
An Evaluation of Open-Source So�ware Microbenchmark Suites
for Continuous Performance Assessment
Christoph Laaber

Department of Informatics
University of Zurich
Zurich, Switzerland
laaber@i�.uzh.ch

Philipp Leitner
Software Engineering Division

Chalmers | University of Gothenburg
Gothenburg, Sweden

philipp.leitner@chalmers.se

ABSTRACT
Continuous integration (CI) emphasizes quick feedback to devel-
opers. This is at odds with current practice of performance testing,
which predominantely focuses on long-running tests against entire
systems in production-like environments. Alternatively, software
microbenchmarking attempts to establish a performance baseline
for small code fragments in short time. This paper investigates the
quality of microbenchmark suites with a focus on suitability to
deliver quick performance feedback and CI integration. We study
ten open-source libraries written in Java and Go with benchmark
suite sizes ranging from 16 to 983 tests, and runtimes between 11
minutes and 8.75 hours. We show that our study subjects include
benchmarks with result variability of 50% or higher, indicating
that not all benchmarks are useful for reliable discovery of slow-
downs. We further arti�cially inject actual slowdowns into public
API methods of the study subjects and test whether test suites are
able to discover them. We introduce a performance-test quality
metric called the API benchmarking score (ABS). ABS represents a
benchmark suite’s ability to �nd slowdowns among a set of de�ned
core API methods. Resulting benchmarking scores (i.e., fraction of
discovered slowdowns) vary between 10% and 100% for the study
subjects. This paper’s methodology and results can be used to (1)
assess the quality of existing microbenchmark suites, (2) select a
set of tests to be run as part of CI, and (3) suggest or generate
benchmarks for currently untested parts of an API.

KEYWORDS
continuous integration; software performance testing; microbench-
marking; empirical study; Java; Go

1 INTRODUCTION
Continuous integration (CI) [46] and continuous delivery (CD) [9]
have become standard development practices in both, open source
software (OSS) and commercial software projects. A core tenet of CI
and CD is a focus on short cycle times, so as to innovate and deliver
value to customers as quickly as possible. One challenge of this
“move fast” mentality is ensuring software quality [42]. Regarding
functional quality, unit and regression test suites can easily be
automatically executed as part of the CI build. Unfortunately, state
of the art performance testing practices are harder to align with CI.

,
© Christoph Laaber and Philipp Leitner. 2018. This is the author’s version of the work.
It is posted here for your personal use. Not for redistribution. The de�nitive version was
published in MSR’18: 15th International Conference on Mining Software Repositories,
May 28–29, 2018, Gothenburg, Sweden, https://doi.org/10.1145/3196398.3196407.

They usually encompass executing long-running test workloads
against entire systems in production-like environments [23], which
is both, hard to fully automate and too time-consuming to run for
every build [12]. However, if performance tests are only selectively
ran outside of the CD pipeline, there is a danger of deploying
performance regressions to production, and it becomes harder to
identify which code change has actually introduced a problem.

For some projects, one way to approach this issue may be soft-
ware microbenchmarking, i.e., utilizing small code-level bench-
marks which can, at least in theory, be run on every build [7].

Previous research on software microbenchmarks studied root
causes [8], raised performance awareness of developers through
documentation [19], and studied quantitative and qualitative as-
pects of microbenchmarking in Java [31, 47].

In this paper, we study the quality of existing software mi-
crobenchmark suites of ten OSS projects, �ve written in Java and
�ve written in Go. The context of our study is to evaluate how
useful these benchmarks are for continuous performance assess-
ment, but our results also serve as a general survey of the quality
of microbenchmarking in OSS. This work expands on the current
state by (1) exploring benchmark-result variability in di�erent en-
vironments, i.e., bare-metal and cloud; (2) highlighting similarities
and di�erences of a dynamically compiled/VM-based language (i.e.,
Java) and a statically compiled language (i.e., Go); and (3) proposing
an approach to assess the ability of a benchmark suite to �nd slow-
downs within a de�ned subset of a project’s application program-
ming interface (API), identifying untested parts of it, and providing
empirical data from OSS projects.

We thoroughly investigate the following research questions:

RQ 1: How extensive are the microbenchmark suites in the study
subject projects?

We investigate how large the microbenchmark suites are, and
how long they take to execute. We �nd that the projects have suites
sizing between 16 to 983 individual benchmarks, and take between
11 minutes and 8.75 hours to complete a single complete run in a
standard con�guration.

RQ 2: How stable are the results of microbenchmarks between
identical executions?

We repeatedly execute each suite �ve times and record the di�er-
ence in results between runs. As the stability of results will depend
on the execution environment, we run all suites in both, an instance
rented from Google Compute Engine (GCE) as an example public
cloud provider, and on a self-managed bare-metal server. We �nd
that many projects include benchmarks with a maximum result

, Christoph Laaber and Philipp Leitner

variability of 50% or higher even on bare-metal, indicating that not
all benchmarks are useful for the reliable slowdown discovery.

RQ 3: Are the microbenchmark suites able to identify actual slow-
downs?

To evaluate how suitable microbenchmark suites are in �nding
actual slowdowns, we adopt a methodology inspired by mutation
testing [22]. For each project, we identify 20 often-used public API
methods by tracing their usage in the unit tests of other OSS projects
on GitHub, and arti�cially introduce slowdowns into those methods.
We study which of these arti�cial slowdowns can be found in our
test setup and using the existing microbenchmarks. Using extensive
experiments, we show that microbenchmark suites of our study
subjects �nd slowdowns in between 10% and 100% of the selected
20 often-used methods. We further observe that many benchmarks
appear redundant, in the sense that they seem to cover regressions
in similar core methods.

Our results serve as a baseline for how extensive and variable
existing OSS microbenchmark suites are in di�erent environments.
The proposed methodology is useful for developers to assess the
quality of a software’s microbenchmark suite, select a set of bench-
marks to be run in fast-paced CD pipelines, and retrieving sugges-
tions or even generating stubs of benchmarks for currently untested
parts of a project’s core API.

2 BACKGROUND
Performance testing is a widely used umbrella term for many di�er-
ent approaches. Most importantly, we distinguish between small-
scale and highly granular performance tests on code level (software
microbenchmarks or performance unit tests [19, 47]), and perfor-
mance tests that target entire components or systems, typically
under high load (load or stress tests). Microbenchmarks are exe-
cuted in a unit-test-like fashion, whereas load tests bring up an
entire production-like environment and run a de�ned workload
against this system.

In the present work, we focus on performance testing via mi-
crobenchmarks. Typical performance counters used in such tests
include the average execution time of a method, throughput, heap
utilization, lock contention, and I/O operations. This section gives
a brief overview of microbenchmarking in Java and Go.

Java Microbenchmarking Harness. Java OSS use a wide va-
riety of microbenchmarking approaches, with Java Microbench-
marking Harness (JMH)1 being the closest to a standard at the
time of writing. JMH is part of OpenJDK since version 1.7. Other
microbenchmarking tools, as reported by [31, 47], such as Caliper,
Japex, or JUnitPerf hardly receive any OSS attention, are discontin-
ued, or are not executable in an automated way. Hence, we only
consider JMH in this study, which allows users to specify bench-
marks in a similar notation to JUnit tests through an annotation
mechanism. Every public method annotated with @Benchmark is
executed as part of the performance test suite. Listing 1 shows an
example benchmark from one of the study subjects (protostu�).

There are further con�guration parameters that are either de-
�ned through annotations on test-class or test-method level, or
through command-line parameters. These parameters include the

1http://openjdk.java.net/projects/code-tools/jmh

@Fork (1)

@Warmup(iterations = 5)

@Measurement(iterations = 10)

@BenchmarkMode(Mode.AverageTime)

@OutputTimeUnit(TimeUnit.NANOSECONDS)

public class RuntimeSchemaBenchmark {

...

@Benchmark

public Int1 runtime_deserialize_1_int_field ()

throws Exception {

Int1 int1 = new Int1();

ProtobufIOUtil.mergeFrom(data_1_int , int1 ,

int1RuntimeSchema);

return int1;

}

...

}

Listing 1: JMH example from the protostu� project.

number of warmup iterations, measurement iterations, forks (sepa-
rate benchmark repetitions in fresh JVMs), and performance coun-
ters to measure. A single iteration of a benchmark takes 1s by
default, and runs as many executions of the benchmark as it can �t
into that time period. After each iteration the resulting performance
counters are evaluated, aggregated, and reported to the user. Before
the actual iterations, a de�ned number of warmup iterations are
executed. Moreover, JMH has the notion of parameterized bench-
marks, where the same benchmark implementation is run for each
combination of input parameters. A partial sample output for the
benchmark de�ned in Listing 1 is shown in Listing 2.

Run progress: 0.00% complete , ETA 00:00:15

Fork: 1 of 1

Warmup Iteration 1: 11.417 ns/op

...

Warmup Iteration 5: 8.955 ns/op

Iteration 1: 8.841 ns/op

Iteration 2: 8.819 ns/op

...

Iteration 10: 8.963 ns/op

Result: 8.884 + -(99.9%) 0.169 ns/op [Average]

Statistics: (min , avg , max) = (8.751 , 8.884,

9.089) , stdev = 0.112

Confidence interval (99.9%): [8.715 , 9.053]

Listing 2: JMH console output produced by the
benchmark de�ned in Listing 1.

Benchmarking in Go. The Go programming language has a
benchmarking framework included in its standard library2, where
benchmarks are de�ned as functions that have a name starting with
Benchmark and a single parameter of type *testing.B in �les with
su�x _test.go. By default, benchmarks are executed once for at
least 1s and average execution times are reported. In comparison to
JMH, Go does not provide mechanisms for warmup iterations and
parameterized tests. Nevertheless, through the command-line �ag
-count, a single benchmark can be repeated multiple times, similar
to JMH’s iterations. Moreover, forks are not supported, presumably
because Go is not executed in a virtual-machine environment, ar-
guably removing the need for warmup iterations and investigation
of inter-virtual-machine-variance.

2https://golang.org/pkg/testing

An Evaluation of Open-Source So�ware Microbenchmark Suites for
Continuous Performance Assessment ,

3 STUDY SUBJECTS
We selected ten study-subject projects, �ve written in the Java pro-
gramming language and �ve written in Go. We chose Java because
it is a well established programming language, and consistently
ranks highly in “most popular programming languages” rankings
for various domains (e.g., Tiobe3). Go, on the other hand, is a fairly
new programming language at the time of writing, which was in-
troduced in 2009 and comes with a benchmarking library as part of
its standard test framework. Microbenchmarking is predominantly
used in middleware-style library projects (that is, projects such as
Log4J, RxJava, or etcd, as opposed to end-user-facing applications
such as Firefox), hence we focus on such projects.

To identify concrete projects, we used the public Google Big-
Query dataset fh-bigquery:github_extracts4 to retrieve the
projects for both Java (BigQuery table java_contents_2015) and
Go (BigQuery table contents_go). These tables contain all Java �les
hosted on GitHub that have been commited in the year 2015, and
all Go �les. We queried for projects that use JMH by �ltering for
the import statement import org.openjdk.jmh, and for projects
that use Go’s benchmarking library via a query for *testing.B.
We mapped the identi�ed �les back to containing GitHub projects,
and ordered the projects by stars and watchers. We then identi-
�ed suitable study-subject projects for both languages by manually
checking out the projects, verifying whether they compile, contain
a non-trivial amount of benchmarks (> 10) that largely execute
successfully, and whether we could �nd non-trivial usage of these
projects in other OSS (again using Google BigQuery). Table 1 shows
summary statistics for the projects we have ultimately chosen. The
column “Commit SHA” in the table refers to the project’s Git commit
we have used for all our experiments. For all projects except RxJava,
this SHA represents the current version of the master branch at
the time of experimentation. For RxJava, we used the 1.x branch
because version 2 was only released on October 29 2016, hence
other projects on GitHub still used RxJava version 1 at the time
of writing. Note that the low star and watcher count for Log4j2 is
due to the GitHub repository being merely a mirror of an Apache
repository for this project.

4 RQ1: EXTENT OF BENCHMARK SUITES
4.1 Context
Improving the build time, i.e., the time it takes for a CI server to
check out, compile, and test the build, is a constant concern for CI
and CD projects, and the foundation of continuous performance
assessment. This is primarily for two reasons: (1) Quick builds allow
for fast feedback to the developer, reducing the time that is “wasted”
waiting for builds that ultimately fail. (2) State of practice CI plat-
forms restrict builds to a certain maximum runtime. A prominent
example is TravisCI, which at the time of writing employs a build
job timeout of maximum 120 minutes5. Hence, we �rst study how
large (in number of benchmarks) the microbenchmark suites of our
study subjects are, and how long they take to execute.

3https://www.tiobe.com/tiobe-index
4https://bigquery.cloud.google.com/dataset/fh-bigquery:github_extracts
5https://docs.travis-ci.com/user/customizing-the-build#Build-Timeouts

4.2 Approach
To establish a baseline of how much time is necessary to execute
the microbenchmarking suites of our study subjects, we execute
each suite �ve times in two di�erent environments.

Firstly, similar to other works dealing with performance test-
ing [3, 45], we executed all tests on a dedicated, non-virtualized
(“bare-metal”) server that we reserved exclusively for our per-
formance testing. This server has a 12-core Intel Xeon X5670 @
2.93GHz CPU with 70 GiB memory, and runs ArchLinux with a
Linux kernel version 4.10.4-1-ARCH. It uses an Hitachi hard-disk
(HUA722020ALA330) with 7200rpm and a 32MB cache. We did
not execute any other user-space applications except ssh during
test runs, but did not explicitly disable hardware optimizations.
Note that our benchmark experiments do not fully utilize this high-
performance test machine.

With our ultimate goal in mind — integrating performance test-
ing with standard CI tooling — we also executed the test suites in
virtual machines hosted in GCE. We used GCE’s Infrastructure as a
Service (IaaS) instances of machine type n1-standard-26 running
Ubuntu 16.10 a GNU/Linux 4.8.0-46-generic x86_64 kernel. This
machine type comes with two virtual CPUs and 7.5 GB of mem-
ory. We chose GCE because of its stability compared to other IaaS
providers [32]. Experiments were conducted between March and
May 2017, and in the us-central-1a region of GCE.

One challenge with this approach is that JMH allows to override
benchmarking con�gurations (e.g., number of iterations, number
of forks) via commandline parameters. Unfortunately, these cus-
tomizations are not visible in the software repositories that we have
access to. Hence, we use a uniform default JMH con�guration for
all Java projects (10 warmup iterations, 20 measurement iterations,
1 fork). For Go, we also repeat each benchmark 20 times. For all
runs we record both, the duration required for running the entire
test suite once with the above con�guration, and the results of all
benchmarks (this data will be used in Section 5).

4.3 Results and Analysis
Table 2 reports the size of the benchmark suites in number of bench-
marks, the mean duration of a single execution of the entire suite,
and the standard deviation of the duration between the di�erent
runs in hours. For JMH projects, we count every test method anno-
tated with the @Benchmark annotation. For parameterized bench-
marks, we count every combination of parameters as a di�erent
benchmark, as they appear to the developer as individual bench-
marks during JMH execution. The Go benchmarking library does
not have a comparable parameterization concept, therefore every
benchmark is counted exactly once.

We observe that the size of microbenchmark suites among our
study subjects varies widely. While Go projects tend to have smaller
suites than the Java projects, this is not a strict rule. The two projects
with the smallest microbenchmark suites are gin (a Go project
with only 16 benchmarks) and protostu� (a Java project with 31
benchmarks). On the other hand, the two projects with the largest
suites are both Java projects (Log4j2 with 437, and RxJava with 983
benchmarks).

6https://cloud.google.com/compute/docs/machine-types

, Christoph Laaber and Philipp Leitner

Project Description URL Commit SHA Stars Watchers

Ja
va

Ca�eine High performance in-memory caching library https://github.com/ben-manes/ca�eine 64096c0 2461 182
JCTools Concurrency tools with focus on message queues https://github.com/JCTools/JCTools 4a8775b 1062 136
Log4j2 Well-known logging framework https://github.com/apache/logging-log4j2 8a10178 44 255
protostu� Serialization library that supports schema evolution https://github.com/protostu�/protostu� 6dfd8fe 551 63
RxJava Library for composing asynchronous programs through observable sequences https://github.com/ReactiveX/RxJava 2162d6d 23770 1770

G
o

bleve Library for text indexing https://github.com/blevesearch/bleve 0b1034d 3204 191
etcd Distributed consistent key/value store https://github.com/coreos/etcd e7e7451 13215 818
fasthttp High performance HTTP library https://github.com/valyala/fasthttp fc109d6 4315 218
gin HTTP web framework https://github.com/gin-gonic/gin e2212d4 9739 493
otto JavaScript parser and interpreter https://github.com/robertkrimen/otto 1861f24 2880 138

Table 1: Overview of GitHub and benchmark metadata of study-subject projects.

Project Test Suite Exec. Time Exec. Time
Size (#) Mean (Hours) Std.Dev (Hours)

Bare-Metal Cloud Bare-Metal Cloud

Ja
va

Ca�eine 89 0.79 1.81 0.00 0.08
JCTools 169 2.28 2.30 0.00 0.00
Log4j2 437 4.76 4.61 0.00 0.01
protostu� 31 0.25 0.26 0.00 0.00
RxJava 983 8.75 8.72 0.02 0.01

G
o

bleve 70 1.16 0.92 0.10 0.10
etcd 41 0.63 0.72 0.17 0.11
fasthttp 99 1.30 1.20 0.10 0.06
gin 16 0.19 0.18 0.00 0.00
otto 49 0.55 0.50 0.00 0.01

Table 2: Size of microbenchmark suites and durations of a
single complete run on a bare-metalmachine and in a public
cloud.

Consequently, the total duration of a single test run also varies
substantially between projects. RxJava takes close to 9 hours to
�nish a single run even with the relatively short default JMH con-
�guration that we used. All other Java projects except protostu�
require (often substantially) longer than a full hour for a single test
run, making them infeasible to be executed as part of CI runs. Due
to their smaller test suites, the Go projects also require less time
for testing. fasthttp is the only Go project in our study to take over
a full hour in both environments.

Moreover, it is evident that the total duration of a run generally
correlates strongly with the size of the microbenchmark suite. This
is due to how both, JMH and the Go benchmarking library, work
(see also Section 2): they attempt to repeatedly execute a given small
benchmark code for a de�ned duration (e.g., 1 second), and then
report summary statistics such as how often the snippet could be
executed in this de�ned duration. Consequently, every benchmark
requires close to the same time for execution.

This also explains the generally low standard deviation of du-
rations between our �ve experiment repetitions, and the often
negligible di�erence between the duration in the bare-metal and
public cloud environments (despite the bare-metal machine being
much more powerful than the cloud instance that we used). The
only exception here is Ca�eine, which takes about 2.3 times longer
in the cloud than in the bare-metal environment. This is due to the
project employing time-consuming setups prior to each benchmark,
which takes signi�cantly longer on the smaller cloud instance.

RQ1 Summary.We �nd that the projects have microbenchmark-
ing suites sizing between 16 to 983 tests, and take between 11
minutes and 8.75 hours for a single run. We conclude that many
projects have microbenchmark test suites that per se take too
much time to be used for continuous performance assessment.

5 RQ2: STABILITY OF BENCHMARKS
5.1 Context
A fundamental challenge of performance testing is that results
for most performance counters are nondeterministic. A certain
baseline level of variability even between identical runs of the same
benchmarks is hence to be expected. How large this variability
is depends on multiple factors, including the used programming
language, the nature of the benchmark, and the stability of the
environment [30]. However, establishing this baseline variability
gives us a good basis to evaluate the usefulness of the benchmarks
in the project’s microbenchmark suites in di�erent environments.

The variability of a benchmark a�ects the stability and reliability
of its results. A lower result variability implies a detectability of
smaller performance changes by a benchmark without reporting
false positives (FPs) due to random �uctuations. Multiple factors,
such as concurrent processes, virtualization, or I/O latencies can
be the cause of these variations. Therefore it is inevitable to mea-
sure a project’s benchmark-suite stability to assess how large a
performance change needs to be before it can be detected reliably.

5.2 Approach
As a metric for stability of microbenchmarks, we propose the max-
imum spread among the mean performance counter outcomes of n
repeated runs. This metric is calculated for benchmarks b 2 B. In
our experiments, we use n = 5, and formally de�ne the repeated
benchmark executions as the set R = {1, 2, 3, 4, 5}. We chose n = 5
to have a reasonable high number of complete suite executions to
catch inter-run result variance. Any concrete run r 2 R produces a
series of measurements for each b 2 B, which we refer to as Mb

r ,
with 8b 2 B,8r 2 R,8m 2 Mb

r : m 2 R+. Further, we denote the
arithmetic mean of the benchmark measurements of benchmark b
in run r asMb

r , and the arithmetic mean over all runs asMb . The
maximum spread is then a functionmaxSpread : B ! R+, de�ned
as Equation 1.

An Evaluation of Open-Source So�ware Microbenchmark Suites for
Continuous Performance Assessment ,

maxSpread (b) =max

(���� Mb
r1 �Mb

r2
����

Mb

����� r1, r2 2 R
)

(1)

Intuitively,maxSpread represents the largest distance in means
(from the slowest to the fastest average benchmark execution) be-
tween any two runs in our experiment in percent from the overall
mean. It gives us a measure about the worst variability between
repeated runs (as opposed to a measure for variability within a run,
such as the standard deviation of a series of measurements Mb

r
would be).maxSpread therefore provides a lower bound for perfor-
mance changes that are detectable by a benchmark in a particular
environment. AmaxSpread of 0 denotes that there is no variance
in the results between runs, whereas, for instance, a value of 1 ex-
presses that in the worst repetition the mean performance counter
was twice as high as in the best (e.g., twice the mean execution
time).

5.3 Results and Analysis
Figure 1 shows the distribution of the maximum spread of each
benchmark for the study subjects in violin plot notation. To ease
visual comprehension, we have limited the y-axis to 1.00 for Java
and 0.5 for Go, even though some projects have a small number
of outlier benchmarks with even highermaxSpread . All data and
analysis scripts are provided in a replication package [26]. Further,
Table 3 presents the distribution of themaxSpread of each bench-
mark for the study subjects. The table lists how many benchmarks
(in absolute numbers and percent of the suite) fall into one of �ve
buckets. The column “Benchs” lists for how many benchmarks
we were able to generate results for all 5 runs, and only these are
considered formaxSpread calculation. This number can be lower
than the size of the entire suite as reported in Table 1, as we have
experienced transiently failing benchmarks for a subset of projects.

Bare−Metal Cloud

Caffeine JCTools Log4J2 Protostuff RxJava Caffeine JCTools Log4J2 Protostuff RxJava
0.00

0.25

0.50

0.75

1.00

M
ax

im
um

 S
pr

ea
d

Java

Bare−Metal Cloud

bleve etcd fasthttp gin otto bleve etcd fasthttp gin otto
0.0
0.1
0.2
0.3
0.4
0.5

M
ax

im
um

 S
pr

ea
d

Go

Figure 1: Distribution of each benchmark’s maxSpread for
all study-subject projects in bare-metal and cloud environ-
ments in violin plot notation.

Even though there are obvious di�erences between the projects
in terms of benchmark stability, we are able to identify some com-
mon trends in the cloud environment. Firstly, even though Go

projects have smaller test suites, their benchmarks tend to be sub-
stantially more stable than the Java ones. This is largely due to not
being executed in a virtual machine. However, even in Go, two of
�ve projects have some outlier benchmarks that are very unreliable.
(maxSpread > 0.25). For two Go projects (bleve and fasthttp), more
than 70% of benchmarks have amaxSpread < 0.05. Only one Go
project (etcd) has relatively unstable benchmark results, with about
two thirds of benchmarks having amaxSpread between 0.1 and
0.25.

All JMH projects have a substantial number of benchmarks with
amaxSpread > 0.10. JCTools is interesting, as benchmarks for this
project are largely either very stable (maxSpread < 0.05) or very
unreliable (maxSpread > 0.25). We were unable to study in detail
how the benchmarks that fall into one of these buckets di�er for the
present paper. We observe that the Java language runtime appears
to introduce a baseline variability of benchmarking results in the
order of 10% on GCE, as relatively few JMH benchmarks are more
stable than that. This may be due to the well-documented chal-
lenges of benchmarking languages that use a virtual machine [14].
Hence we conclude that JMH is not a reliable tool for discovering
small performance regressions in our test setup. A potential way to
improve the microbenchmarking quality for these projects without
improving the benchmarks themselves would be to increase the
number of iterations and forks. While increasing these parameters
potentially decreasesmaxSpread , it further increases the already
long test durations (up to multiple days per run in the case of
RxJava).

Another important, albeit unsurprising, observation is that both
Go and Java projects produce more consistent benchmarking results
on bare-metal than in in the cloud. This is due to the performance
instability of public cloud instances themselves, as widely reported
in literature [15, 21, 32]. For the Go projects except etcd, this ef-
fect is noticable but not dramatic, as the majority of benchmarks
of each project still havemaxSpread < 0.10, which we consider
acceptable for many use cases. For etcd, and to a lesser extent gin,
we observe an interesting e�ect where benchmarks which exhibit
close to no variability in bare-metal become rather unreliable in the
cloud (maxSpread between 0.05 and 0.3). The generally more unre-
liable Java benchmarks consistently become even less stable in the
cloud, leading to benchmark suites where most benchmarks have
amaxSpread of 0.1 or higher. Similiar to etcd, some Java projects
with comparatively stable benchmarks in bare-metal become over-
proportional more unreliable in the cloud (protostu�, RxJava, as
well as JCTools for a signi�cant subset of its benchmarks).

We speculate that certain types of microbenchmarks (e.g., ones
that are particularly IO-intensive) are hit harder by the performance
instability of public clouds than others. However, a detailed anal-
ysis of this is out of scope in the present study. We conclude that
microbenchmarking using a public cloud, as commonly used by
public CI services, is possible. However, users need to, in some cases
drastically, lower their expections with regard to how �ne-grained
slowdowns can realistically be discovered this way. Based on our
data, only slowdowns of more than 50% in most Java projects, and
of more than 25% in Go projects, are detectable with reasonable
reliability on the used cloud instance.

, Christoph Laaber and Philipp Leitner

Project Benchs Bare-Metal Cloud
BM Cloud 0 - 0.05 0.05 - 0.1 0.1 - 0.25 0.25 - 0.5 >0.5 0 - 0.05 0.05 - 0.1 0.1 - 0.25 0.25 - 0.5 >0.5

Ja
va

Ca�eine 89 86 32% (28) 29% (26) 21% (19) 11% (10) 7% (6) 10% (9) 12% (10) 45% (39) 21% (18) 12% (10)
JCTools 168 169 35% (59) 17% (29) 27% (45) 14% (23) 7% (12) 39% (65) 15% (26) 17% (28) 27% (46) 2% (4)
Log4j2 437 437 47% (204) 24% (104) 22% (98) 5% (23) 2% (8) 7% (30) 33% (142) 49% (216) 7% (30) 4% (19)
protostu� 31 31 74% (23) 13% (4) 10% (3) 3% (1) 0% (0) 7% (2) 39% (12) 32% (10) 19% (6) 3% (1)
RxJava 962 977 52% (500) 20% (195) 20% (195) 6% (57) 2% (15) 11% (106) 22% (213) 55% (543) 11% (108) 1% (7)

G
o

bleve 80 70 80% (64) 5% (4) 9% (7) 6% (5) 0% (0) 71% (50) 20% (14) 9% (6) 0% (0) 0% (0)
etcd 40 41 93% (38) 0% (0) 2% (1) 2% (1) 0% (0) 5% (2) 17% (7) 66% (27) 10% (4) 2% (1)
fasthttp 99 100 72% (71) 15% (15) 3% (3) 7% (7) 1% (1) 73% (73) 21% (21) 3% (3) 1% (1) 2% (2)
gin 16 16 88% (14) 13% (2) 0% (0) 0% (0) 0% (0) 19% (3) 37% (6) 44% (7) 0% (0) 0% (0)
otto 49 49 100% (49) 0% (0) 0% (0) 0% (0) 0% (0) 31% (15) 53% (26) 16% (8) 0% (0) 0% (0)

Table 3: Maximum spread in various percentiles.

RQ2 Summary. Study subjects implemented in Go largely have
very reliable benchmarks, with amaxSpread below 0.05 in bare-
metal. Conversely, the benchmark stability in most Java projects
is more varied, with at least a quarter of benchmarks having a
maxSpread > 0.10. In the cloud, benchmarks of all projects
become substantially less stable, often leading to amaxSpread
greater than 0.25 (Java) and greater than 0.1 (Go).

6 RQ3: DETECTABILITY OF SLOWDOWNS
6.1 Context
Benchmark variability, as studied in Section 5, is only half the story
when evaluating the quality of a microbenchmark suite, as even a
microbenchmark suite with very stable benchmarks may still su�er
from not-benchmarking a su�ciently large part of the project. With
the approach proposed in this section, we can analyze the ability
of existing microbenchmark suites in �nding regressions, identify
parts of the API that are not covered by microbenchmarks, and
discovery methods which are tested for performance by multiple
benchmarks.

6.2 Approach
Test coverage is a common quality metric for functional test suites
[53]. To the best of our knowledge, there is currently no similar
metric for microbenchmarks. We propose an API benchmarking
score ABS (K 0,B,�) that represents what fraction of (a subset of)
the public API of a project is “covered” by the test suite B, i.e., in
how many public methods K 0 ✓ K an actual slowdown of severity
� can be found. Note that this metric is geared towards library or
middleware-type projects, such as Log4j2 or RxJava. We evaluate
ABS for all study subject projects using the methodology outlined in
Figure 2. This methodology is inspired by mutation testing [22], and
relies on systematically introducing arti�cial slowdowns to observe
whether the benchmark suite is able to catch these arti�cial regres-
sions. Unfortunately, this methodology is very time-consuming. For
two repeated runs, it requires 2 · (|K 0 | + 1) executions of the entire
microbenchmark suite, so we decided to use a small subset of the
public API of only 20 often-used methods for our experiments (i.e.,
|K 0 | = 20). Even this fairly low number of considered methods our
experiment still requires between ~7.5 hours (gin) and ~15.3 days
(RxJava) to execute (cp. the execution time durations for a single
run as reported in Table 1).

 ABS Execution

for all runs r from R

Methods K’

Execute
Baseline of B

v (relative
Regression to

introduce)

Combine
Measurements

Covering/Non-
covering Benchmarks

Covered/Non-
covered Methods

Compute
Results

Benchmark
Suite B

for all methods k from K’

Introduce
Slowdown v in k Execute B

Figure 2: ABS calculation approach.

Finding Often-Used API Methods. This paper’s approach is
concerned with testing software performance of a performance-
relevant part of a project’s API. We denote this subset as K 0 ✓ K ,
where K is the entire public API of a project. Generally, we expect
project developers to be able to identify this subset using their
domain knowledge. However, as we are basing our experiments on
OSS projects where this kind of information is not publicly available,
we chose to trace invocations of the study subjects’ public API from
unit tests of other OSS projects on GitHub. Recent work by [43] has
proposed a sophisticated approach to extract API usage data for
OSS projects. However, this work was not yet available when we
conducted our research, so we elected to use a simpler approach to
�nding often-used methods.

Concretely, we identi�ed additional GitHub projects per subject
by running yet another BigQuery query searching for projects with
import statements that indicated usage of our subjects. We again
ordered the resulting projects by stars and watchers, manually iter-
ated over them, executing the unit test suites of the found projects
and tracing the number of invocations per public method of our
subjects.

For Java projects, we used AspectJ to weave a custom-written
simple tracer at load-time, while for Go projects we transformed

An Evaluation of Open-Source So�ware Microbenchmark Suites for
Continuous Performance Assessment ,

Java Project Ca�eine JCTools Log4j2 protostu� RxJava
Traces 1638 * 106 100 * 106 4.5 * 106 126 * 106 1.2 * 106

Go Project bleve etcd fasthttp gin otto
Traces 972 * 103 789 25 * 103 21 * 103 6.4 * 106

Table 4: Number of project-usage traces.

the abstract syntax trees (ASTs) of the case study projects before
executing the unit test suites. The tool chain for tracing API usage is
available on GitHub for both, Java [29] and Go [27]. Table 4 shows
the total number of traces for each project that we generated using
this tooling. Trace information is again collected in the replication
package [26]. Instead of tracing a �xed number of projects per study
subject, we have chosen a �exible number of projects (between four
and six) that led to a su�cient number of traces for each subject.
For all Go projects except etcd, we have in this way collected more
than 103 unique API execution traces, and more than 106 for all
Java projects. Only for etcd, we were unable to identify more than
768 traces using our methodology. We speculate that the reason for
this is that etcd is not a traditional library project, but data store
where we expect access is through network protocols rather than
API invocations.

Determining Slowdowns (v) per Subject. Based on the as-
sessment described in Section 5, we determine the slowdown that
is potentially detectable by the 95th percentile of most instable
benchmark of the subject’s performance test suite. We chose the
95th percentile in order to remove the worst 5% benchmark results
in terms of variability.

We de�ne the slowdown to introduce� for a study subject project
as� = 2 ·max {MSi | 0 < i  b0.95 · |MS |c}, whereMS is the ordered
set (ascending) containing the maximum spreads of B such that
MS = {maxSpread (b) | b 2 B}. That is, we introduce a slowdown
that is large enough that 95% of a project’s benchmarks still have a
maxSpread that is half as large as the slowdown, or lower.

To introduce slowdowns into the projects, we transform the
ASTs (using javaparser7 for Java and Go’s standard ast package8) of
the projects to measure the execution time t (k) of the body of each
method k 2 K 0 and append a relative slowdown t 0(k) = t (k) · �
at the end of the body such that the overall new execution time is
t (k) + t 0(k). In Java we used Thread.sleep and in Go time.Sleep
to implement the actual slowdown. Note that our tooling is unable
to implement very small slowdowns (in the nano-second range), as
the overhead of measuring the execution time and invoking the pro-
gramming language’s sleep method already delays by more than
the intended slowdown. Hence, for very short-running methods,
� should be understood as a lower bound, with actual slowdowns
potentially being higher.

We have developed tool chains for both, JMH [28] and Go [27]
projects, using the Groovy and Go programming languages respec-
tively. These tools implement the approach outlined in Figure 2,
and can be used by practitioners to evaluate ABS for their projects
and based on the core API methods that they deem essential using
their domain knowledge. The tools expect a con�guration in JSON
notation, which designates the project to evaluate, a list of methods
forming K 0, and a slowdown to introduce � .

7https://github.com/javaparser/javaparser
8https://golang.org/pkg/go/ast

Calculating ABS . For every k 2 K 0 and every run r 2 {1, 2},
our experiments produce a set of metricsMbk

r for each benchmark
b 2 B. Based on this and the results from the baseline execution
Mb
r , where no slowdown was introduced, we then de�ne a function

re� : M ⇥M ! {true, f alse} which captures whether a di�erence
between the sets of measurements can be determinedwith su�cient
con�dence (i.e., the benchmark detects a di�erence).

We choose the following implementation for re�. We conduct
a Wilcoxon rank-sum test between Mbk

r and Mb
r . H0 is that the

sets of measurements do not di�er, which we conservatively reject
i� p < 0.01. However, preliminary cloud-reliability experiments
and A/A testing have shown that relying only on statistical testing
leads to many FPs, as changes in cloud performance often lead
to statistically di�erent measurements even if no slowdown was
introduced [30]. Hence, we add another necessary condition, which
is that the relative di�erence of the means needs to be at least half
as large as the relative slowdown (Equation 2). re� = true i� both
the statistical test reports a signi�cant di�erence and Equation 2
holds for both runs.

���� Mbk
r �Mb

r
����

Mb
r

� �

2 (2)

We consider a method k covered i� at least one benchmark
registers a di�erence, i.e., co�ered (k,B,�) = 1 () 9b 2 B :
re�(Mbk

r ,M
b
r) = true . The ABS of a project is then the percentage

of k 2 K 0 that are covered (Equation 3).

ABS (K 0,B,�) = 100 ·
P
k 2K 0 co�ered (k,B,�)

|K 0 | (3)

6.3 Results and Analysis
APIBenchmarking Score.Wepresent all resulting scores in Table
5. Further, all data is again available online [26]. To identify how
sensitive scores are to individual unreliable benchmarks, we present
three variants: “total” (includes all benchmarks), “relative”, and
“absolute”. “Relative” and “absolute” scores describe two strategies
where most unreliable benchmarks, as per the results discussed
in Section 5, are excluded. We explore how scores change if (1)
“relative” score, the worst 5% of benchmarks with respect to result
stability (as permaxSpread), or (2) “absolute”, benchmarks with a
maxSpread > 0.5, are excluded. Intuitively these values should not
be as prone to reported FPs as the full set of benchmarks (“total”
score) is. Column “Excluded” lists howmany benchmarks have been
skipped in that way. Column “�” lists how large the introduced
relative slowdown was per project.

Our results show that the Go projects, despite testing for substan-
tially smaller slowdowns, have higher scores than the Java projects.
Two of �ve Go projects have a scores of or close to 100% (bleve
and fasthttp). Gin and otto have comparable scores to Ca�eine and
JCTools. Interestingly, etcd has a very low score at 10%. This could
be due to etcd being a database project, and the public API may not
re�ect the most performance critical part of the system.

Given that many benchmarks in the Java projects have a high
maxSpread and are hence prone to lead to FPs, excluding the most
unstable benchmarks often leads to signi�cantly lower scores. This
is most evident for Log4j2, where all tests together lead to 80%

, Christoph Laaber and Philipp Leitner

Project v ABS Excluded
Total Rel. Abs. Rel. Abs.

Ja
va

Ca�eine 2.6 65% 60% 60% 4 13
JCTools 1.0 55% 55% 55% 8 4
Log4J2 1.0 80% 40% 40% 22 19
protostu� 1.0 40% 35% 35% 2 1
RxJava 0.6 95% 95% 95% 50 22

G
o

bleve 0.1 100% 100% 100% 4 0
etcd 0.3 10% 10% 10% 2 1
fasthttp 0.2 95% 95% 95% 5 2
gin 0.2 65% 65% 65% 1 0
otto 0.2 60% 60% 60% 2 0

Table 5: API benchmarking scores (ABS) of all subjects.

ABS . However, once we exclude unstable tests, the score drops to
40% (relative and absolute). We conclude that in Log4j2, many FPs
during our test runs give a too optimistic view of the test suite’s
ability to �nd regressions. RxJava is the standout Java project of our
case studies on multiple levels. As highlighted in Table 1, RxJava’s
benchmark suite is the most extensive in both runtime and size.
Further, its benchmarking score is the best among Java projects
with 95% which is similar to the best Go projects (bleve and fasthttp).
Generally, the fact that benchmarks are more unreliable in the Java
than in the Go projects also manifests in the di�erence of the three
ABS results. All Java projects except JCTools and RxJava show a
decreased score when �ltering the most unreliable benchmarks.
Go projects on the other hand have stable scores across all three
types. Experiments with di�erent combinations of ABS calcula-
tion showed, that the combination of di�erence inmaxSpread and
a hypothesis test produced the best results among the di�erent
benchmarking-score types.

Redundancy of Benchmarks. Another question is whether
there typically is a one-to-one mapping between benchmarks and
covered methods, or whether di�erent benchmarks tend to redun-
dantly �nd similar slowdowns. Figure 3 shows for each study sub-
ject how many methods from K 0 are covered by what number of
benchmarks as a density plot. The higher the curve is in the right
part of a �gure, the more benchmarks �nd slowdowns in the same
API methods.

A common pattern across multiple projects (JCTools, Log4j2,
protostu�, etcd, gin, and otto) is that most methods are either not
covered at all, or only covered by a small number of benchmarks,
but a small subset of methods are covered by many benchmarks.
The remaining projects Ca�eine, RxJava, bleve, and fasthttp have
more redundant benchmarks in comparison, indicating that bench-
marks in these projects tend to be more coarse-grained. Ca�eine
has an evenly distributed set of benchmarks in terms of redundancy
which shows that the number of benchmarks covering many meth-
ods steadily decreases. RxJava shows a high degree of redundancy
with most methods being covered by around 35 benchmarks with
an substantial amount covered by up to 160 benchmarks. Contrar-
ily, bleve and fasthttp show a similar redundancy trend, where a
relatively low number of benchmarks cover a few methods and the
majority are benchmarks detecting around a third of the slowdowns
in the selected API methods.

0.00

0.05

0.10

0.15

0.0 2.5 5.0 7.5 10.0

M
et

ho
ds

Caffeine

0.00

0.01

0.02

0.03

0.04

0 10 20 30

bleve

0.00

0.01

0.02

0.03

0 20 40 60 80

M
et

ho
ds

JCTools

0.0

0.2

0.4

0.6

0 1 2 3 4

etcd

0.00

0.02

0.04

0.06

0.08

0 25 50 75
M

et
ho

ds

Log4j2

0.00

0.01

0.02

0.03

0 10 20 30 40

fasthttp

0.00

0.05

0.10

0.15

0.20

0 2 4 6

M
et

ho
ds

protostuff

0.00

0.05

0.10

0 5 10 15

gin

0.000

0.002

0.004

0.006

0.008

0 40 80 120 160
of Benchmarks

M
et

ho
ds

RxJava

0.00

0.05

0.10

0.15

0.20

0 10 20 30 40
of Benchmarks

otto

Figure 3:Mapping of benchmarks to coveredAPImethods as
density plot. Plots that lean more to the right indicate that
a larger number of benchmarks �nd slowdowns in the same
API methods, indicating redundancy.

RQ3 Summary. The API benchmarking score ABS is a quality
metric to assess how well-tested a subset of a software’s API is.
ABS is determined similarly to mutation testing, where arti�cial
regressions of project-dependent sizes are introduced into the
API’s subset, and the detection-scores of these is recorded by the
microbenchmark suite. Resulting scores of the study subjects vary
between 10% and 100%., and benchmarks often detect regressions
in the same core method.

7 DISCUSSION
We presented an approach and metric to study the microbenchmark
suites of ten OSS projects written in Java and Go. We showed that,
depending on the environment, benchmark suites have di�erent
variability, which needs to be taken into consideration when evalu-
ating performance. Through the proposed approach, we can assess
the ability of a set of performance tests to detect actual performance
changes in �ne-granular software components. We now propose

An Evaluation of Open-Source So�ware Microbenchmark Suites for
Continuous Performance Assessment ,

three concrete usage scenarios for our approach and results, and
discuss threats to the validity.

7.1 Usage Scenarios
Quality Assessment of Microbenchmark Suites. Software de-
velopers, both of OSS and commercial projects, can use our ap-
proach and the ABS to assess the quality of the benchmark suite of
their own projects. Firstly, developers can �nd the best-�tting envi-
ronment executing benchmarks by applying the methodology from
Section 5. We showed that benchmark-result variability depends on
the type and properties of the software. Hence, �nding an environ-
ment that produces the most reliable results is key for continuous
performance assessment. Secondly, by using the approach from
Section 6, developers can determine "how good" their software’s
benchmark suite is in actually �nding slowdowns. They can either
use a similar process to ours for establishing K 0 (Section 6.2), or
use their domain knowledge. In this way, developers can increase
con�dence in their performance testing. Moreover, the results that
we have presented for ten OSS projects can serve as a point of
reference for other OSS developers and their projects. Using our
tool chain [26–29], setting up the environment, and executing the
necessary steps to gather and analyze the data is straight-forward.
As with any statistical test, especially in the context of performance
evaluation and uncertain cloud environments, there will be FPs. The
approach and results presented in Section 6mitigates false-positives
through multiple runs r where only a slowdown is reported if in
all runs slowdowns are discovered. If users of our approach still
experience too many FPs, an increase in runs should lead to more
stable results.

PerformanceTestCase Selection.Weargue that the approach
taken in Section 6 can be used to steer the selection of a subset of
benchmarks for CI integration. In future work, we will explore this
angle and propose approaches to select an optimal subset of bench-
marks for continuous performance assessment. These approaches
build on the results of ABS in combination with an assessment
of the available time budget or other constraints. We foresee that
search-based methods [17] could be used to optimize benchmark
selection. However, our approach is highly dependent on the iden-
ti�ed performance-relevant set K 0. Based on the selection of this
subset, identi�ed benchmarks withABS potentially do not cover all
possible performance problems detectable with a full microbench-
mark suite or systematic, large-scale load testing. This subset is
intended to act as a smoke test that should be seen as a sanity check
rather than a full-�edged performance evaluation.

Generating Stubs for Additional Benchmarks. Using our
methodology, developers can identify important parts of the API
which are not covered by the an existing microbenchmark suite.
Consequently, they can use this information directly to improve
their performance tests. Additionally, we envision future tooling
that will be able to generate new benchmark stubs for such un-
covered core methods. In future research, we plan to explore these
possibilities in more detail. For instance, we envision future devel-
oper tooling that analyzes all existing benchmarks, and then uses
code generation to propose new benchmarks that follow the same
style as the existing tests, but which are able to identify slowdowns
in the so-far uncovered parts of the API.

7.2 Threats to Validity
There are certain threats and limitations to our approach and the
paper’s empirical results, that a reader should take into account.
We discuss the most important ones in the following.

In terms of external validity, readers should consider the char-
acteristics of our study subjects, and not generalize our results to
other programming languages (with potentially di�erent perfor-
mance characteristics), application models, or industrial software.
However, we have chosen a common programming language run-
ning on top of a virtual machine (Java), as well as a statically com-
piled language (Go) to improve representativeness. Future work
should address this by extending our ABS results to other program-
ming languages and paradigms (e.g., interpreted or functional).
Given the time-consuming nature of the proposed approach in Sec-
tion 6, i.e., between ~7.5 hours and ~15.3 days for a single project,
scaling up to more than ten projects was considered infeasible. Re-
sults regarding performance testing in public clouds may vary
if a di�erent cloud provider (e.g., Microsoft Azure or Amazon
AWS) is used instead of GCE. We have speci�cally investigated
microbenchmarking suites, which evaluate software performance
on �ne-granular level. To detect full-system-performance degra-
dations (e.g., network latencies, database access, load balancing),
one might have to consider load tests or performance monitor-
ing with release-engineering/live-testing strategies. Further, even
though slowdowns are only one part of software performance,
other performance counters (e.g., memory consumption, I/O oper-
ations, lock contention) were considered out of scope. We argue
that the overall approach would not change drastically when con-
sidering these. Nonetheless, future research needs to investigate
performance along these other dimensions.

In terms of construct validity, the most relevant threat is the
selection of methods to test for in Section 6.2. We trace API us-
age in the unit tests of other open-source projects to get a simple,
data-driven selection of often-used methods. However, there are
two limitations to this method. Firstly, usage in unit tests does not
necessarily correspond to usage in production. Secondly, absolute
invocation counts are not necessarily a good proxy for importance.
However, as the main contribution of the present study is the ABS
methodology, hence a more comprehensive and time-consuming
methodology to generate a more robust list of important methods,
such as [43], was considered out of scope. Further, 20 methods may
be too little to comprehensively evaluate a large project. Projects
attempting to apply our methodology in practice may wish to cal-
culate the ABS for a larger part of the public API, but need to keep
in mind that the time necessary for running the experiments in-
creases linearly with the number of considered methods. Moreover,
maxSpread bases its variability on average statistics, whereas per-
formance distributions are often long-tailed [11]. In future research,
we want to investigate the e�ect performance measurements have
onmaxSpread and compare it to other measures such as averages
with con�dence-interval widths [47] or medians. The overridden
JMH execution settings are another threat to the benchmark re-
sults. We decided to use our defaults as they re�ect performance
engineering best practices [14], and limit the execution time to
a lower bound. This is especially necessary due to the expensive
nature of our experiments (see Section 6). Finally, we were unable

, Christoph Laaber and Philipp Leitner

to determine how sensitive the calculated scores are to the extent of
the introduced slowdown. A follow-up sensibility study is required
to investigate whether the benchmark scores change signi�cantly
when decreasing or increasing the slowdown.

8 RELATEDWORK
Historically, research on software performancewas often conducted
in the context of system-scale load and stress testing [4, 23, 35, 51].
More recent research focuses on industrial applicability [13, 37],
or how to reduce the necessary time for load testing [16]. Stud-
ies of microbenchmarking are scarcer, but have recently gotten
more attention from research. [47] and [31] study quantitatively
and qualitatively microbenchmarking practices in Java OSS. [47]
indicate that microbenchmarks hardly �nd useful regressions and
are often used for design decisions, which might not be the case
for larger, industry-driven projects like RxJava. In their subject-
selection approach projects with long-running benchmark suites
were not considered. Compared to this work, we extend their �nd-
ings by studying result variability on cloud infrastructure, which
is arguable the way to go for integrating performance testing in
CI. Further, we examine a di�erent type of programming language
that translates directly to machine code (i.e., Go). Studies from
[19] and [8] are auxiliary to ours, focusing on raising performance-
awareness of developers through generated API documentation
and studying root causes of performance degradations reported by
microbenchmarks respectively. None of these microbenchmarking
works conducted a detailed analysis of the performance test suites’
ability to �nd actual slowdowns, as is the focus of Section 6.

Studies on the nature of performance problems have found that
these bugs tend to be particularly problematic. They take more
time to be �xed than functional bugs [18], and require more ex-
perienced developers to do so [52]. Performance bugs are often
dormant, and only become visible after a time when the system’s
usage changes [24]. Further studies have investigated performance
regressions in speci�c domains, for instance in browser-based
JavaScript [45] or Android mobile applications [33]. Another recent
line of research related to the study of software performance is
mining regressions from version histories [2, 34]. There has also
been work on the automated �xing of (special types of) perfor-
mance problems [4, 18, 38, 39]. Performance test regression se-
lection research so far explored testing only performance-critical
commits [2, 20], or focused on particular types such as collection-
intensive software [36] and concurrent classes [40]. [10] propose
selection of individual benchmarks based on static and dynamic
data that assess whether a code change a�ects the performance of
each benchmark. [7] tackle performance-regression testing through
stochastic performance logic (SPL) which lets developers describe
performance assertions in hypothesis-test-style logical equations.
In the present work, we do not propose methods to actually �x
issues, but suggest that ourABS methodology can be used to reduce
existing test suites to a minimal required set, and propose stubs
for valuable new benchmarks that should be added to a project’s
benchmark suite.

Further, there has recently been an increase of interest in the
study of CI and CD builds, as well as in the types of build faults and
failures that may occur. For instance, [41] categorized build failures

on TravisCI and found no evidence that performance testing is
currently a relevant part of CI builds. [5] speci�cally study testing
on TravisCI, but neither mention performance testing. [49] study
the CI builds of OSS and industrial applications, but again �nd little
evidence of structured performance testing in the pipeline. Integrat-
ing performance testing into CI is only starting to gain momentum,
with an initial publication by [6] on CI load testing. As an alter-
native to invoke a full load test run with every build (which may
be infeasible for many systems), existing techniques to judge the
performance sensitivity of a commit could be utilized [20]. In indus-
trial practice, and especially in the context of Software as a Service
(SaaS) applications, application performance management [1, 25]
and partial rollouts (or canary releases) [44, 48, 50] are common
approaches to unify CI with performance management. Funda-
mentally, these approaches eschew performance testing entirely,
and instead rely on post-hoc identi�cation of performance issues
after deployment. However, these approaches are fundamentally
targeted at SaaS rather than library and middleware projects, such
as the ones studied in the present paper.

9 CONCLUSIONS
In this paper we studied the quality of software microbenchmark
suites of ten open source projects written in Java and Go, and evalu-
ated the suitability of these for continuously assessing software per-
formance in CI environments. Firstly, we showed that benchmark
suite sizes vary from 16 benchmarks to 983 with a mean execution
time for a single run between 11 minutes and 8.75 hours. Secondly,
we studied the result variability of the study subject’s benchmark
suites over identical repetitions, which we de�ned asmaxSpread .
Most Go benchmarks have amaxSpread below 5% in bare-metal
and below 25% in cloud, whereas most Java benchmarks have one
below 25% in bare-metal and below 50% in cloud. Thirdly, we eval-
uated how well the benchmark suites �nd actual slowdowns. We
introduced a performance-test quality metricABS , and showed that
the study subject’s score varies between 10% and 100%. Moreover,
we found signi�cant redundancy in the microbenchmark suites,
indicating that it may be possible to execute only a subset of the
suite as a smoke test within CI. The methodology and results of our
study can be used to assess the microbenchmarking quality of other
projects, identify missing tests that would improve the quality of
existing benchmark suites, and select benchmarks to be run as part
of CI.

ACKNOWLEDGMENTS
The research leading to these results has received funding from the
Swiss National Science Foundation (SNSF) under project MINCA -
Models to Increase the Cost Awareness of Cloud Developers (no.
165546). Conference attendance is partially supported by CHOOSE
(Swiss Group for Software Engineering).

REFERENCES
[1] Tarek M. Ahmed, Cor-Paul Bezemer, Tse-Hsun Chen, Ahmed E. Hassan, and

Weiyi Shang. 2016. Studying the E�ectiveness of Application Performance
Management (APM) Tools for Detecting Performance Regressions for Web Appli-
cations: An Experience Report. In Proceedings of the 13th International Conference
on Mining Software Repositories (MSR ’16). ACM, New York, NY, USA, 1–12.
https://doi.org/10.1145/2901739.2901774

An Evaluation of Open-Source So�ware Microbenchmark Suites for
Continuous Performance Assessment ,

[2] Juan Pablo Sandoval Alcocer and Alexandre Bergel. 2015. Tracking Down Per-
formance Variation Against Source Code Evolution. In Proceedings of the 11th
Symposium on Dynamic Languages (DLS 2015). ACM, New York, NY, USA, 129–
139. https://doi.org/10.1145/2816707.2816718

[3] Eytan Bakshy and Eitan Frachtenberg. 2015. Design and Analysis of Bench-
marking Experiments for Distributed Internet Services. In Proceedings of the
24th International Conference on World Wide Web (WWW ’15). 108–118. https:
//doi.org/10.1145/2736277.2741082

[4] Cornel Barna, Marin Litoiu, and Hamoun Ghanbari. 2011. Autonomic Load-
testing Framework. In Proceedings of the 8th ACM International Conference on
Autonomic Computing (ICAC ’11). ACM, New York, NY, USA, 91–100. https:
//doi.org/10.1145/1998582.1998598

[5] Moritz Beller, Georgios Gousios, and Andy Zaidman. 2017. Oops, My Tests Broke
the Build: An Explorative Analysis of Travis CI with GitHub. In Proceedings of
the 14th International Conference on Mining Software Repositories (MSR).

[6] Andreas Brunnert and Helmut Krcmar. 2017. Continuous Performance Evalua-
tion and Capacity Planning Using Resource Pro�les for Enterprise Applications.
Journal of Systems and Software 123 (2017), 239 – 262. https://doi.org/10.1016/j.
jss.2015.08.030

[7] Lubomír Bulej, Tomáš Bureš, Vojtěch Horký, Jaroslav Kotrč, LukášMarek, Tomáš
Trojánek, and Petr Tůma. 2017. Unit testing performance with Stochastic Per-
formance Logic. Automated Software Engineering 24, 1 (01 Mar 2017), 139–187.
https://doi.org/10.1007/s10515-015-0188-0

[8] Jinfu Chen and Weiyi Shang. 2017. An Exploratory Study of Performance Regres-
sion Introducing Code Changes. In Proceedings of the 33rd International Conference
on Software Maintenance and Evolution (ICSME ’17). New York, NY, USA, 12.

[9] L. Chen. 2015. Continuous Delivery: Huge Bene�ts, but Challenges Too. IEEE
Software 32, 2 (Mar 2015), 50–54. https://doi.org/10.1109/MS.2015.27

[10] Augusto Born de Oliveira, Sebastian Fischmeister, Amer Diwan, Matthias
Hauswirth, and Peter Sweeney. 2017. Perphecy: Performance Regression Test
Selection Made Simple but E�ective. In Proceedings of the 10th IEEE International
Conference on Software Testing, Veri�cation and Validation (ICST). Tokyo, Japan.

[11] Augusto Born de Oliveira, Sebastian Fischmeister, Amer Diwan, Matthias
Hauswirth, and Peter F. Sweeney. 2013. Why You Should Care About Quantile
Regression. In Proceedings of the 18th International Conference on Architectural
Support for Programming Languages and Operating Systems (ASPLOS ’13). ACM,
New York, NY, USA, 207–218. https://doi.org/10.1145/2451116.2451140

[12] Mikael Fagerström, Emre Emir Ismail, Grischa Liebel, Rohit Guliani, Fredrik
Larsson, Karin Nordling, Eric Knauss, and Patrizio Pelliccione. 2016. Verdict
Machinery: on the Need to Automatically Make Sense of Test Results. In Pro-
ceedings of the 25th International Symposium on Software Testing and Anal-
ysis, ISSTA 2016, Saarbrücken, Germany, July 18-20, 2016. 225–234. https:
//doi.org/10.1145/2931037.2931064

[13] King Chun Foo, Zhen Ming (Jack) Jiang, Bram Adams, Ahmed E. Hassan, Ying
Zou, and Parminder Flora. 2015. An Industrial Case Study on the Automated
Detection of Performance Regressions in Heterogeneous Environments. In Pro-
ceedings of the 37th International Conference on Software Engineering - Volume 2
(ICSE ’15). IEEE Press, Piscataway, NJ, USA, 159–168. http://dl.acm.org/citation.
cfm?id=2819009.2819034

[14] Andy Georges, Dries Buytaert, and Lieven Eeckhout. 2007. Statistically Rigorous
Java Performance Evaluation. In Proceedings of the 22Nd Annual ACM SIGPLAN
Conference on Object-oriented Programming Systems and Applications (OOPSLA
’07). ACM, New York, NY, USA, 57–76. https://doi.org/10.1145/1297027.1297033

[15] Lee Gillam, Bin Li, John O’Loughlin, and Anuz Pratap Singh Tomar. 2013. Fair
Benchmarking for Cloud Computing Systems. Journal of Cloud Computing:
Advances, Systems and Applications 2, 1 (2013), 6. https://doi.org/10.1186/
2192-113X-2-6

[16] Mark Grechanik, Chen Fu, and Qing Xie. 2012. Automatically Finding Perfor-
mance Problems with Feedback-Directed Learning Software Testing. In Proceed-
ings of the 34th International Conference on Software Engineering (ICSE ’12). IEEE
Press, Piscataway, NJ, USA, 156–166. http://dl.acm.org/citation.cfm?id=2337223.
2337242

[17] Mark Harman and Bryan F Jones. 2001. Search-Based Software Engineering.
Information and Software Technology 43, 14 (2001), 833 – 839. https://doi.org/10.
1016/S0950-5849(01)00189-6

[18] Christoph Heger, Jens Happe, and Roozbeh Farahbod. 2013. Automated Root
Cause Isolation of Performance Regressions During Software Development. In
Proceedings of the 4th ACM/SPEC International Conference on Performance Engi-
neering (ICPE ’13). ACM, New York, NY, USA, 27–38. https://doi.org/10.1145/
2479871.2479879

[19] Vojtěch Horký, Peter Libič, LukášMarek, Antonin Steinhauser, and Petr Tůma.
2015. Utilizing Performance Unit Tests To Increase Performance Awareness.
In Proceedings of the 6th ACM/SPEC International Conference on Performance
Engineering (ICPE ’15). ACM, New York, NY, USA, 289–300. https://doi.org/10.
1145/2668930.2688051

[20] Peng Huang, Xiao Ma, Dongcai Shen, and Yuanyuan Zhou. 2014. Performance
Regression Testing Target Prioritization via Performance Risk Analysis. In Pro-
ceedings of the 36th International Conference on Software Engineering (ICSE 2014).

ACM, New York, NY, USA, 60–71. https://doi.org/10.1145/2568225.2568232
[21] Alexandru Iosup, Simon Ostermann, Nezih Yigitbasi, Radu Prodan, Thomas

Fahringer, and Dick Epema. 2011. Performance Analysis of Cloud Computing
Services for Many-Tasks Scienti�c Computing. IEEE Transactions on Parallel and
Distributed Systems 22, 6 (June 2011), 931–945. https://doi.org/10.1109/TPDS.
2011.66

[22] Yue Jia and Mark Harman. 2011. An Analysis and Survey of the Development
of Mutation Testing. IEEE Trans. Softw. Eng. 37, 5 (Sept. 2011), 649–678. https:
//doi.org/10.1109/TSE.2010.62

[23] Z. M. Jiang and A. E. Hassan. 2015. A Survey on Load Testing of Large-Scale
Software Systems. IEEE Transactions on Software Engineering 41, 11 (Nov 2015),
1091–1118. https://doi.org/10.1109/TSE.2015.2445340

[24] Guoliang Jin, Linhai Song, Xiaoming Shi, Joel Scherpelz, and Shan Lu. 2012.
Understanding and Detecting Real-world Performance Bugs. In Proceedings of
the 33rd ACM SIGPLAN Conference on Programming Language Design and Imple-
mentation (PLDI ’12). ACM, New York, NY, USA, 77–88. https://doi.org/10.1145/
2254064.2254075

[25] Chung Hwan Kim, Junghwan Rhee, Kyu Hyung Lee, Xiangyu Zhang, and
Dongyan Xu. 2016. PerfGuard: Binary-centric Application Performance Monitor-
ing in Production Environments. In Proceedings of the 2016 24th ACM SIGSOFT
International Symposium on Foundations of Software Engineering (FSE 2016). ACM,
New York, NY, USA, 595–606. https://doi.org/10.1145/2950290.2950347

[26] Christoph Laaber and Philipp Leitner. 2018. Dataset and Scripts "An Evaluation
of Open-Source Software Microbenchmark Suites for Continuous Performance
Assessment". (2018). https://doi.org/10.6084/m9.�gshare.5982253

[27] Christoph Laaber and Philipp Leitner. 2018. GoABS. https://github.com/sealuzh/
GoABS/releases/tag/msr18. (2018).

[28] Christoph Laaber and Philipp Leitner. 2018. JavaABS. https://github.com/sealuzh/
JavaABS/releases/tag/msr18. (2018).

[29] Christoph Laaber and Philipp Leitner. 2018. JavaAPIUsageTracer. https://github.
com/sealuzh/JavaAPIUsageTracer/releases/tag/msr18. (2018).

[30] Christoph Laaber and Philipp Leitner. 2018. Performance testing in the cloud.
How bad is it really? PeerJ PrePrints 6 (2018), e3507v1. https://doi.org/10.7287/
peerj.preprints.3507v1

[31] Philipp Leitner and Cor-Paul Bezemer. 2017. An Exploratory Study of the State of
Practice of Performance Testing in Java-Based Open Source Projects. In Proceed-
ings of the 8th ACM/SPEC on International Conference on Performance Engineering
(ICPE ’17). ACM, New York, NY, USA, 373–384. https://doi.org/10.1145/3030207.
3030213

[32] Philipp Leitner and Jürgen Cito. 2016. Patterns in the Chaos - A Study of Per-
formance Variation and Predictability in Public IaaS Clouds. ACM Transac-
tions on Internet Technology 16, 3, Article 15 (April 2016), 23 pages. https:
//doi.org/10.1145/2885497

[33] Mario Linares-Vasquez, Christopher Vendome, Qi Luo, and Denys Poshyvanyk.
2015. How Developers Detect and Fix Performance Bottlenecks in Android Apps.
2015 IEEE International Conference on Software Maintenance and Evolution (ICSME)
00 (2015), 352–361. https://doi.org/doi.ieeecomputersociety.org/10.1109/ICSM.
2015.7332486

[34] Qi Luo, Denys Poshyvanyk, and Mark Grechanik. 2016. Mining Performance
Regression Inducing Code Changes in Evolving Software. In Proceedings of the
13th International Conference on Mining Software Repositories (MSR ’16). ACM,
New York, NY, USA, 25–36. https://doi.org/10.1145/2901739.2901765

[35] Daniel A. Menascé. 2002. Load Testing of Web Sites. IEEE Internet Computing 6,
4 (2002), 70–74. https://doi.org/10.1109/MIC.2002.1020328

[36] Shaikh Mostafa, Xiaoyin Wang, and Tao Xie. 2017. PerfRanker: Prioritization of
Performance Regression Tests for Collection-Intensive Software. In Proceedings of
the 26th ACM SIGSOFT International Symposium on Software Testing and Analysis
(ISSTA ’17). ACM, New York, NY, USA, 23–34. https://doi.org/10.1145/3092703.
3092725

[37] Thanh H. D. Nguyen, Meiyappan Nagappan, Ahmed E. Hassan, Mohamed Nasser,
and Parminder Flora. 2014. An Industrial Case Study of Automatically Identifying
Performance Regression-Causes. In Proceedings of the 11th Working Conference
on Mining Software Repositories (MSR 2014). ACM, New York, NY, USA, 232–241.
https://doi.org/10.1145/2597073.2597092

[38] Adrian Nistor, Po-Chun Chang, Cosmin Radoi, and Shan Lu. 2015. Caramel:
Detecting and Fixing Performance Problems That Have Non-Intrusive Fixes. In
Proceedings of the 37th International Conference on Software Engineering - Volume
1 (ICSE ’15). IEEE Press, Piscataway, NJ, USA, 902–912. http://dl.acm.org/citation.
cfm?id=2818754.2818863

[39] Adrian Nistor, Linhai Song, DarkoMarinov, and Shan Lu. 2013. Toddler: Detecting
Performance Problems via Similar Memory-access Patterns. In Proceedings of the
2013 International Conference on Software Engineering (ICSE ’13). IEEE Press, Pis-
cataway, NJ, USA, 562–571. http://dl.acm.org/citation.cfm?id=2486788.2486862

[40] Michael Pradel, Markus Huggler, and Thomas R. Gross. 2014. Performance
Regression Testing of Concurrent Classes. In Proceedings of the 2014 International
Symposium on Software Testing and Analysis (ISSTA ’14). ACM, New York, NY,
USA, 13–25. https://doi.org/10.1145/2610384.2610393

, Christoph Laaber and Philipp Leitner

[41] Thomas Rausch, Waldemar Hummer, Philipp Leitner, and Stefan Schulte. 2017.
An Empirical Analysis of Build Failures in the Continuous Integration Work�ows
of Java-Based Open-Source Software. In Proceedings of the 14th International
Conference on Mining Software Repositories (MSR’17). ACM, New York, NY, USA.

[42] Julia Rubin and Martin Rinard. 2016. The Challenges of Staying Together While
Moving Fast: An Exploratory Study. In Proceedings of the 38th International
Conference on Software Engineering (ICSE ’16). ACM, New York, NY, USA, 982–
993. https://doi.org/10.1145/2884781.2884871

[43] AnandAshok Sawant and Alberto Bacchelli. 2017. Fine-GRAPE: Fine-Grained APi
Usage Extractor – an Approach and Dataset to Investigate API Usage. Empirical
Software Engineering 22, 3 (01 Jun 2017), 1348–1371. https://doi.org/10.1007/
s10664-016-9444-6

[44] Gerald Schermann, Dominik Schöni, Philipp Leitner, and Harald C. Gall. 2016.
Bifrost: Supporting Continuous Deployment with Automated Enactment of Multi-
Phase Live Testing Strategies. In Proceedings of the 17th International Middleware
Conference (Middleware ’16). ACM, New York, NY, USA, Article 12, 14 pages.
https://doi.org/10.1145/2988336.2988348

[45] Marija Selakovic and Michael Pradel. 2016. Performance Issues and Optimiza-
tions in JavaScript: An Empirical Study. In Proceedings of the 38th International
Conference on Software Engineering (ICSE ’16). ACM, New York, NY, USA, 61–72.
https://doi.org/10.1145/2884781.2884829

[46] Daniel Ståhl and Jan Bosch. 2014. Modeling Continuous Integration Practice
Di�erences in Industry Software Development. Journal of Systems and Software
87 (Jan. 2014), 48–59. https://doi.org/10.1016/j.jss.2013.08.032

[47] Petr Stefan, Vojtech Horky, Lubomir Bulej, and Petr Tuma. 2017. Unit Testing Per-
formance in Java Projects: AreWe There Yet?. In Proceedings of the 8th ACM/SPEC
on International Conference on Performance Engineering (ICPE ’17). ACM, New
York, NY, USA, 401–412. https://doi.org/10.1145/3030207.3030226

[48] Chunqiang Tang, Thawan Kooburat, Pradeep Venkatachalam, Akshay Chander,
Zhe Wen, Aravind Narayanan, Patrick Dowell, and Robert Karl. 2015. Holistic
Con�guration Management at Facebook. In Proceedings of the 25th Symposium
on Operating Systems Principles (SOSP ’15). ACM, New York, NY, USA, 328–343.
https://doi.org/10.1145/2815400.2815401

[49] Carmine Vassallo, Gerald Schermann, Fiorella Zampetti, Daniele Romano, Philipp
Leitner, Andy Zaidman, Massimiliano Di Penta, and Sebastiano Panichella. 2017.
A Tale of CI Build Failures: an Open Source and a Financial Organization Per-
spective. In Proceedings of the 33rd IEEE International Conference on Software
Maintenance and Evolution (ICSME).

[50] Kaushik Veeraraghavan, Justin Meza, David Chou, Wonho Kim, Sonia Mar-
gulis, Scott Michelson, Rajesh Nishtala, Daniel Obenshain, Dmitri Perelman,
and Yee Jiun Song. 2016. Kraken: Leveraging Live Tra�c Tests to Identify and
Resolve Resource Utilization Bottlenecks in Large Scale Web Services. In 12th
USENIX Symposium on Operating Systems Design and Implementation (OSDI 16).
GA, 635–651.

[51] Elaine J. Weyuker and Filippos I. Vokolos. 2000. Experience with Performance
Testing of Software Systems: Issues, an Approach, and Case Study. IEEE
Transactions on Software Engineering 26, 12 (Dec. 2000), 1147–1156. https:
//doi.org/10.1109/32.888628

[52] Shahed Zaman, Bram Adams, and Ahmed E. Hassan. 2012. A Qualitative Study
on Performance Bugs. In Proceedings of the 9th IEEE Working Conference on
Mining Software Repositories (MSR ’12). IEEE Press, Piscataway, NJ, USA, 199–208.
http://dl.acm.org/citation.cfm?id=2664446.2664477

[53] Hong Zhu, Patrick A. V. Hall, and John H. R. May. 1997. Software Unit Test
Coverage and Adequacy. Comput. Surveys 29, 4 (Dec. 1997), 366–427. https:
//doi.org/10.1145/267580.267590

