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Abstract—Histograms are a fundamental tool for multidimensional data analysis and processing, and many applications in graphics

and visualization rely on computing histograms over large regions of interest (ROI). Integral histograms (IH) greatly accelerate the

calculation in the case of rectangular regions, but come at a large extra storage cost. Based on the tensor train decomposition model,

we propose a new compression and approximate retrieval algorithm to reduce the overall IH memory usage by several orders of

magnitude at a user-defined accuracy. To this end we propose an incremental tensor decomposition algorithm that allows us to

compress integral histograms of hundreds of gigabytes. We then encode the borders of any desired rectangular ROI in the IH

tensor-compressed domain and reconstruct the target histogram at a high speed which is independent of the region size. We

furthermore generalize the algorithm to support regions of arbitrary shape rather than only rectangles, as well as histogram field

computation, i.e., recovering many histograms at once. We test our method with several multidimensional data sets and demonstrate

that it radically speeds up costly histogram queries while avoiding storing massive, uncompressed IHs.

Index Terms—Integral histograms, tensor decomposition, multidimensional compression

Ç

1 INTRODUCTION

HISTOGRAMS are widely used in many visualization
applications including segmentation, filtering, object

tracking and classification, volume rendering, and more.
Recent advances in data acquisition technology have given
rise to increasingly large multidimensional data sets that
often require histogram queries over large data regions.
Developing algorithms for compact representation and fast
histogram computation is thus an area of active research.
The integral histogram [1], that we denote IH, is a very
time-efficient way to obtain a histogram over any rectangu-
lar axis-aligned region in a Cartesian space. It extends the
concept of summed area table (SAT) [2] by storing a cumu-
lative histogram at each table entry. In exchange for its large
query speed-up, this data structure is highly redundant: it
entails a manifold increase of the memory footprint and
may often exceed available memory resources. For instance,
in the present paper we consider a 1 GB micro-computer
tomography (mCT) with 128 histogram bins. The resulting
512 GB integral histogram does not fit into memory in
current desktop environments. Furthermore, IH queries
require hundreds of non-contiguous accesses. This makes
compressing histograms in their integral form an important
target. The goal is to reduce storage needs to a manageable
amount while still allowing a faster histogram calculation
than a brute-force traversal of the original data.

Our approach is based on lossy compression, and we
show that excellent IH data reduction rates can be achieved
when approximated results are tolerated. Tensor decompo-
sitions are a very convenient tool for this. Such decomposi-
tions generalize the 2D singular value decomposition (SVD)
to more dimensions and have been shown to successfully
tackle the so-called curse of dimensionality. We demonstrate
that in particular the tensor train model (TT) can effectively
compress large IHs and bring together two key advantages
for the query stage, namely high compression rates and fast
histogram look-up. The proposed method is flexible in the
sense that: a) it allows decreasing both size and query time
as desired, at the expense of a variable loss in response accu-
racy due to compression; and b) it can handle arbitrary
query regions, as opposed to other methods that are often
limited to axis-aligned query rectangles. Furthermore, while
directly computing a histogram over a region of interest
(ROI) requires many non-sequential memory accesses,
in tensor reconstruction the compressed representation is
always traversed in the same dimensional order, which
allows a more memory-optimized computation.

Our system is highly asymmetric: we emphasize high
data reduction rates during offline decomposition, making
it very computationally intensive, in order to achieve as fast
as possible online reconstruction in exchange. This para-
digm is rather standard in many interactive visualization
and analysis applications [3], [4], [5].

1.1 Contribution

The tensor framework has been used previously in a range
of graphics and visual computing applications (see also
Section 2). In this paper we contribute the first tensor-based
compression and querying algorithm for integral histo-
grams: We incorporate the classical SAT reconstruction
formula into the compressed domain and then extend it to
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non-rectangular regions by expressing them also in a ten-
sor-decomposed format. More specifically:

� We propose a TT-compressed IH as a data structure for
histogram look-up over medium-to-large regions, and
contribute an incremental compression algorithm that
never operates on the full (and often intractable) IH.

� We exploit tensor-domain multilinearity and show
how to efficiently query the proposed data structure
to retrieve one or many histograms over non-rectan-
gular regions.

Our method is able to compress IHs by several orders
of magnitude and approximately reconstruct histograms
at interactive rates, even over huge regions which can be
rectangular or otherwise. It can also efficiently decompress
histogram fields, a useful concept in for example feature
extraction and visualization that we demonstrate later in
the form of an entropy field.

Fig. 1 summarizes the main steps involved in our tensor
integral histogram decomposition and look-up framework.

The rest of this paper is organized as follows. Section 2
reviews the existing literature on histogram look-up algo-
rithms, applications and compression techniques as well as
tensor approximation, which is covered in more detail in
Section 3. Section 4 is concerned with incremental compres-
sion of (potentially large) IHs. In Sections 5 and 6 we show
how to encode a target region into the SAT compressed
domain, so that when reconstructing it we obtain the
integral over that query region. Experimental evaluation
is conducted in Section 7 and discussed in Section 8, and
concluding remarks are given in Section 9.

2 RELATED WORK

Next we overview some general techniques and motiva-
tion on computing histograms of multidimensional data,
both for the exact and the approximate cases. We con-
tinue with summed area tables and their adaptation into
integral histograms for the problem at hand, and finally

put in context our chosen mathematical tool, namely ten-
sor decompositions.

2.1 Efficient Multidimensional Histograms

When processing large regions of interest within multidi-
mensional data sets, computational costs are commonly a
concern in real-time visualization applications. One approach
for efficient histogram generation is to avoid redundant com-
putations, e.g., with incremental sliding windows [6], [7] or
identifying overlapping regions [8]. Alternatively, other
methods compute the desired histogram features directly
from the data [9], [10]. In [10] and [11], pixel or voxel neigh-
borhood information is compactly represented as a sparse
sum of Gaussian probability density functions, which allows
for convenient retrieval of features used in filtering and for
applying a transfer function in volume rendering. On the
other hand, some tools compute histograms of a transforma-
tion of the data; prominent examples are the histogram of
gradients (HOG, a method to extract robust feature descrip-
tors) and its variants [12], and the 2D histogram, which takes
into account gradient information (useful for e.g., segmenta-
tion and transfer function selection).

2.2 Summed Area Tables

The summed area table is a data structure for fast integral
look-up over rectangular regions [2]. In 1D it is just a discre-
tization of the Fundamental Theorem of Calculus: by storing
the cumulative sum of an array F ðnÞ :¼

Pn�1
0 fðiÞ (with

F ð0Þ :¼ 0), one can compute an arbitrary summation
Pb

a

fðiÞ over an interval ½a; b� in constant time as the difference
of F at the interval borders, F ðbþ 1Þ � F ðaÞ. For higher
dimensions N � 2 the integral is given by the sum of values
(with alternating signs) from the 2N corners of the box
region. SATs have been proven useful in computer graphics,
especially in volume rendering, and parallel integration and
filtering algorithms have been developed on GPUs for fast
SAT generation [13], [14], [15].

2.3 Integral Histograms

The integral histogram (IH) emerged as a natural extension of
a SAT for histogram look-up by adding a bin dimension [1],
and SAT querying algorithms can be in principle adapted to
query it. The idea behind an IH works as follows: Each bin
b ¼ 1; . . . ; B is associated to a binary mask: an array of the
same size as the input, in which each entry is set to 1 if and
only if the corresponding input pixel has the value b, and 0
otherwise. Then, the SAT of each of thesemasks is computed;
i.e., its cumulative sum along all dimensions. All resulting
SATs are stacked along a new dimension of size B to yield
the final IH. To retrieve a histogram from a certain target rect-
angle, a SAT query is performed for each bin over that region.
Fig. 2 illustrates the IH look-up for the 2D (image) case.

The IH data structure generalizes easily to high dimen-
sions [16], and requires B � 2N value look-ups to compute
the final result. More importantly, a slice of the size of
the original data must be stored for every value bin, which
can render the uncompressed IH too large to be used
interactively. Compression approaches have been explored,
e.g., rectangle area sums can be computed efficiently over
wavelet-decomposed data [17]. Lee and Shen proposed
WaveletSAT [5], a lossless wavelet-based compression

Fig. 1. Overview of the proposed tensor-based histogram decomposition
and reconstruction.
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scheme for integral histograms. They report fast query times
and compression rates of 1:8 and above compared to the
original IH size, for data up to 2563 voxels. However, the
method is still limited to axis-aligned rectangular regions,
and dealing with other types of regions would require
approximating them as sums of rectangles. An improve-
ment in this direction was proposed by Heckbert [18]. Based
on repeated SAT integrations, the author devised a proce-
dure to obtain integrals across regions which are defined
by polynomials and not just rectangles. Non-rectangular
regions are often preferred indeed, e.g., Gaussian (to achieve
rotation-invariance) or 3D cross-neighborhoods [19], or com-
plex segmented target regions. In this context, our tensor-
compressed histogram querying algorithm emphasizes fast
approximate reconstruction, low storage needs and flexibil-
ity regarding target region shape.

2.4 Tensor Methods in Graphics and Visualization

Tensor decompositions express multidimensional data as
sums of separable components [20]. There are several ways
in which these components can interact with each other,
giving rise to different tensor models. Pioneering decom-
position models such as CANDECOMP/PARAFAC [21],
Tucker [22] or the higher-order singular value decomposi-
tion (HOSVD) [23] were originally developed as compact
multiway dimensionality reduction techniques. These con-
cepts later spawned many applications in signal processing,
data mining, computer vision, and more, and a variety of
additional decompositions have been proposed. More
recently, tensor methods have become a versatile tool,
increasingly used in computer graphics and visualiza-
tion [24], [25]. Data reduction is often achieved by truncating
higher tensor ranks, i.e., discarding separable components
that contribute little (in the L2 sense) to the input tensor;
this is also known as low-rank reduction. Wu et al. [26], [27]
developed a hierarchical partitioning for visual data com-
pression, outperforming the wavelet transform (WT) in
terms of feature preservation. Suter et al. [4], [28] proposed
fast GPU decompression methods for parallel, real-time
large volume visualization. Wetzstein et al. [29] introduced
tensor light field displays. Ruiters et al. [30], [31] and Balles-
ter-Ripoll et al. [32], [33] decompose and filter bidirectional
texture functions and large multiresolution volumes,
respectively, while Costantini et al. [34] used HOSVD for
fast video texture synthesis. A compilation of tensor appli-
cations in these and other areas can be found in [20].

Overall, tensor representations are compact, lossy in most
applications, and offer multiple ways to manipulate data in
its compressed format.

3 TENSOR DECOMPOSITION

3.1 Notation

Throughout this paper, we understand vectors as finite 1D
arrays of scalars that are represented with bold lowercase
letters (e.g., aa). Matrices use bold uppercase (e.g., U), and
tensors (i.e., higher-order multiarrays) use calligraphic let-
ters (e.g., T ).N is the number of dimensions, also called ten-
sor modes, and the symbols I1; . . . ; IN denote the resolution
of the input data. If a distinction between dimensions is not
necessary because we assume they have the same magni-
tude, we just use I for simplicity. We use zero-based colon
notation to index individual elements, or subspaces of mul-
tiarrays. For example, U½:; i:j� are the columns i (included)
to j (not included) of a matrix, and T ½:; 0; :� denotes the first
slice of a 3D tensor T along its 2nd dimension. B is the num-
ber of histogram bins. We use the relative error � for com-
paring tensors: if T is a tensor and eT its approximation,

then � ¼ kT � eT k=kT k where kT k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

ii T ðiiÞ2
q

is the Fro-
benius norm. This is the prevalent metric in the tensor litera-
ture [20], [23], [35], and it has a one-to-one correspondence
to peak signal-to-noise ratio (PSNR) as follows:

PSNR ¼ 20 � log 10

M

� � kT k �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sizeðT Þ

p !
;

where M is the maximum signal intensity. We also use � for
all histogram query results.

3.2 The Tensor Train Model

The tensor train (TT) was introduced by Oseledets [35] as an
alternative compact representation to earlier models, includ-
ing CP and Tucker. It is particularly well suited for applica-
tions with high dimensionality, as its number of coefficients
increases linearly (instead of exponentially) with respect to
the dimensionsN . Its coefficients are arranged in a sequence
(hence the name train) of 3D tensor cores. Each core has size
Rn�1 � In �Rn with R0 ¼ RN ¼ 1, i.e., the first and last ones
have size 1� I1 �R1 and RN�1 � IN � 1 respectively, see
also a depiction in Fig. 3. We call the integers R1; . . . ; RN�1

tensor ranks, and sometimes write R to denote the highest

Fig. 2. Querying a 2D integral histogram over a rectangular region
(highlighted in green) requires 4 look-ups per bin.

Fig. 3. A schematic illustration of a 4D tensor of size 3� 4� 3� 4
decomposed in the TT format using ranks ðR1; R2; R3Þ. We highlight the
subspaces that are needed for reconstructing a single element
ð1; 3; 0; 1Þ: Row T ð1Þ½0; 1; :� from the first core, slices T ð2Þ½:; 3; :� and
T ð3Þ½:; 0; :� from the second and third cores, and column T ð4Þ½:; 1; 0� from
the last core.

BALLESTER-RIPOLL AND PAJAROLA: TENSOR DECOMPOSITIONS FOR INTEGRAL HISTOGRAM COMPRESSION AND LOOK-UP 1437



rank for convenience. We often write the decomposition in
terms of itsN cores: T ¼ ½½T ð1Þ; . . . ; T ðNÞ��.

Element-wise reconstruction from the TT format corre-
sponds to a sequence of matrix products

T ½i1; i2:::; iN � ¼ T ð1Þ½0; i1; :� � T ð2Þ½:; i2; :� � � � T ðNÞ½:; iN ; 0�;

where the first and last matrices consist of just one row and
column, respectively.

An attractive feature of the TT model is the speed of its
single element reconstruction: only certain slices of the com-
pressed data participate in the calculation, which is a
sequence of matrix-vector products requiring OðNR2Þ oper-
ations. This proves very useful for histogram reconstruc-
tion, as we demonstrate later in Sections 5 and 6.

The main advantage of this tensor formulation with
respect to other data reduction schemes is the ease of linear
manipulations: convolution, differentiation, integration and
others can be performed efficiently using only a subset of
the compressed-format elements. Furthermore, editing a
tensor in the TT format results in another TT tensor that can
then be decompressed the same way as the original. Such
operations are much more complicated in other compres-
sion methods; for example brick-based approaches (e.g.,
vector quantization) are not well-suited for linear opera-
tions unless rather large bricks are used. These and similar
limitations are especially prominent in non-transform based
compression strategies.

4 INTEGRAL HISTOGRAM TENSOR COMPRESSION

Let T be a multidimensional array of size I1 � � � � � IN , for
example an image (N ¼ 2) or a volume (N ¼ 3). The full IH
I of T can be computed from its level-set stack L, which
has size I1 � � � � � IN �B and is defined as

L½x1; . . . ; xN; b� ¼
0 if T ½x1; . . . ; xN � 6¼ b
1 if T ½x1; . . . ; xN � ¼ b:

�

To eventually get I , one needs to calculate all cumulative
partial sums of L’s slices along the last dimension. The
result has size ðI1 þ 1Þ � � � � � ðIN þ 1Þ �B. Element-wise,
each I½x1; . . . ; xN; b� is defined as

0 if in ¼ 0 for some nPx1;...;xN
i1;...;iN¼1 L½i1 � 1; . . . ; iN � 1; b� otherwise:

�

Note that whereas L is highly sparse, the cumulative I is
not. While one can already use L to compute histograms by
direct integration, we choose to compress the array I
instead. The motivation is that we found that histograms
reconstructed from a tensor-compressed I are much more
accurate for the same number of coefficients. The columns
L½x1; . . . ; xN; :� have little correlation between each other:
any value change between two points (e.g., T ½x1; . . . ; xN � 6¼
T ½y1; . . . ; yN �) implies that L½x1; . . . ; xN; :�;L½y1; . . . ; yN; :�h i ¼ 0.
On the other hand, every column I½x1; . . . ; xN; :� depends on
the whole region between it and the origin I½0; . . . ; 0; :�;
thus, columns close to each other have very similar contents.
To support this observation, we show in Fig. 4 the histo-
gram reconstruction accuracy from compressing L versus
compressing I .

Now, the question of how to efficiently compress I
arises. The most straightforward approach would be to
build the full I explicitly, and then compress it using TT-
EIG. However, note that for medium or large models this
quickly becomes impractical. Fortunately, thanks to the ver-
satility of the TT format, we are able to split up any tensor
and incrementally build up its compression. We namely
combine two steps:

� An algorithm to compress any slice of the IH, i.e., on
a bin-by-bin basis;

� A sum-and-compress procedure to combine and merge
existing compressed slices into one single com-
pressed tensor.

We detail next how we address each of these separate
steps.

4.1 Slice Compression

Any full dense tensor can be decomposed in the TT format
via the TT-SVD algorithm [35], which successively unfolds
the data and computes the singular value decomposition on
the result, one mode at a time. The desired target error 0 � �
is defined beforehand and is the only parameter. TT-SVD
guarantees that the final relative error will be no larger than
the target �.

LetSb be the bth bin slice of the IH, i.e., I½:; . . . ; :; b�.We com-
pute it independently of all other bin slices: first we create a
binary mask from the input data, and then we compute its
SAT. We now apply the TT-SVD algorithm to compress Sb

into a TT tensor withN cores at a prescribed accuracy �. Note
that this � affects only the global quality of the IH and that rela-
tive errors of individually reconstructedhistograms (Sections 5
and 6)will differ, especiallywith respect to the region size.

The original TT-SVD uses a sequence of tensor unfold-
ings, interleaved with SVD decompositions that progres-
sively remove one dimension at a time to produce one core
and thus reduce the overall tensor size [35]. Such unfoldings
flatten the tensor into a matrix in various orderings so as to
remove redundancy along one dimension at a time. We
observed that in our applications these unfoldings are often

Fig. 4. Average histogram accuracy for rectangular ROIs of size 323

within a brick of size 643 (Bonsai data set). The target error during
compression � is decreased as we move left to right; each result dot is
the average reconstruction error of 100 regions placed at random. Using
the IH I instead of the level-set L leads to a much smoother degradation
as well as faster histogram reconstruction over rectangular regions; see
also Section 5.
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very tall or wide matrices. Therefore, we choose to obtain
the necessary singular vectors via the eigenvalue decompo-
sition of covariance matrices. We call this modified routine
TT-EIG, and found it to be significantly faster than standard
SVD. Although these two approaches have a different
numerical behavior and their resulting singular vectors and
values may differ, these differences are negligible for the
compression rates and real-world multidimensional signals
that we tested. The complete procedure is given in the
Appendix, which can be found on the Computer Society
Digital Library at http://doi.ieeecomputersociety.org/
10.1109/TVCG.2018.2802521.

4.2 Sum-and-Compress

As argued before, IHs are often too large to be manipulated
as a whole. Given a multidimensional data set T and a num-
ber of bins B, we propose an incremental algorithm that
progressively adds one slice at a time. We start with b ¼ 0,
and at each slice 0 � b < B we take a compressed IH of
bins ½0; b� 1� and produce an IH for bins ½0; b�:

1) We compute the bth slice of the IH (of size
I1 � � � � � IN ) and compress it into a TT tensor A as
outlined above in Section 4.1.

2) We add an indexing core at the end with B elements
that encodes the value b using one-hot encoding, i.e.,
all its elements are 0, except the bth one which is 1.
As a result, the modified TT A encodes now a tensor
of N þ 1 dimensions with size I1 � . . . IN �B. It has
zeros everywhere outside its bth slice.

3) We add this TT to our partial IH. Adding two ten-
sors is a straightforward operation [35]. The result
encodes now an IH for all bins ½0; b�.

4) We recompress the result to remove any redundant
information that may have appeared. We achieve
this by means of the TT-round procedure, which is
related to TT-SVD, its full details are given in [35].

Our incremental algorithm Algorithm 1 given below
exploits the fact that each compressed slice is small enough
to be handled separately. Although the ranks are reduced
after each recompression, the overall IH compressed size
tends to grow as we work our way towards the last bin.
Steps 3 and 4 are computationally intensive, especially
when the accumulated IH is large. In order to reduce this
cost we merge the IH slices in a recursive, binary-tree fash-
ion: slice 0 is merged with slice 1, the result is merged with
the combination of 2 with 3, and so on. Each tree root Rc

encodes the IH for 2c consecutive slices, and we create Rcþ1

by joining it with the next 2c slices. This strategy ensures
that, asymptotically, most merge operations involve only
small tensors.

Algorithm 1. Build an Integral Histogram I from an
Input Tensor T with B Bins and Error Parameter �, Using
Sum-and-Compress Combined with TT-EIG (see Appen-
dix, available in the online supplemental material)

1: procedure TT-IH(T ; B; �)
2: for b ¼ 0; . . .B� 1 do
3: // Compute and compress the bth slice of the IH of T
4: A :¼ TT-EIGðI½:; . . . ; :; b�; �Þ
5: B :¼ onesð1�B� 1Þ // This core indexes the bin
6: B½0; b; 0� :¼ 1 // One-hot encoding
7: A :¼ ½½Að1Þ; . . . ;AðNÞ;B�� // Append the indexing core
8: c :¼ 0
9: whileRc exists do
10: A :¼ TT-ROUNDðA þRc; �Þ
11: DeleteRc

12: c :¼ cþ 1
13: end while
14: Rc :¼ A
15: end for
16: I ¼ zerosðI1 � � � � � IN �BÞ
17: for allRc do // Gather and sum all remaining roots
18: I :¼ I þRc

19: DeleteRc

20: end for
21: return I
22: end procedure

Fig. 5 shows the accuracy of the proposed IH compres-
sion over a 40962 grayscale image.

5 HISTOGRAM RECONSTRUCTION

All tensor decompositions are multilinear in nature. This is
a key feature that we exploit in this section and makes sev-
eral compressed-domain operations very efficient.

5.1 Spatial Tensor Basis Manipulation

Linear operations can be applied on a compressed IH tensor
I ¼ ½½Ið1Þ; . . . ; IðNÞ;B�� by slice-wise manipulating its TT
cores. If instead of a core IðnÞ we use a weighted sum of its
slices IðnÞ :¼

PIn
i¼0 cc½i� � IðnÞ½:; i; :� (where cc is a vector with

In þ 1 entries), then the reconstruction produces a linear
combination of the corresponding hyperslices along the nth
mode. In tensor notation, this means that

½½I ð1Þ; . . . ; IðnÞ �2 cc; . . . ; IðNÞ;B�� ¼ I �n cc; (1)

Fig. 5. Integral histograms are well compressible using the TT decompo-
sition model. Column (a): Three evenly-spaced IH bins for the Waterfall
image (Fig. 6a) for B ¼ 64. Column (b): IH bins after TT compression to
ð1; 64; 51; 1Þ ranks. Column (c): Absolute difference, magnified 100-fold
to ease visual appreciation.
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where we have used tensor-times-vector (TTV) products.
An n-mode TTV computes the dot product between all ten-
sor vectors along its nth dimension and an external vector.

Eq. (1) allows us to reconstruct histograms from a com-
pressed IH over various ROI types: next we cover the case
of rectangular regions, and later in Section 6 we extend the
method to non-rectangular query ROI shapes.

5.2 Querying a TT-Compressed IH

Let T be a tensor data set of size I1 � � � � � IN , and v a
target region of interest, defined by the following indica-
tor function

v½x1; . . . ; xN � ¼
1 if x1 2 ½i1; j1Þ; . . . ; xN 2 ½iN ; jNÞ
0 otherwise:

�

Let S be the summed area table of T , and 0 and 1 denote
either i or j for the 2N vertices of v. Thus, S½0; . . . ; 0� corre-
sponds to S½i1; . . . ; iN �, S½1; 0; . . . ; 0� to S½j1; i2; . . . ; iN �, and
so on. The summation of T over v can be obtained from S
by adding and subtracting the following 2N terms [16]

Xj1�1

x1¼i1

� � �
XjN�1

xN¼iN

T ½xx� ¼
X

p2f0;1gN
ð�1ÞN�kpk1 � S½p�: (2)

The norm k � k1 counts the number of elements of value 1
in ½p� and determines the parity of each summand. For
example, the SAT result in the 2D case is S½j1; j2� � S
½j1; i2� � S½i1; j2� þ S½i1; i2�. For N dimensions this requires
2N look-ups in the multiarray S, with 2N�1 positive terms
and 2N�1 negative terms.

Thanks to multilinearity, tensor decompositions allow
conversion of multidimensional operations into a sequence
of equivalent 1D operations. In particular we can easily
translate Eq. (2) into the TT compressed domain: it suffices
to subtract the core slices that delimit the rectangle borders.
Thus, we define

IðnÞ :¼ IðnÞ½:; jn; :� � IðnÞ½:; in; :�;

for n ¼ 1; . . . ; N ; each is a matrix of shape Rn�1 �Rn. The
last core B is unchanged: it is not a spatial axis, since it enco-
des the histogram bins. The desired histogram is then
obtained as

Ið1Þ � � � IðNÞ � B½:; :; 0�:

See the Appendix, available in the online supplemental
material, for an example illustration of these reconstruction
formulas in the 2D case.

6 NON-RECTANGULAR ROIS

So far we have outlined how to integrate histograms only
over rectangular regions. However, more general ROIs are
supported as well, i.e., where the membership of every point
to the query region is weighted by a real value in ½0; 1�. Such
cases are interesting e.g., when rotation-invariant descriptors
are desired (i.e., where the region’s membership function is
radial) or when themembership is only estimatedwith a cer-
tain probability below 1 (e.g., a confidence heatmap arising
from a segmentation procedure). Note that an IH in its

original form is only optimal for rectangular regions and is
not easily applicable in thesemore general cases.

In this section we make a distinction between recon-
structing single histograms (as before) and the more general
case in which blocks of histograms are desired.

6.1 Non-Rectangular Reconstruction

In order to reconstruct one histogram from I over non-rect-
angular region we use the following identityZ K

0

fðxÞ � gðxÞ dx ¼ �
Z K

0

Z x

0

fðyÞ dy
� �

� g0ðxÞ dx;

which holds if either fðxÞ or gðxÞ are 0 at both x ¼ 0 and
x ¼ K. In its discrete form, it means that to find the sum of a
weighted array we can just compute the sum of the cumula-
tive array (the IH in our case), weighted by the derivative of
the weights. Each IH slice is represented by f , while g plays
the role of our ROI’s indicator function. In practice, we
need the TT decomposition of our target ROI. Let R ¼
½½Rð1Þ; . . . ;RðNÞ�� be an N-dimensional TT tensor encoding
the ROI with ranks S1; . . . ; SN�1, and DR its derivative along
all dimensions. Each bin b of the desired histogram follows
from a dot product between DR and a window on the corre-
sponding slice of I

I½i1:j1; . . . ; iN :jN; b�;DRh i: (3)

We compute the tensor dot product from Eq. (3) by succes-
sively fusing the cores of DR and IðnÞ via tensor contractions
(for more details on dot products in the TT format, see [35]).
The last core simply indexes the bins and does not vary; in
particular we compute the dot product for all bins at once.

Algorithm 2. Given an IH I Compressed with Ranks
R1; . . . ; RN , Reconstruct a Histogram Over a Non-
Rectangular Region of Bounding Box ½i1; j1� � � � � �
½iN; jN � whose Indicator Function is Approximated by a
TTR ¼ ½½Rð1Þ; . . . ;RðNÞ��with Ranks S1; . . . ; SN�1

1: procedure RECONSTRUCT(I ;R)
2: // Compute DR fromR by deriving along all axes
3: for n ¼ 1; . . . ; N do
4: DRðnÞ½:; 0; :� ¼ RðnÞ½:; 0; :�
5: for i ¼ 1; . . . ; In � 1 do
6: DRðnÞ½:; i; :� :¼ RðnÞ½:; i; :� � RðnÞ½:; i� 1; :�
7: end for
8: end for
9: F :¼ ð1Þ // 1� 1 tensor
10: for n ¼ 1; . . . ; N do
11: F :¼ contractionðF ; IðnÞÞ
12: // F has now size In �Rn � Sn�1

13: F :¼ contractionðF ;DRðnÞÞ
14: // F has now size Rn � Sn

15: end for
16: // F has now size RN � SN ¼ RN � 1 ¼ RN

17: return F � B½:; :; 0� // Vector-matrix product: the result is a
histogram with B elements as expected

18: end procedure

In Table 1 we show the asymptotic costs in terms of
space, precomputing time and query time for several histo-
gram reconstruction methods, including ours and the
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related method WaveletSAT [5] (which is lossless and lim-
ited to rectangular ROIs only).

6.2 Histogram Field Reconstruction

In this last contribution section we extend our framework to
reconstruct many histograms at once, namely over a collec-
tion of sliding ROIs that produce a histogram field. This oper-
ation gives a mapping between each input pixel/voxel and
the histogram of its neighborhood, and is equivalent to a
bin-by-bin convolution with the ROI’s indicator function.
To this end we now use the identity

f 	 g ¼
Z

f

� �
	 g0;

instead of the one from Eq. (3). In discrete form, it allows us
to compute the histogram of the input over a sliding ROI by
simply convolving our IH I with the region’s derivative
DR. In other words, we need to convolve two tensors in the
TT format. We implement this for separable regions v ¼
vð1Þ 
 � � � 
 vðNÞ, a case that is handled by simply convolv-
ing the TT cores along the spatial dimension [36]. More spe-
cifically, we build a new tensor I	 ¼ ½½Ið1Þ

	 ; . . . ; IðNÞ
	 ;B�� with

each nth core defined as

IðnÞ
	 :¼ IðnÞ 	 DwðnÞ; (4)

where 	 denotes convolution of a 3D tensor (the TT core)
with a vector along its second (spatial) axis and D is again
the discrete differential operator, here applied to a vector.

7 RESULTS

We implemented1 and evaluated the proposed compres-
sion/decompression strategies on one image, three scalar
volumes and one volume vector field.

7.1 Hardware and Software Used

Our code and tests were written in Python 3.5 and run on an
Intel i7-4810MQ at 2.80 GHz with 4 cores and 4 GB of main
memory. Operations for TT manipulation make use of the
ttpy toolbox [37], a Python/FORTRAN library based on an
earlier MATLAB package for the TT format. All compressed
tensors as well as reconstructed histograms are handled in
64-bit floating point format. We compare our approximate
results with respect to groundtruth histograms computed
via brute-force counting, namely NumPy’s histogram()

function. As we are aware that brute-force histograms are

highly-parallelizable, we also implemented a GPU-acceler-
ated version of single histogram reconstruction that takes
advantage of CuPy [38], a high-level NumPy-like interface
for CUDA that can also seamlessly integrate handwritten
kernels. Our kernel exploits CUDA’s atomicAdd() opera-
tion and CuPy’s bincount_kernel, and was run using an
NVIDIA Quadro K2100M GPU with 2 GB of memory.

7.2 Scalar Field Integral Histograms

We have evaluated our proposed compression with four
scalar fields including a 40962 grayscale picture of a Water-
fall [39] and three mCT scans of a Bonsai tree [40] (size 2563),
a Lung (size 5123) and a Flower [41] (size 10243), all shown in
Fig. 6 and originally having 8-bit depth.

As a preprocessing step, pixels or voxels are linearly
mapped into the desired number of bins B: element-wise,
x7!bx � B=256c, with B ¼ 64 and B ¼ 128 in our experi-
ments. Table 2 summarizes our compression algorithm’s
performance and results during the decomposition stage:
time needed, compressed size, TT ranks, etc. Our com-
pressed IH I takes at most a few hundred MB for the largest
datasets, mainly depending on each data set’s complexity;
thus it is always one or two orders of magnitude smaller
than the full uncompressed IH.

Fig. 7 demonstrates the results for two separable ROI
query examples on the Waterfall image and their resulting
histograms (exact and approximated). The query regions
are a square and a 2D Gaussian, and are queried as
described in Sections 5 and 6 respectively.

Using the four scalar field data sets as a benchmark, we
have gathered query performance results for a range of
regions. These results are reported in Fig. 8. For each data
set we consider ROIs of increasing size placed on the data
set’s center. For Gaussian regions we chose s as 1/4 of the
region’s size in all cases. Each histogram was reconstructed
3 times; the final time is the average.

In relation to the brute-force approach, our new method
performs significantly faster, even compared to a CUDA
implementation, with more pronounced benefits for larger
queries and datasets. As we expected, slicing operations
(besides the bin counting itself) are a significant bottleneck
in brute-force methods. This is much less of a burden for TT
reconstruction, since it works with whole core slices and
therefore needs fewer random accesses. The relative query
error due to the compression is also shown to drastically
diminish with increasing ROI query sizes. Note that rectan-
gular queries demand a constant number of operations with
our method, and this is reflected in the roughly constant TT

TABLE 1
Asymptotic Space and Time Costs for Several Methods

Total space Precomputing time Query time (box ROI) Query time (rank-S ROI)

Brute force IN 0 OðKNÞ OðKNÞ
IH INB OðINBÞ Oð2NBÞ Oð2NKNBÞ
IH (precomputed
convolution)

INB OðNIN log 2ðIÞBÞ Oð2NBÞ Oð2NBÞ (assumes ROI
shape never changes)

WaveletSAT [5] No closed formula OðIN log 2ðNÞNÞ No closed formula Not supported

TT (proposed method) ðN � 1ÞIR2 þ IRþRB OðNIR3Þ [35] OðNKR2Þ þRB OðNIR2S2Þ þOðRBÞ

The whole uncompressed IH is used in the second and third algorithm. The third algorithm filters each bin slice by means of the fast Fourier transform (FFT), and
the resulting convolutions are stored separately to achieve faster query times (but this assumes an invariant filter kernel).

1. Our code is available at https://github.com/rballester/tthistograms.
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reconstruction time. This is not the case for the Gaussian,
whose costs increase moderately. Further discussions are
given below in Section 8.

7.3 Vector Field Entropy

Our second experiment involves a 3D vector field, namely
the wind speed coordinates from the 25th timestep of the
Hurricane NCAR data set, available from [42]; see Fig. 9a.
The original vector field contains 100 height slices, each of
which has 500� 500 data points. We removed the first 9
height slices, since they intersect with parts of Florida’s ter-
rain and thus contain missing values. The experiment con-
sisted in computing 3D Shannon entropy fields based on the
wind orientation histogram; such fields have applications in
feature extraction, information-aware streamline placement

and visualization, etc. [5], [43], [44]. To this end we quantize
the wind direction at each voxel using 128 quasi-uniform
regions on the spherical surface, see also Fig. 9a. The local his-
togram for a voxel is thus defined as the directional bin count
for all wind information on a neighborhood of the voxel. The
final field is the Shannon entropy of every local histogram,
computed across the whole data set [43]. Once the window
shape and size is provided, we compute the histogram field
in one go aswe detailed in Section 6.2.

Results are reported in Fig. 9 where we show the hurri-
cane (a rendering of its vapor density), its global directional
histogram, and several entropy fields for box and Gaussian
local neighborhoods using both the proposed method and a
brute-force approach. The latter is especially prohibitive
for non-rectangular regions; it works by computing one
FFT multidimensional convolution per histogram bin. Our
method achieves a manifold speed-up factor, also for the
rectangular case, while its results deviate very little from
the exact groundtruth values given by the brute-force.

7.4 Cross-Correlation Queries

A simple, yet effective approach for interactive visualization
of high-dimensional vector fields, for example of histogram
features, is user-driven transfer function selection. Essen-
tially, a 1D array ww of B weights is defined and its dot prod-
uct with each histogram is computed; the resulting scalar is
displayed through a suitable colormap. If ww and the histo-
grams are all normalized, the result is the normalized cross-
correlation (NCC) between a template and all possible win-
dow neighborhoods.

As a last experiment we consider again the hurricane
wind IH I ¼ ½½Ið1Þ; Ið2Þ; Ið3Þ;B�� (Section 7.3) and obtain its
NCC w.r.t. arbitrary windows within our proposed TT
representation. We first precompute offline a histogram
field over all neighborhoods of a fixed size as in the

TABLE 2
Compression Results for the 5 Data Sets we have Tested

Waterfall Bonsai Lung Flower Hurricane

Size (MB) 16 16 128 1024 21.70
B 64 128 128 128 128
Decomposition time (s) 1282.26 1085.48 2070.83 28138.90 4958.32
Full IH (GB) 4 8 64 512 10.84
Compression target � 0.0005 0.0001 0.0002 0.000015 0.0001
Compressed IH (MB) 181.32 38.34 205.15 85.61 281.28
IH compression ratio 22.59 213.69 319.45 765.50 39.49
TT ranks 100, 57 53, 137, 89 87, 271, 106 53, 121, 37 127, 535, 56

Fig. 6. The four scalar fields used in our experiments: An image (a) and three mCT volumes (b), (c), (d).

Fig. 7. Example: 64-bin histograms across two rank-1 rectangular 2D
regions using TT compression to ð64; 51Þ ranks, with a 1:78.7 memory
reduction from the original IH size. The TT box look-up over 5122 pixels
took 0.08 ms while the brute-force took 4.2 ms. The Gaussian query
over 7682 pixels took 4.4 ms while the brute-force took 23.0 ms.
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previous section, and then store the norm of each histogram.
During interactive exploration we allow the user to define
a template window W whose histogram ww we extract
(Sections 5 and 6) and normalize. We then weigh the last TT
core of I with ww along its second dimension, i.e., use B �2 ww
instead of B, and finally reconstruct (Eq. (4)) and divide by
the precomputed norms. The resulting multiarray summa-
rizes each window’s histogram into one single scalar,
namely the correlation between the window’s directional
histogram and that of the template W . This way, the user
can highlight and identify regions whose local wind behav-
ior is similar. Note that the NCC lies between 0 and 1 as our
feature vectors (histograms) are non-negative. Fig. 10 shows
visualization results for a number of different windows W
of size 8� 8� 91, with response times under 2 seconds.

8 DISCUSSION

Based on these numerical experiments we observe that
our proposed compressed representation takes up much
less space than the conventional IH approach as shown
in Table 2. This is useful when the uncompressed IH
strains or exceeds the available computational and mem-
ory resources. The compression is lossy and comes at the
expense of a variable compression error, see also Fig. 8.
We observe that, in general, bigger data sets can be com-
pressed better than smaller ones. The same applies for
sparse data sets: all tensor slices that are filled with zeros
(e.g., Bonsai or Flower) are represented in a TT com-
pressed format with zero-filled core slices, and in partic-
ular without increasing the TT ranks.

Fig. 8. Left: Average histogram reconstruction times for both box- and Gaussian-shaped regions. Right: Relative error of each reconstructed histo-
gram. Our proposed TT representation generally outperforms brute-force approaches in terms of speed (even when they are CUDA-accelerated),
and does so by an increasing margin as we increase the ROI size.
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In terms of speed, TT reconstruction always becomes
faster than naive brute-force traversal with ROIs of a certain
size or larger. This overtaking point depends on the data set

and prescribed �, but usually is reached already by regions
that are 100x or 1000x times smaller than the data set. As
regards compression, our proposed incremental approach is
robust and effective even for very large (512 GB) integral his-
tograms. Preprocessing times can take up to several hours,
but such times are not uncommon for compression algorithms
for large multidimensional data. If this time is taken into
account, the break-even number of queries needed for our
method to be overall faster than the naive traversal amounts
to thousands (hundreds for histogram field reconstruction).
However, we work under the asymmetry assumption, i.e.,
where interactive reconstruction is of paramount importance,
especiallywhen user interaction is involved.

Note also that our algorithms scale well to higher dimen-
sions, as tensor approximation is well defined and studied
for N � 2, and the TT format is known to be an excellent
representation for high dimensional data. Compared to
wavelet-based alternative compression methods such as
Wavelet-SAT [5], our method a) results in higher reduction
rates (thanks to lossy compression and its use of adaptive
transform bases); b) can reconstruct histograms over non-
rectangular regions; and c) can apply transfer function
weighing (and in particular, compute histogram field cross-
correlations) at a small cost in the compressed domain. Its
main drawback is of course the compression error intro-
duced, but we found this relative error to be insignificant
over medium to large ROIs, whereas the case of small ROIs
is less important since brute-force traversal is actually the
fastest method for such regions anyway.

Our proposed reconstruction over Gaussian regions is
significantly slower than its rectangular counterpart. How-
ever, it still outperforms the brute-force, usually even when
exploiting GPU parallelism. We would like to highlight
that, although general IHs are not well suited for non-
rectangular regions, the tensor decomposition framework
makes such queries possible thanks to its multilinearity and
the range of compression-domain processing operations
that it offers. The prescribed accuracy during compression
is the main parameter of our system, and it results in a
trade-off between smaller size and faster query time on one
side versus lower error on the other side.

8.1 Limitations and Future Work

As mentioned before, the main limitation of tensor-
compressed IH is related to small regions: in these cases a)
the relative error of themethod is higher, and b) the standard
brute force traversal over a small area becomes reasonably
fast, making alternative look-up methods less attractive.
Regarding a), TT queries are fastest for rectangles; the

Fig. 9. (a) A 500� 500� 91 hurricane vector field at its 25th timestep;
(b) directional histogram for its (latitude, longitude, height) wind coordi-
nates, grouped into 128 bins on the spherical surface; (c-f) entropy fields
for both box- and Gaussian-shaped neighborhoods of size 20� 20� 91,
computed via brute-force versus our proposed method (Section 6.2).

Fig. 10. Normalized cross-correlations between the hurricane wind vector field and six different template windows of size 8� 8� 91. Brighter colors
indicate higher histogram neighborhood correlations with a template whose center in each case is indicated by the red marker. This region-picking
technique works in fact as a dynamic histogram transfer function selector that can e.g., highlight specific rain bands. Computation times ranged
between 1.86 s and 1.99 s for these examples.
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break-even point against brute-force is more favorable, and
there is more room for error reduction by reducing the error
tolerance during decomposition. As a secondary limitation,
our compression procedure is based on global L2 norm and,
in particular, there is no bound on the maximal absolute
error. This is a usual situation in tensor-based methods,
and is rarely a problem in practice.

Many operations, linear and otherwise, can be performed
in the tensor compressed domain and have a potential
impact in a range of applications for large and/or high-
dimensional signals. As a future line of research we would
like to exploit further ways of operating on compressed his-
tograms and histogram fields. We would also like to port
the current framework to other kinds of vector fields besides
histograms.

9 CONCLUSIONS

We have contributed a novel tensor-based compression and
query algorithm for integral histograms over multidimen-
sional grid data. Our approach is based on an incremental
tensor train decomposition. It demonstrates great memory
reduction rates compared to raw integral histograms and
allows for fast histogram computation over large regions at a
high accuracy. We detailed first how to incrementally com-
press IHs that would take hundreds of GBs if represented
explicitly. Once the compressed IH is available, we showed
how to operate on its TT cores in order to properly access the
encoded cumulative data and retrieve the desired result over
a rectangular ROI at a high speed. We also showed how to
map and query non-rectangular regions by exploiting their
own tensor decomposition. Finally, we extended our recon-
struction algorithms to support histogram field reconstruc-
tions, i.e., histograms overmany regions at once.

To summarize, our framework can be helpful in applica-
tions that require fast approximate histograms, especially
over medium to large query regions. We believe its poten-
tial can be exploited best in combination with the simple
brute-force method, which can naturally compute histo-
grams over small regions of arbitrary shapes without error
and in reasonable times. Since most analysis and visualiza-
tion applications are likely to require the original input data
anyways, storing it along with our proposed compressed
IH is a very feasible scenario.
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