpYL9gDaWzXbTLt1s4u6mGEJ/hxcPinj1x3jz37htc9DWBwOP92aYmedFnClt29/W0vLK6tp6biO/ubW9s1vY22+oMJaE1knIQ9nysKKcCVrXTHPaiiTFgcdp0xteT/zmiErFQnGvk4i6Ae4L5jOCtZFc/yHVV8649HSKkpNuoWiX7SnQInEyUoQMtW7hq9MLSRxQoQnHSrUdO9JuiqVmhNNxvhMrGmEyxH3aNlTggCo3nR49RsdG6SE/lKaERlP190SKA6WSwDOdAdYDNe9NxP+8dqz9SzdlIoo1FWS2yI850iGaJIB6TFKieWIIJpKZWxEZYImJNjnlTQjO/MuLpFEpO2flyt15sXqbxZGDQziCEjhwAVW4gRrUgcAjPMMrvFkj68V6tz5mrUtWNnMAf2B9/gBefpE1</latexit>

Variable of interest: time t<latexit sha1_base64="M+r9KgN+F6LMO+wCg1BgrdLUJpE=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeCF8FLC7YW2lA22027drMJuxOhhP4CLx4U8epP8ua/cdvmoK0PBh7vzTAzL0ikMOi6305hbX1jc6u4XdrZ3ds/KB8etU2casZbLJax7gTUcCkUb6FAyTuJ5jQKJH8Ixjcz/+GJayNidY+ThPsRHSoRCkbRSk3slytu1Z2DrBIvJxXI0eiXv3qDmKURV8gkNabruQn6GdUomOTTUi81PKFsTIe8a6miETd+Nj90Ss6sMiBhrG0pJHP190RGI2MmUWA7I4ojs+zNxP+8borhtZ8JlaTIFVssClNJMCazr8lAaM5QTiyhTAt7K2EjqilDm03JhuAtv7xK2rWqd1GtNS8r9bs8jiKcwCmcgwdXUIdbaEALGHB4hld4cx6dF+fd+Vi0Fpx85hj+wPn8AeQsjQU=</latexit>

Flattened 
residuals

⇡y(t)
<latexit sha1_base64="UjgwVGw3n598xTP+fsenl/7Tgeg=">AAAB73icbVBNS8NAEJ3Ur1q/qh69BItQLyWpgh4LXgQvFewHtKFstpt26WYTdydCCP0TXjwo4tW/481/47bNQVsfDDzem2Fmnh8LrtFxvq3C2vrG5lZxu7Szu7d/UD48ausoUZS1aCQi1fWJZoJL1kKOgnVjxUjoC9bxJzczv/PElOaRfMA0Zl5IRpIHnBI0Urcf80FaxfNBueLUnDnsVeLmpAI5moPyV38Y0SRkEqkgWvdcJ0YvIwo5FWxa6ieaxYROyIj1DJUkZNrL5vdO7TOjDO0gUqYk2nP190RGQq3T0DedIcGxXvZm4n9eL8Hg2su4jBNkki4WBYmwMbJnz9tDrhhFkRpCqOLmVpuOiSIUTUQlE4K7/PIqaddr7kWtfn9ZadzlcRThBE6hCi5cQQNuoQktoCDgGV7hzXq0Xqx362PRWrDymWP4A+vzB4gxj6k=</latexit>

⇡z(t)
<latexit sha1_base64="S+puC19xADLC9BtFQXdtBpSWfeQ=">AAAB73icbVDLSgNBEOz1GeMr6tHLYBDiJexGQY8BL4KXCOYByRJmJ7PJkNnZdaZXiCE/4cWDIl79HW/+jZNkD5pY0FBUddPdFSRSGHTdb2dldW19YzO3ld/e2d3bLxwcNkycasbrLJaxbgXUcCkUr6NAyVuJ5jQKJG8Gw+up33zk2ohY3eMo4X5E+0qEglG0UquTiO5TCc+6haJbdmcgy8TLSBEy1LqFr04vZmnEFTJJjWl7boL+mGoUTPJJvpManlA2pH3etlTRiBt/PLt3Qk6t0iNhrG0pJDP198SYRsaMosB2RhQHZtGbiv957RTDK38sVJIiV2y+KEwlwZhMnyc9oTlDObKEMi3srYQNqKYMbUR5G4K3+PIyaVTK3nm5cndRrN5mceTgGE6gBB5cQhVuoAZ1YCDhGV7hzXlwXpx352PeuuJkM0fwB87nD4m4j6o=</latexit>

PCA

Residuals 
matrix

Centered
residuals matrix

Covariance 
matrix

{<latexit sha1_base64="0g7MHg4LFzhqPcfeCaFSGZDocPo=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeCF8FLFfsBbSib7aZdutmE3YlQQv+BFw+KePUfefPfuG1z0NYHA4/3ZpiZFyRSGHTdb6ewtr6xuVXcLu3s7u0flA+PWiZONeNNFstYdwJquBSKN1Gg5J1EcxoFkreD8c3Mbz9xbUSsHnGScD+iQyVCwSha6aGX9csVt+rOQVaJl5MK5Gj0y1+9QczSiCtkkhrT9dwE/YxqFEzyaamXGp5QNqZD3rVU0YgbP5tfOiVnVhmQMNa2FJK5+nsio5ExkyiwnRHFkVn2ZuJ/XjfF8NrPhEpS5IotFoWpJBiT2dtkIDRnKCeWUKaFvZWwEdWUoQ2nZEPwll9eJa1a1buo1u4vK/W7PI4inMApnIMHV1CHW2hAExiE8Ayv8OaMnRfn3flYtBacfOYY/sD5/AGfh41y</latexit>

{<latexit sha1_base64="0g7MHg4LFzhqPcfeCaFSGZDocPo=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeCF8FLFfsBbSib7aZdutmE3YlQQv+BFw+KePUfefPfuG1z0NYHA4/3ZpiZFyRSGHTdb6ewtr6xuVXcLu3s7u0flA+PWiZONeNNFstYdwJquBSKN1Gg5J1EcxoFkreD8c3Mbz9xbUSsHnGScD+iQyVCwSha6aGX9csVt+rOQVaJl5MK5Gj0y1+9QczSiCtkkhrT9dwE/YxqFEzyaamXGp5QNqZD3rVU0YgbP5tfOiVnVhmQMNa2FJK5+nsio5ExkyiwnRHFkVn2ZuJ/XjfF8NrPhEpS5IotFoWpJBiT2dtkIDRnKCeWUKaFvZWwEdWUoQ2nZEPwll9eJa1a1buo1u4vK/W7PI4inMApnIMHV1CHW2hAExiE8Ayv8OaMnRfn3flYtBacfOYY/sD5/AGfh41y</latexit>

⇡x(t)
<latexit sha1_base64="eONjIawF2Ns9Ql72v0UNoyaXcKA=">AAAB73icbVDLSgNBEOz1GeMr6tHLYBDiJexGQY8BL4KXCOYByRJmJ7PJkNnZdaZXDCE/4cWDIl79HW/+jZNkD5pY0FBUddPdFSRSGHTdb2dldW19YzO3ld/e2d3bLxwcNkycasbrLJaxbgXUcCkUr6NAyVuJ5jQKJG8Gw+up33zk2ohY3eMo4X5E+0qEglG0UquTiO5TCc+6haJbdmcgy8TLSBEy1LqFr04vZmnEFTJJjWl7boL+mGoUTPJJvpManlA2pH3etlTRiBt/PLt3Qk6t0iNhrG0pJDP198SYRsaMosB2RhQHZtGbiv957RTDK38sVJIiV2y+KEwlwZhMnyc9oTlDObKEMi3srYQNqKYMbUR5G4K3+PIyaVTK3nm5cndRrN5mceTgGE6gBB5cQhVuoAZ1YCDhGV7hzXlwXpx352PeuuJkM0fwB87nD4aqj6g=</latexit>

t
<latexit sha1_base64="M+r9KgN+F6LMO+wCg1BgrdLUJpE=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeCF8FLC7YW2lA22027drMJuxOhhP4CLx4U8epP8ua/cdvmoK0PBh7vzTAzL0ikMOi6305hbX1jc6u4XdrZ3ds/KB8etU2casZbLJax7gTUcCkUb6FAyTuJ5jQKJH8Ixjcz/+GJayNidY+ThPsRHSoRCkbRSk3slytu1Z2DrBIvJxXI0eiXv3qDmKURV8gkNabruQn6GdUomOTTUi81PKFsTIe8a6miETd+Nj90Ss6sMiBhrG0pJHP190RGI2MmUWA7I4ojs+zNxP+8borhtZ8JlaTIFVssClNJMCazr8lAaM5QTiyhTAt7K2EjqilDm03JhuAtv7xK2rWqd1GtNS8r9bs8jiKcwCmcgwdXUIdbaEALGHB4hld4cx6dF+fd+Vi0Fpx85hj+wPn8AeQsjQU=</latexit>

t
<latexit sha1_base64="M+r9KgN+F6LMO+wCg1BgrdLUJpE=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeCF8FLC7YW2lA22027drMJuxOhhP4CLx4U8epP8ua/cdvmoK0PBh7vzTAzL0ikMOi6305hbX1jc6u4XdrZ3ds/KB8etU2casZbLJax7gTUcCkUb6FAyTuJ5jQKJH8Ixjcz/+GJayNidY+ThPsRHSoRCkbRSk3slytu1Z2DrBIvJxXI0eiXv3qDmKURV8gkNabruQn6GdUomOTTUi81PKFsTIe8a6miETd+Nj90Ss6sMiBhrG0pJHP190RGI2MmUWA7I4ojs+zNxP+8borhtZ8JlaTIFVssClNJMCazr8lAaM5QTiyhTAt7K2EjqilDm03JhuAtv7xK2rWqd1GtNS8r9bs8jiKcwCmcgwdXUIdbaEALGHB4hld4cx6dF+fd+Vi0Fpx85hj+wPn8AeQsjQU=</latexit>

t
<latexit sha1_base64="M+r9KgN+F6LMO+wCg1BgrdLUJpE=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeCF8FLC7YW2lA22027drMJuxOhhP4CLx4U8epP8ua/cdvmoK0PBh7vzTAzL0ikMOi6305hbX1jc6u4XdrZ3ds/KB8etU2casZbLJax7gTUcCkUb6FAyTuJ5jQKJH8Ixjcz/+GJayNidY+ThPsRHSoRCkbRSk3slytu1Z2DrBIvJxXI0eiXv3qDmKURV8gkNabruQn6GdUomOTTUi81PKFsTIe8a6miETd+Nj90Ss6sMiBhrG0pJHP190RGI2MmUWA7I4ojs+zNxP+8borhtZ8JlaTIFVssClNJMCazr8lAaM5QTiyhTAt7K2EjqilDm03JhuAtv7xK2rWqd1GtNS8r9bs8jiKcwCmcgwdXUIdbaEALGHB4hld4cx6dF+fd+Vi0Fpx85hj+wPn8AeQsjQU=</latexit>

t
<latexit sha1_base64="M+r9KgN+F6LMO+wCg1BgrdLUJpE=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeCF8FLC7YW2lA22027drMJuxOhhP4CLx4U8epP8ua/cdvmoK0PBh7vzTAzL0ikMOi6305hbX1jc6u4XdrZ3ds/KB8etU2casZbLJax7gTUcCkUb6FAyTuJ5jQKJH8Ixjcz/+GJayNidY+ThPsRHSoRCkbRSk3slytu1Z2DrBIvJxXI0eiXv3qDmKURV8gkNabruQn6GdUomOTTUi81PKFsTIe8a6miETd+Nj90Ss6sMiBhrG0pJHP190RGI2MmUWA7I4ojs+zNxP+8borhtZ8JlaTIFVssClNJMCazr8lAaM5QTiyhTAt7K2EjqilDm03JhuAtv7xK2rWqd1GtNS8r9bs8jiKcwCmcgwdXUIdbaEALGHB4hld4cx6dF+fd+Vi0Fpx85hj+wPn8AeQsjQU=</latexit>

t
<latexit sha1_base64="M+r9KgN+F6LMO+wCg1BgrdLUJpE=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeCF8FLC7YW2lA22027drMJuxOhhP4CLx4U8epP8ua/cdvmoK0PBh7vzTAzL0ikMOi6305hbX1jc6u4XdrZ3ds/KB8etU2casZbLJax7gTUcCkUb6FAyTuJ5jQKJH8Ixjcz/+GJayNidY+ThPsRHSoRCkbRSk3slytu1Z2DrBIvJxXI0eiXv3qDmKURV8gkNabruQn6GdUomOTTUi81PKFsTIe8a6miETd+Nj90Ss6sMiBhrG0pJHP190RGI2MmUWA7I4ojs+zNxP+8borhtZ8JlaTIFVssClNJMCazr8lAaM5QTiyhTAt7K2EjqilDm03JhuAtv7xK2rWqd1GtNS8r9bs8jiKcwCmcgwdXUIdbaEALGHB4hld4cx6dF+fd+Vi0Fpx85hj+wPn8AeQsjQU=</latexit>

f t=0
�t (x, y)

<latexit sha1_base64="0/I9QXBr8jOokQOWZq1KQ/vD/04=">AAAB/HicbVDJSgNBEO2JW4zbaI5eGoMQQcNMFPQiBLwIXiKYBZIx9HR6kiY9C9014jCMv+LFgyJe/RBv/o2d5aCJDwoe71VRVc+NBFdgWd9Gbml5ZXUtv17Y2Nza3jF395oqjCVlDRqKULZdopjgAWsAB8HakWTEdwVruaOrsd96YFLxMLiDJGKOTwYB9zgloKWeWfR66Qlk9ylcWln58RgnR7hnlqyKNQFeJPaMlNAM9Z751e2HNPZZAFQQpTq2FYGTEgmcCpYVurFiEaEjMmAdTQPiM+Wkk+MzfKiVPvZCqSsAPFF/T6TEVyrxXd3pExiqeW8s/ud1YvAunJQHUQwsoNNFXiwwhHicBO5zySiIRBNCJde3YjokklDQeRV0CPb8y4ukWa3Yp5Xq7VmpdjOLI4/20QEqIxudoxq6RnXUQBQl6Bm9ojfjyXgx3o2PaWvOmM0U0R8Ynz8DUZO5</latexit>

f t=1
�t (x, y)

<latexit sha1_base64="argBxzPvIXcL6WrFDxS112kUSwM=">AAAB/HicbVDJSgNBEO2JW4zbaI5eGoMQQcNMFPQiBLwIXiKYBZIx9HR6kiY9C9014jCMv+LFgyJe/RBv/o2d5aCJDwoe71VRVc+NBFdgWd9Gbml5ZXUtv17Y2Nza3jF395oqjCVlDRqKULZdopjgAWsAB8HakWTEdwVruaOrsd96YFLxMLiDJGKOTwYB9zgloKWeWfR66Qlk9ylc2ln58RgnR7hnlqyKNQFeJPaMlNAM9Z751e2HNPZZAFQQpTq2FYGTEgmcCpYVurFiEaEjMmAdTQPiM+Wkk+MzfKiVPvZCqSsAPFF/T6TEVyrxXd3pExiqeW8s/ud1YvAunJQHUQwsoNNFXiwwhHicBO5zySiIRBNCJde3YjokklDQeRV0CPb8y4ukWa3Yp5Xq7VmpdjOLI4/20QEqIxudoxq6RnXUQBQl6Bm9ojfjyXgx3o2PaWvOmM0U0R8Ynz8E3ZO6</latexit>

f t=0
�t (x, y)

<latexit sha1_base64="0/I9QXBr8jOokQOWZq1KQ/vD/04=">AAAB/HicbVDJSgNBEO2JW4zbaI5eGoMQQcNMFPQiBLwIXiKYBZIx9HR6kiY9C9014jCMv+LFgyJe/RBv/o2d5aCJDwoe71VRVc+NBFdgWd9Gbml5ZXUtv17Y2Nza3jF395oqjCVlDRqKULZdopjgAWsAB8HakWTEdwVruaOrsd96YFLxMLiDJGKOTwYB9zgloKWeWfR66Qlk9ylcWln58RgnR7hnlqyKNQFeJPaMlNAM9Z751e2HNPZZAFQQpTq2FYGTEgmcCpYVurFiEaEjMmAdTQPiM+Wkk+MzfKiVPvZCqSsAPFF/T6TEVyrxXd3pExiqeW8s/ud1YvAunJQHUQwsoNNFXiwwhHicBO5zySiIRBNCJde3YjokklDQeRV0CPb8y4ukWa3Yp5Xq7VmpdjOLI4/20QEqIxudoxq6RnXUQBQl6Bm9ojfjyXgx3o2PaWvOmM0U0R8Ynz8DUZO5</latexit>

t
<latexit sha1_base64="M+r9KgN+F6LMO+wCg1BgrdLUJpE=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeCF8FLC7YW2lA22027drMJuxOhhP4CLx4U8epP8ua/cdvmoK0PBh7vzTAzL0ikMOi6305hbX1jc6u4XdrZ3ds/KB8etU2casZbLJax7gTUcCkUb6FAyTuJ5jQKJH8Ixjcz/+GJayNidY+ThPsRHSoRCkbRSk3slytu1Z2DrBIvJxXI0eiXv3qDmKURV8gkNabruQn6GdUomOTTUi81PKFsTIe8a6miETd+Nj90Ss6sMiBhrG0pJHP190RGI2MmUWA7I4ojs+zNxP+8borhtZ8JlaTIFVssClNJMCazr8lAaM5QTiyhTAt7K2EjqilDm03JhuAtv7xK2rWqd1GtNS8r9bs8jiKcwCmcgwdXUIdbaEALGHB4hld4cx6dF+fd+Vi0Fpx85hj+wPn8AeQsjQU=</latexit>

⇡x<latexit sha1_base64="ySTrDB+wUyw8tyqAo/AmnoS4dhk=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeCF8FLBdMW2lA22027dLMJuxOxlP4GLx4U8eoP8ua/cdvmoK0PBh7vzTAzL0ylMOi6305hbX1jc6u4XdrZ3ds/KB8eNU2SacZ9lshEt0NquBSK+yhQ8naqOY1DyVvh6Gbmtx65NiJRDzhOeRDTgRKRYBSt5HdT0XvqlStu1Z2DrBIvJxXI0eiVv7r9hGUxV8gkNabjuSkGE6pRMMmnpW5meErZiA54x1JFY26CyfzYKTmzSp9EibalkMzV3xMTGhszjkPbGVMcmmVvJv7ndTKMroOJUGmGXLHFoiiTBBMy+5z0heYM5dgSyrSwtxI2pJoytPmUbAje8surpFmrehfV2v1lpX6Xx1GEEziFc/DgCupwCw3wgYGAZ3iFN0c5L86787FoLTj5zDH8gfP5A+ZGjsU=</latexit>

⇡y
<latexit sha1_base64="N218hkoDy9qCbJTJqIuGbutTXZ0=">AAAB7HicbVBNS8NAEJ34WetX1aOXxSJ4KkkV9FjwInipYNpCG8pmu2mXbjZhdyKE0t/gxYMiXv1B3vw3btsctPXBwOO9GWbmhakUBl3321lb39jc2i7tlHf39g8OK0fHLZNkmnGfJTLRnZAaLoXiPgqUvJNqTuNQ8nY4vp357SeujUjUI+YpD2I6VCISjKKV/F4q+nm/UnVr7hxklXgFqUKBZr/y1RskLIu5QiapMV3PTTGYUI2CST4t9zLDU8rGdMi7lioacxNM5sdOyblVBiRKtC2FZK7+npjQ2Jg8Dm1nTHFklr2Z+J/XzTC6CSZCpRlyxRaLokwSTMjsczIQmjOUuSWUaWFvJWxENWVo8ynbELzll1dJq17zLmv1h6tq476IowSncAYX4ME1NOAOmuADAwHP8ApvjnJenHfnY9G65hQzJ/AHzucP58qOxg==</latexit>

⇡z<latexit sha1_base64="JoIt4/mnRC+3KczWVB8wIU1dgJ4=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeCF8FLBdMW2lA22027dLMJuxOhlv4GLx4U8eoP8ua/cdvmoK0PBh7vzTAzL0ylMOi6305hbX1jc6u4XdrZ3ds/KB8eNU2SacZ9lshEt0NquBSK+yhQ8naqOY1DyVvh6Gbmtx65NiJRDzhOeRDTgRKRYBSt5HdT0XvqlStu1Z2DrBIvJxXI0eiVv7r9hGUxV8gkNabjuSkGE6pRMMmnpW5meErZiA54x1JFY26CyfzYKTmzSp9EibalkMzV3xMTGhszjkPbGVMcmmVvJv7ndTKMroOJUGmGXLHFoiiTBBMy+5z0heYM5dgSyrSwtxI2pJoytPmUbAje8surpFmrehfV2v1lpX6Xx1GEEziFc/DgCupwCw3wgYGAZ3iFN0c5L86787FoLTj5zDH8gfP5A+lOjsc=</latexit>

Principal 
curve

t = 0
<latexit sha1_base64="bBCr/HMmUaLmQ6DvR6Pnc3m6Koo=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4KkkV9CIUvAheKtoPaEPZbDft0s0m7E6EEvoTvHhQxKu/yJv/xm2bg7Y+GHi8N8PMvCCRwqDrfjsrq2vrG5uFreL2zu7efungsGniVDPeYLGMdTughkuheAMFSt5ONKdRIHkrGN1M/dYT10bE6hHHCfcjOlAiFIyilR7w2u2Vym7FnYEsEy8nZchR75W+uv2YpRFXyCQ1puO5CfoZ1SiY5JNiNzU8oWxEB7xjqaIRN342O3VCTq3SJ2GsbSkkM/X3REYjY8ZRYDsjikOz6E3F/7xOiuGVnwmVpMgVmy8KU0kwJtO/SV9ozlCOLaFMC3srYUOqKUObTtGG4C2+vEya1Yp3XqneX5Rrd3kcBTiGEzgDDy6hBrdQhwYwGMAzvMKbI50X5935mLeuOPnMEfyB8/kD1F6Nhg==</latexit>

t = 1
<latexit sha1_base64="CqJ1ChHlvICN7cn2Ro49CaN5yFg=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4KkkV9CIUvAheKtoPaEPZbDft0s0m7E6EEvoTvHhQxKu/yJv/xm2bg7Y+GHi8N8PMvCCRwqDrfjsrq2vrG5uFreL2zu7efungsGniVDPeYLGMdTughkuheAMFSt5ONKdRIHkrGN1M/dYT10bE6hHHCfcjOlAiFIyilR7w2uuVym7FnYEsEy8nZchR75W+uv2YpRFXyCQ1puO5CfoZ1SiY5JNiNzU8oWxEB7xjqaIRN342O3VCTq3SJ2GsbSkkM/X3REYjY8ZRYDsjikOz6E3F/7xOiuGVnwmVpMgVmy8KU0kwJtO/SV9ozlCOLaFMC3srYUOqKUObTtGG4C2+vEya1Yp3XqneX5Rrd3kcBTiGEzgDDy6hBrdQhwYwGMAzvMKbI50X5935mLeuOPnMEfyB8/kD1eKNhw==</latexit>

Fig. 16: Flowchart of the proposed method. For illustrative purposes, we consider a 3D function f representing a

grayscale video: f(x, y, t) is the intensity of pixel (x, y) at time 0 ≤ t ≤ 1. The variable of interest is t. The video

captures a static ball in a fixed scene and camera position where the light source moves in a circular fashion. In

addition, the light is suddenly dimmed in the middle of the video, which is manifested as a jump in t’s curve along

the πx axis. The three red boxes correspond to the coordinates (πx(t), πy(t), πz(t)) at time t = 0.5, right before the

light source is dimmed. The original video is a tensor of shape 256× 256× 256; for the sake of presentation, only

10 timesteps are shown in this diagram.
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1D slices for multi-dimensional continuous functions. Com-
puter Graphics Forum 36(3), 167 – 177 (2017)

39. Turk, M., Pentland, A.: Eigenfaces for recognition. Journal
of Cognitive Neuroscience 3(1), 71–86 (1991)

40. Vasilescu, M.A.O., Terzopoulos, D.: Multilinear analysis
of image ensembles: Tensorfaces. In: European Conference
on Computer Vision, pp. 447–460 (2002)

41. Vervliet, N., Debals, O., Sorber, L., Lathauwer, L.D.:
Breaking the curse of dimensionality using decompositions
of incomplete tensors: Tensor-based scientific computing
in big data analysis. IEEE Signal Processing Magazine
31(5), 71–79 (2014)

42. Ward, M.O., LeBlanc, J.T., Tipnis, R.: N-land: a graphical
tool for exploring N-dimensional data. In: Proceedings
Computer Graphics International, pp. 95–116 (1994)

43. van Wijk, J.J., van Liere, R.: HyperSlice: Visualization of
scalar functions of many variables. In: Proceedings IEEE
VIS, pp. 119–125 (1993)



High-dimensional Scalar Function Visualization Using Principal Parameterizations 19

44. Wu, Q., Xia, T., Chen, C., Lin, H.Y.S., Wang, H., Yu, Y.:
Hierarchical tensor approximation of multidimensional
visual data. IEEE Transactions on Visualization and
Computer Graphics 14(1), 186–199 (2008)


