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Abstract— Visual multi-robot simultaneous localization and
mapping (SLAM) is an effective way to provide state estimation
to a group of robots that operate in an unstructured and GPS-
denied environment. This is a problem that can be solved in
a centralized way, but in some instances it can be desirable
to solve it in a decentralized way. Decentralized visual place
recognition, then, becomes a key component of a decentral-
ized visual SLAM system. Achieving it by having all robots
send queries to all other robots would use vast amounts of
bandwidth, and diverse approaches have been explored by the
robotics community to reduce that bandwidth. In previous
work, we have proposed a decentralized version of bag-of-
words place recognition, which, by using a distributed inverted
index, is able to reduce bandwidth requirements by a factor of
n, the robot count. In this short paper, we instead propose a
decentralized visual place recognition method that is based on
full-image descriptors. The method consists in clustering the
full-image descriptor space into several clusters and assigning
each cluster to one robot. As a result, place recognition can
be achieved by sending each place query to only one robot.
We evaluate the performance of our new method versus a
centralized implementation using the Oxford Robotcar and
KITTI datasets and explore an inherent trade-off between
performance and load balancing.

I. INTRODUCTION

Many robotic applications can benefit from parallel de-
ployment of multiple robots. In a search and rescue mission
for example, the search area can be subdivided, so that
each robot has less space to cover, resulting in quicker task
completion. In order for the robots to efficiently collaborate,
they need to know where they are with respect to each
other and to the environment. In unstructured, GPS-denied
environments a popular method for this, which generalizes
well to all kinds of different robots, is visual simultaneous
localization and mapping (SLAM). Visual SLAM takes as
input camera images and produces as output an estimate
of the robot’s trajectory as well as typically some crude
representation of the environment (map).

Visual SLAM as deployed on a single robot has recently
reached maturity [1]. We identify three components of a
state-of-the-art visual SLAM system:

1) Visual Odometry is a real-time component that converts
sensor measurements into a pose estimate considering
only data from the most recent past. It is in the nature
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Fig. 1.
decentralized visual place recognition. The method consists in clustering
the descriptor space of NetVLAD [9] into several clusters and assigning
each cluster to one robot. As a result, place recognition can be achieved
by sending each place query to only one robot. Image credit: Yi Cao /
Mathworks, [10], [11]

We propose an efficient, full-image descriptor-based method for

of visual odometry algorithms to exhibit drift [2]:
metric accuracy decreases over time and if the robot
returns to a place it has visited before, the current
pose estimate will most likely be inconsistent with the
previous pose estimate at that place.

2) To mitigate such drift, SLAM systems have a Place
Recognition module which uses visual cues to recog-
nize previously visited places in spite of the inconsis-
tent pose estimate.

3) Once previously visited places have been recognised,
an Optimization module incorporates them to make a
consistent map. The optimization module can also be
used without place recognition, to reduce linearization
errors of the visual odometry.

How can these components be extended to multiple
robots? It is important to note that in multi-robot SLAM
both place recognition and optimization need to consider
data from all robots to build a meaningful and consistent
global map. Hence, a centralized system, where all the data
is sent to a central instance that runs place recognition and
optimization is a popular choice for such a system [3], [4],
(51, [6], [7], [8].

In certain situations, however, it can be interesting to
opt for a decentralized system. A centralized system, for
example, has a computational bottleneck at the central station
and thus limited scalability. A well-designed decentralized
system could defy this bottleneck. Centralized systems fur-
thermore typically require permanent or regular connection
to a dedicated central machine and thus preclude for example
applications where a group of lightweight robots goes deep
into the field. Finally, there exist militaristic and privacy
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arguments for using a decentralized system [12], [13].

Decentralized systems, then, have the challenge of imple-
menting place recognition and optimization in a decentral-
ized way that does not require too much communication:
technically, it would be possible for every robot to share
its data with every other robot, but that would typically
require a lot of data to be transmitted. In our work, we
focus on decentralized place recognition. For recent work
in decentralized optimization instead, we refer the reader to
[12], [14], [15].

In this short paper we propose an efficient, full-image
descriptor-based method for decentralized visual place recog-
nition. The core of the method consists in clustering the
descriptor space of NetVLAD [9] into several clusters and
assigning each cluster to one robot. As a result, place
recognition can be achieved by sending each place query
to only one robot.

II. RELATED WORK

Decentralized visual place recognition by sending queries
to every other robot scales poorly in terms of the robot
count n. The complexity of every query is O(n). Of course,
the overall bandwidth can me mitigated by adopting one
of many existing approaches to map compression: among
others, visual maps can be compressed by pruning unnec-
essary map features [16], [17], reducing the dimensionality
of feature descriptors [18], or using an overall non-canonical
visual place representation, such as a frequency-domain place
representation [19] or one that relies on object extraction
[13]. These approaches, however, ultimately do not reduce
the complexity in robot count.

In previous work [20], we have proposed a Bag-Of-
Words based [21], [22], [23] decentralized place recognition
algorithm that reduces the query complexity by one order.
The algorithm has been inspired by distributed hash tables
[24], [25], and some previous work in image retrieval [26],
[27]. The method we proposed there, however, suffers from
two drawbacks: firstly, the method is somewhat complex and
uses an assumption whose full implications we do not yet
fully understand. Secondly, the method requires for every
query to have a message sent to every other robot (of size
(’)(%)), thus still causing a lot of traffic.

In contrast, the method proposed here is much less com-
plex, and, for every query, a message only needs to be
sent to a single robot (plus to another robot for geometric
verification, if place recognition succeeds). The key lies in
substituting the bag-of-words approach with a full-image
descriptor approach. This allows us to cluster the image
descriptor space with k-means, and assign each cluster to
a robot: any query from a cluster will be sent only to
that robot. We show that this results in a competitive place
recognition algorithm with minimal bandwidth requirements.
We furthermore show how a problem of poor load balancing
arises in practical deployment, and how it can be mitigated by
sacrificing some recall. This work expands on self-published
preliminary work that can be found at [28].

III. METHODOLOGY
A. Bag-of-Words method

In [20], we have shown how the data exchange incurred
in decentralized visual place recognition can be reduced
by a factor of up to n, the robot count. This can be
achieved by casting the place recognition problem to a key-
value lookup problem, which can be efficiently distributed
using deterministic key-to-peer assignment, as is for example
common in distributed hash tables [24], [29]. In [20], we
have thus cast the bag-of-words (BoW) place recognition
method [21], [22] used in [23], [30]. In broad strokes, this
is how the resulting method works:

1) Before deployment, deterministically assign words of
the visual vocabulary to the different robots.

2) When querying place recognition of an image frame,
calculate the BoW vector and split it up into partial
BoW vectors such that one partial BoW vector can be
sent to each robot 7, containing the coefficients of the
words assigend to r.

3) The robots receive and process each their own partial
query, returning the identity of the single frame which
best matches the query frame according to the partial
BoW vector. They also store the query, making it
available as a result for subsequent queries.

4) Gather all partial results and determine which frame is
most consistently returned as result.

5) Send a full query to the robot that has observed that
frame for geometric verification.

The last step involving geometric verification serves the
purpose of rejecting false positives of the method and can
at the same time be used to establish relative pose between
the query and matched image frames. We have shown that
this methods results in a bandwidth reduction of up to n
(depending on the network infrastructure), while reducing
recall by 10 — 20% depending on the robot count. A lot of
the recall reduction is due to steps 3) and 4) of the method,
which are based on a simplifying assumption that we do not
yet fully understand. See Sec. IV C. and Fig. 4 of [20] for
a detailed discussion.

B. Full image descriptor method

Here, we instead propose to use a full-image descriptor
place recognition method as a basis. In particular, we use
the recent, deep-learning based NetVLAD method [9] which
has been shown to perform excellently even under severe
appearance and viewpoint changes. Indeed, as can be seen
in the centralized evaluation of this method (Fig. , its recall
qualitatively looks better than the one of the BoW method
we used in [20]. NetVLAD uses a deep neural network to
calculate a low-dimensional feature vector 7 € R? from an
input image. Place matches can then be found by looking
for the nearest vectors of other images according to the /o
distance.

This method can now efficiently be decentralized in the
following way:
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Fig. 2. On the right, the confusion matrix for a centralized evaluation
of the KITTI 00 dataset with 20 subtrajectories, using NetVLAD [9]. The
threshold is manually selected and no geometric verification is performed.
NetVLAD exhibits a visibly larger recall than the bag-of-words method we
used in [20], on the left. The dots on the diagonal indicate place matches on
the boundaries between sub-trajectories. Matches within the same trajectory
are excluded.

1) Before deployment, cluster the feature vector space and
assign each cluster center to a robot.

2) When querying place recognition of an image frame,
calculate the feature vector and send it as query to only
the robot assigned to the corresponding cluster.

3) That robot processes the query, stores it for future
reference, and replies with the best matching frame
identifier.

4) Send a full query to the robot that has observed that
frame for geometric verification.

Similarly to our previous method, the last step rejects false
positives and provides a method to find the relative pose
between the query and matched image frames. Evidently,
this method is less complex than the one proposed in [20]:
before geometric verification, data is sent to only one robot,
and no assumptions on the fidelity of partial responses are
made. As for the geometric verification query, it is with the
new method possible to skip it if the NetVLAD distance
of step 3) exceeds a certain threshold, resulting in further
bandwidth reduction at the cost of potentially reduced recall.
We use k-means clustering as clustering method for step 1).

It is essential to note that every query that is sent to
a robot is stored to the place recognition database of that
robot for retrieval in future relevant queries. In [20], we
have referred to this as add-querying. Since we assume that
the robots constantly send place recognition queries, at any
given time all places seen up to that time will be stored in
the place recognition database of the appropriate robot. This
is even robust to message delay: two queries of the same
place sent by different robots will both arrive at some point
at the robot responsible for that place, independently of the
message delay, so at least one of the two robots will be
notified of the place match.

C. Mitigating poor load balancing

Clustering the image feature space should ideally be done
on a very general dataset, in order to account for deployment
in many different environments. Deployment, on the other
hand, can often occur in very specific environments, which

Feature distributions
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Fig. 3. The bad load balancing during evaluation can be explained by
the difference in distribution of the image features. This is the distribution
of the first two dimensions for the training and testing data. Training data
should be more general / cover more environments than the deployment
data, which could come from only a very specific kind of environment.
The superimposed k-means clustering is not an actual clustering used in
our method, but a 2D k-means clustering that serves as illustration. As we
can see, clustering the training data can result in an uneven distribution
of features among clusters at deployment time. This leads to poor load
balancing.

only constitute a subset of the general, trained descriptor
space, see Fig.[3] This poses an interesting problem: because
the features at deployment time only come from a subspace
of the trained feature space, there will be some clusters
that will contain only very little features at deployment
time, while other clusters will contain disproportionally many
features from deployment time. In practice, this should
translate in poor load balancing, since the robots assigned
to the clusters with many features will have to handle much
more queries than the other robots, which reduces scalability
of the approach.

To mitigate this poor load balancing we propose to instead
train several clusters per robot, and randomly assign the
clusters to robots. This should distribute the robot’s respon-
sibilities in the feature space more evenly, and ensure that
all robots are assigned features, even in narrow subspaces.
However, this comes at the cost of increasing the amount
of cluster boundaries, and, with that, the possibility that a
matching pair of features is not in the same cluster. This
would result in those features not being possible to match,
and thus reduce recall.

IV. EXPERIMENTS

Unlike in [20] we do not actully implement the method
on multiple processes. It is evident form the method that it
needs n times less data exchange than if all queries were sent
to all robots. To evaluate the place recognition performance
the method would have if deployed on a group of robots,
we simply exclude all images that are not in the same
cluster as the query from the pool of possible responses
to a query. Furthermore, we evaluate our method without
geometric verification, again unlike in [20]. Evaluation with
geometric verification is on one hand closer to practical
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Fig. 4. We evaluate the place recognition performance using the area-

under-curve measure (AUC) of the precision-recall curve, since we do not
apply geometric verification. As we can see, NetVLAD exhibits excellent
precision for the most part. We furthermore see how the clustering of the
decentralized method results in reduced recall. This instance of decentralized
place recognition has been run with 20 robots.
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Fig. 5. The subtrajectories resulting from splitting KITTI 00 into 20 parts.

deployment, but on the other hand contaminates the results
with the performance of the used geometric verification
implementation. To provide a fair evaluation, we evaluate
precision and recall for all possible feature vector distance
thresholds and consider the area under that curve (AUC)
as metric for place recognition performance, see Fig. [
We use then NetVLAD feature vector dimension d = 128
(tunable thanks to a final layer that does principal component
analysis). The clustering is trained on image data from the
Oxford RobotCar dataset [11] and the method is evaluated
on KITTI 00 [10] by splitting the sequence into n sub-
sequences, one per robot, see Fig. [5]

We first evaluate the method in general, and show how it
performs as we increase the number of robots. At the same
time, we show how load balancing behaves as we increase
the amount of robots. Then, we evaluate how using several
clusters per robot can improve load balancing at the cost of
performance.

V. RESULTS

Fig. [6] shows relative AUC (decentralized to centralized)
of the method when applied to groups of n € [2,20] robots.
Recall suffers if the true match of a query is not in the same
cluster as the query. It would seem that the performance of

Relative AUC / worst balance ratio 5

0.98

0.96

0.94

0.92

worst balance ratio

0.9

relative AUC (decentr. / centr.)

5 10 15 20
robot count

Fig. 6. Relative AUC (decentralized to centralized) and worst balance ratio
of our method for different robot counts. The worst balance ratio is the ratio
of the busy-ness of the most queried robot compared to what it would be
if the feature-to-cluster assignments were perfectly balanced. Results are
averaged over 10 runs and dots indicate the results of the individual runs.

the decentralized NetVLAD method is only marginally better
than the performance of the decentralized BoW method (see
Fig. 7 in [20]). Consider however that as qualitatively seen in
Fig.[2l NetVLAD already has a higher recall than BoW in the
first place. Furthermore, the method uses far less bandwidth
for its distributed query than the BoW method. Recall from
Table II in [20] that its distributed query size is 16 kilobytes
plus overhead from sending the query to n robots. This
method, when using single precision, only needs d x 4 bytes
per query, so 512 bytes with d = 128, plus overhead from
only sending to one robot.

In Fig. [6] we furthermore report the worst balance ratio,
a measure for how much more queries the busiest robot
receives compared to how much it would receive if the
queries were perfectly balanced. The experiments confirm
the bad balancing discussed in Section[[II-C} As we can see,
the busiest robot handles up to half of all queries!

Fig. [7| shows how both load balancing improves and per-
formance depreciates as we increase the amount of clusters
in the system.

VI. CONCLUSION

In this short paper, we have proposed an improvement
over our previous work on decentralized place recognition
[20]. The new method relies on recent, machine-learned full
image descriptors and k-means clustering. We have explored
how a problem of bad load balancing can arise when training
and deployment feature distributions differ, and have shown
how this problem can be mitigated by sacrificing some
performance. Our method enables decentralized visual place
recognition by sending only a lightweight query to a single
other robot in the robot team. If a place is matched, a second
query can be sent to the robot who observed the matching
place for geometric verification.
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