
Department of Informatics, University of Zürich

BSc Thesis

Implementing a disk-resident spatial
index structure (Quadtree)

Freddy Panakkal
Place of birth: Schaffhausen, Switzerland

Matrikelnummer: 12-737-813

Email: freddy.panakkal@uzh.ch

June 10, 2016
supervised by Prof. Dr. M. Böhlen and G. Garmpis

Acknowledgements

Most of all, I would like to thank my supervisor Georgios Garmpis for his helpful support,
and for the feedback and guidance he provided. Also, I would like to thank Prof. Dr. Michael
Böhlen for giving me the opportunity to write my bachelor thesis at the Database Technology
Group of the University of Zurich.

ii

Abstract

In the last decades more and more systems are dealing with multi-dimensional data. An ex-
ample for such a system are the geographic information systems (GIS), like Google Maps or
PostGIS, that store, manipulate and analyze geographic data. It is the task of the underlying
database to deal with such huge amount of geographic information. One way to deal with
multi-dimensional data is by using a tree data structure like the quadtree. A quadtree works
similar to a binary tree but it is designed for two-dimensional data. This thesis discusses the
implementation of a disk-resident quadtree and analyzes the efficiency of a quadtree. For this
purpose, a buffer manager has been implemented and a quadtree on top of it. By performing
different experiments, good and bad scenarios of using a quadtree and a buffer manager are
demonstrated.

iii

Zusammenfassung

In den letzten Jahrzehnten entstanden immer mehr Systeme, welche mit mehrdimension-
alen Daten arbeiten. Geoinformationssysteme (GIS), wie Google Maps oder PostGIS, sind
Beispiele für solche Systeme, mit welchen geographische Daten erfasst, bearbeitet und
analysiert werden. Eine Anforderung an solche Systeme ist die effiziente Handhabung riesiger
Mengen mehrdimensionaler Daten. Eine Möglichkeit mehrdimensionaler Daten strukturiert
abzulegen ist mittels einer Baumstruktur, wie einem Quadtree. Quadtrees funktionieren ähn-
lich wie Binärbäume, jedoch mit zweidimensionalen Schlüsseln. Diese Arbeit befasst sich mit
der plattenresidenten Implementierung eines Quadtrees und der Analyse der Performance. Zu
diesem Zweck wurde zuerst ein Buffer Manager implementiert und aufbauend auf diesem der
Quadtree. Durch verschiedene Experimente werden sowohl gute als auch schlechte Szenarien
dieser Implementierung aufgezeigt.

iv

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Problem statement . 1
1.3 Thesis Outline . 1

2 Related Work 3
2.1 Quadtree . 3

2.1.1 Definition . 3
2.1.2 Insertion . 3
2.1.3 Balancing . 4
2.1.4 Region Search . 6
2.1.5 Evaluation . 7

2.2 Paging . 8

3 Implementation 9
3.1 Buffer Manager . 9

3.1.1 The file structure . 9
3.1.2 The class OpenFile . 10
3.1.3 The class Page . 10
3.1.4 The class ErrorManager . 11
3.1.5 The class BufferManager . 11

3.2 Quadtree . 20
3.2.1 The file structure . 20
3.2.2 The class QTreeHeader . 20
3.2.3 The class QErrorManager . 22
3.2.4 The class OpenScan . 22
3.2.5 The class QTree . 23

4 Experiments 33
4.1 Experiments focusing on the quadtree . 33
4.2 Experiments focusing on the buffer manager 34

5 Results 35
5.1 Results of quadtree experiments . 35

5.1.1 Insertion . 35
5.1.2 Search . 38

v

5.2 Results of buffer manager experiments . 38
5.2.1 Insertion . 39
5.2.2 Search . 41

6 Summary and Conclusion 42

vi

List of Figures

2.1 Example of a quadtree; the mapping and the tree structure 4
2.2 Unbalanced and balanced quadtree . 5
2.3 Double balance: unbalanced and balanced leaf 5
2.4 Single balance: unbalanced and balanced leaf 6

3.1 Buffer Manager - UML class diagram . 10
3.2 Structure of a file . 11
3.3 Error codes of the buffer manager . 11
3.4 Quadtree - UML class diagram . 21
3.5 File structure of a quadtree file . 22
3.6 Error codes of the quadtree . 22

5.1 Insertion - different input sizes . 37
5.2 Quadtrees generated with sorted points . 38
5.3 Search - different input sizes . 39
5.4 Insertion - different block sizes . 40
5.5 Search - different block sizes . 41

vii

List of Tables

4.1 Experiments with different input size . 34
4.2 Experiments with fixed number of pages . 34
4.3 Experiments with fixed buffer size . 34

viii

1 Introduction

1.1 Motivation
Nowadays, there are many applications which are using spatial data. Systems that are designed
to store, manipulate, analyze etc. geographic data are called geographic information systems
(GIS). Google Maps or PostGIS are examples for GIS. There are also many custom-designed
GIS for firms for their electrical grids, rails, installed systems etc. The performance of such
applications is crucial for end users.
There are different data structures which are designed to handle big amounts of spatial data.
One of them is the quadtree. A quadtree works similar to a binary tree. But instead of using
a one-dimensional key, the quadtree is designed for two-dimensional keys like coordinates.
Because of the nature of quadtree, they are predestined for range searches [FB74]. Finkel and
Bentley [FB74] invented quadtree and performed some experiments in insertions and range
searches for small numbers of points. Experiments for more points might be very interesting,
since building tree structures makes sense for big data.
At present there are not many in-memory databases. Most databases store their data in disk
and load the needed part into memory. For this a buffer manager is used, which loads only
a part of disk resident data to the buffer in memory. With a predefined strategy the buffer
manager tries to minimize the I/O operations on the disk.
A system which handles multi-dimensional data usually has on the one hand large data sets
and on the other hand limited main memory. Therefore, it would be interesting to implement
a quadtree on top of a buffer manager and observe the impacts of this combination.

1.2 Problem statement
The focus of this thesis is to show advantages and disadvantages of a quadtree implemented
on top of a buffer manager. For this purpose, first a buffer manager and second a quadtree
are implemented. By using this implementation of a disk-resident quadtree for several exper-
iments on insertions and searches, good and bad scenarios are demonstrated. These scenarios
are detected by varying different parameters of both the buffer manager and the quadtree.

1.3 Thesis Outline
This thesis is structured as follows. In Chapter 2 the related work is presented. The nature
of a quadtree according to Finkel and Bentley [FB74] and the function of a buffer manager
is explained. In the following Chapter 3 the implementation of the buffer manager and the

1

quadtree are discussed. Chapter 4 describes the design of the experiments. In Chapter 5 the
results of the experiments are presented and discussed. Finally, in Chapter 6, the thesis is
summarized and reflected.

2

2 Related Work

2.1 Quadtree
In this section, the definition of a quadtree according to Finkel and Bentley [FB74] is de-
scribed. The quadtree described by Finkel and Bentley [FB74] and used in this thesis is
also called point quadtree [Sam84] since it is focused on storing only points and not other
more complicated data types like lines and regions. There are also different modifications of
quadtrees so for example the region quadtree [SW84] or the edge quadtree [Shn81], but this
modifications are not discussed in this thesis.

2.1.1 Definition
Quadtree is a tree data structure for storing data with two-dimensional keys. It is an adaptation
of binary tree. Coordinates are an example for such two-dimensional keys. In point quadtree
every node stores exactly one record and has four child nodes. A node divides the space into
four quadrants. These quadrants are bordered by a vertical and a horizontal axis specified
by the point of the node. Each child node corresponds to one of the four quadrants and is
referred with the intercardinal directions NE, NW, SW, SE.
The first inserted node is stored as the root of the quadtree and divides the plane into four
quadrants. The next inserted node is assigned to one of the four child nodes of the root.
According to the relative position of the new node to the root, it is assigned to the matching
child node of the root. For example, in case the matching child node is already occupied by
another node, the whole procedure is repeated recursively for this matching child node instead
of the root until an unoccupied child node is found. The algorithm for insertion is explained
in more detail in the next section.

2.1.2 Insertion
The first node inserted into a quadtree is the root. Algorithm 1 describes the way of inserting
a new node K into a quadtree with root R [FB74]. First, the function compare is used to
specify in which of the four quadrants K lies and the result is stored in the integer called
direction. direction equals 1 means NE, 2 means NW, 3 means SW and 4 means SE.
Next it is checked if there is already a node assigned at the child specified by direction.
If yes, the procedure is repeated with the subtree. For this, the corresponding child node is
handled as root R and the new direction of K to R is checked. This is done until a R with an
unassigned child node at position direction is found. As soon as this has been found, K is

3

assigned as the corresponding child of R.

Data: NODE K; ROOT R
Result: Node K inserted in quadtree with root R
INTEGER DIRECTION; COMMENT: Direction from parent to child, i.e.1,2,3, or 4;
DIRECTION ← COMPARE(R;K);
while R[DIRECTION] 6= NULL do

COMMENT: Each iteration dives one level deeper;
R← R[DIRECTION];
DIRECTION ← COMPARE(R;K);
if DIRECTION = 0 then

RETURN; COMMENT: Node already exists;
end

end
R[DIRECTION]← K;

Algorithm 1: Insertion
Figure 2.1 illustrates a quadtree generated by inserting seven points in the following order:

A,B,C,D,E,F,G. On the right side of the figure the tree structure is shown with the root (A) and
all the child nodes. How the space is divided into quadrants by the seven points is illustrated
on the left side of the figure.

A

B

C

D

E

F

G

A

C E B

F D

G

Figure 2.1: Example of a quadtree; the mapping and the tree structure

2.1.3 Balancing
Using the aforementioned insertion algorithm by Finkel and Bentley [FB74] can result in an
unbalanced quadtree. The more unbalanced a tree gets, the deeper will be the structure of this
tree. The depth of a node is defined as the number of ancestors of this node and therefore the
number of edges from the node to the root [GTM07]. The biggest depth is also referred as the
height of the tree. A tree is balanced if it has the minimum possible height. Therefore, the
height of a balanced tree can not be lowered by rearranging its nodes. A balanced tree has the

4

advantage that on average less nodes have to be visited in order to find a node. So insertions
and searches can be done more efficiently. Figure 2.2 shows two quadtrees with the exact
same points; on the left an unbalanced tree and on the right a balanced one.

G

DAB

A

B

D

G

Figure 2.2: Unbalanced and balanced quadtree

To avoid unbalanced trees Finkel and Bentley [FB74] described a method to balance the
newly created leaf after an insertion. This does not balance the full tree but only the new leaf.
As it only balances leaves this method does not result in a fully balanced tree but reduces the
average depth of nodes. This simple balancing algorithm described by Finkel and Bentley
[FB74] can only be applied if the parent of the new node and the parent of the parent have
exactly one child node assigned. In this case the three nodes can be rearranged so that the
subtree is more balanced. Two types of balancing are defined; single balance and double
balance. Assume three nodes A, B, D, where D is child of B and B child of A. Double balance
is when D lies within the rectangle set by corners in A and B. In this case the node D is
rearranged to the position of A and A and B are set as D’s children. Figure 2.3 illustrates this
double balance. Single balance is if D does not lie within the rectangle bounded by A and B. In
this case B takes the position of A and A and C are assigned as its children. This single balance
is illustrated in Figure 2.4.

A

D

B

A

D

B

Figure 2.3: Double balance: unbalanced and balanced leaf

5

A

B

D

A

B

D

Figure 2.4: Single balance: unbalanced and balanced leaf

2.1.4 Region Search
Finkel and Bentley [FB74] described an algorithm to get all nodes which lay in a specified
rectangular region. Starting from the root only those child nodes, whose regions overlap the
search rectangle are processed. So in a recursive way, all nodes are found without processing
every single node.
Algorithm 2 illustrates the way how all nodes within a region can be found. The input for
a search is the root P of the quadtree and the region to be searched, bounded by the four
values L(left), R(right), B(bottom), T(top). At first, the root is checked by taking the x and y
coordinates of P. If x is between L and R and y between B and T, P lies in the search region
and is returned. Next all four quadrants are checked to determine if their region overlap
the search rectangle. If a quadrant does not overlap the search rectangle, the corresponding
subtree contains no relevant nodes for the search. But if a quadrant overlaps the rectangle
the corresponding subtree is searched recursively. For this a new region search with the
corresponding child node as root is started. The rectangle of this search is the intersection of
the prior search rectangle and the quadrant of the child node. So, the new region is build by
the x and y coordinates of the prior root and depending the quadrant either the L or R and
either the B and T of the prior search region.

6

Data: ROOT P; REAL L, R, B, T
Result: Find all nodes of quadtree with root P within the window bounded by L (left), R

(right), B (bottom), T (top)
REAL XC, YC; COMMENT: X and Y coordinates of P;
XC ← X(P);
Y C ← Y (P);
if InRegion(XC, YC) then

Found(P);
end
if P[1] 6= NULL and RectangeOverlapsRegion(XC, R, YC, T) then

RegionSearch(P[1], XC, R, YC, T)
end
if P[2] 6= NULL and RectangeOverlapsRegion(L, XC, YC, T) then

RegionSearch(P[2], L, XC, YC, T)
end
if P[3] 6= NULL and RectangeOverlapsRegion(L, XC, B, YC) then

RegionSearch(P[3], L, XC, B, YC)
end
if P[4] 6= NULL and RectangeOverlapsRegion(XC, R, B, YC) then

RegionSearch(P[4], XC, R, B, YC)
end

Algorithm 2: Region Search

2.1.5 Evaluation
Finkel and Bentley [FB74] tested both the insertion and region search and collected various
quantitative data. The insertion was tested with uniformly distributed random points and with
tree sizes varying from 25 nodes until 10’000 nodes. The total path length (sum of depth of
all nodes) and its standard deviation of the resulting trees were reported for these experiments.
This was done for the simple insertion and the insertion with leaf-balancing. The experiments
showed that the average path length of a quadtree with N points is roughly proportional to log
N. They conclude that for searching one point in the quadtree can be expected to take log N
probes. These experiments also showed that the insertion with balancing led to lower average
path length than the insertion without balancing.
For the experiments with the region search, they randomly generated quadtrees for six tree
sizes ranging from 125 nodes to 4000 nodes. These quadtrees were used for the region
searches. Randomly generated rectangles with in total six different edge sizes were used as
search regions. For every region search the number of visited nodes and the number of found
were documented. Finkel and Bentley [FB74] conclude that the insertion algorithm yields N
log N performance for random keys and that region searching is quite efficient. They also state
that the concept of a quadtree can easily be adapted to any number of dimensions.

7

2.2 Paging
The records of a database must be stored physically on some storage medium [EN10]. There
are different types of storage with different advantages and disadvantages. Storage media form
a storage hierarchy depending their access time and capacity, which includes two main cate-
gories. Primary storage is very fast and the CPU can operate on it directly. But the capacity is
very limited and it is very costly. Main memory is an example of a primary storage. The other
main category is secondary storage like disk storage. It is slower than primary storage but has
a larger capacity and is cheaper.
A database management system deals with storage media on different levels. Data is usually
too large to fit entirely in main memory [EN10]. Paging is used to retrieve and modify data in
main memory but store it on disk space. Data on disk is partitioned into fixed-length blocks.
When the user or system wants to access a block the first time, the corresponding block is
copied from the disk to a page in memory. A page in memory holds the space for one full
block. Normally there is a fixed number of pages. All these pages together can also be seen as
the buffer. So if a block is requested, first it is checked, if the block is in the buffer. If yes, the
page in memory is accessed and there is no need to make a read in the disk. If it is not found in
the buffer, then the block in the disk is copied to the buffer, which is also called effective read.
If a write of a block is requested, the writing is done in a page in memory. It is not written to
the disk immediately. The moment this page has to be freed (i.e. before shut down or to be
replaced by another block) it is written to the disk, this is called effective write.
If all pages are filled and a new block from the disk is requested, the system empties the most
dispensable page. There are several techniques for this page replacement, like first-in/first-out,
least recently used or not frequently used. The least recently used (LRU) page replacement
algorithm, which is also used for the implementation, replaces the page which was the least
used by the system. According to the principle of locality (related storage locations are fre-
quently accessed) effective reads and writes are expected to be much less than the requested
ones. So using such a memory buffer disk I/O operations are reduced significantly.

8

3 Implementation

In order to use and test the quadtree index structure also for a big number of nodes, first a
buffer manager has been implemented. This buffer manager is implemented in a way that it
could also be used for other purposes than for a quadtree. In a second step, the quadtree logic
has been implemented on top of the buffer manager. All the coding is done in C++.

3.1 Buffer Manager
The buffer manager is designed to create and handle files that do not entirely fit into memory.
These files are partitioned into blocks of fixed size. The maximum number of blocks that can
be loaded in memory at the same time is specified at the initialization of the buffer manager.
The buffer manager provides functions to (i) create, (ii) open, (iii) close and (iv) delete files
and also to (v) add, (vi) read, (vii) write and (viii) delete blocks. For this four classes are
implemented. Figure 3.1 shows the UML class diagram of the buffer manager.
The buffer manager uses the LRU procedure as replacement policy. The LRU replacement
policy can be briefly descried as follows. There exists a global LRU counter initialized to 1
and every time a block is accessed (read or written) the value of the global LRU counter is
assigned to this page and the global LRU counter is increased. If a page is requested and all
pages are already used, the page with the lowest LRU value is replaced.

3.1.1 The file structure
A file created by the buffer manager is partitioned into blocks. It begins with a header block,
which does not store content of the file. The header block stores the number of blocks the file
has (numberOfBlocks) and a bitmap to know which blocks are valid (validBlocks).
This bitmap is provided by the library <bitset>. The size of this header block depends on
the global constant MAXBLOCKS, which determines the maximum number of blocks a file can
contain so it also specifies the size of the bitmap. After the header block there is a second
general purpose header block, which has the same size as the first header block. The second
header can be used for any purposes, for example to store additional information about the file.
The second header block is needed for the quadtree and is described later. After the second
header block the actual content blocks are stored. These blocks have a fixed length, which
is specified at initialization of the buffer manager. The maximum number of data blocks is
restricted by the constant MAXBLOCKS. Figure 3.2 illustrates the structure of a file. In the
example it can be seen, that the first header block contains the number of blocks and the
bitmap. The file has four data blocks but only three of them are valid according to the bitmap.
Because the size of the bitmap is ten, the maximum number of data blocks this file can have is

9

Figure 3.1: Buffer Manager - UML class diagram

ten. After the first header there is the second header which is not used by the buffer manager.
Next there are the data blocks one by one.

3.1.2 The class OpenFile
The buffer manager can handle multiple files at the same time. The maximum number of
open files can be defined at the initialization of the buffer manager. The class OpenFile
represents one open file and stores information about that one file. It stores (i) the name of
the file in fileName, (ii) the file descriptor fileDesc of the file provided by the library
<fstream>, (iii) a boolean called valid to know if the file is valid and (iv) the header
information of the file; numOfBlocks and validBlocks. The buffer manager stores an
array of OpenFile to store information of all open files.

3.1.3 The class Page
The buffer manager can store a predefined amount of blocks. For this purpose, the buffer
manager holds an array of the class Page. The class Page stores information of an in memory
loaded block: (i) blockPointer pointing to the block in memory; (ii) fileId which is
the index value of the file to the array openFiles; (iii) blockId which is the index value
of the corresponding block; (iv) boolean valid to know if this page is valid; (v) boolean
dirty to know if the content of the block has been changed in memory but not flushed back
to the file; (vi) usedLRUCounter, the assigned LRU value of this page.

10

4 1101000000

file

1st header block 2nd header block Block #0 Block #1 Block #2 Block #3

Pete:
1022

Marc:
345

Mike:
166

Tyson:
456

valid
block

valid
block

invalid
block

valid
block

number
of

blocks

bitmap

Figure 3.2: Structure of a file

3.1.4 The class ErrorManager
The class errorManager is implemented to handle the errors which could occur during run
time. It simply holds a variable called err of the enumeration type ErrorCode to store
the current error state. First, err is set to the state OK. As soon an error occurs err is set
to the corresponding error state with the setter function by the buffer manager. For example,
if a file which does not exist is tried to be opened, the error code FileNotExists is set.
Then automatically the corresponding error message is printed out to the console. The current
error state can be checked by other classes with the getter function. Figure 3.3 shows all the
possible error codes.

Figure 3.3: Error codes of the buffer manager

3.1.5 The class BufferManager
The class BufferManager uses instances of other classes to handle the actual paging. It
has (i) errorManager for handling the errors, (ii) an array pages of the class Page
and (iii) an array openFiles of the class openFile. In addition, it holds integers (iv)
maxOpenFiles and (v) maxLoadedBlocks to store the size of openFiles and pages.
Also there is (vi) a parameter for storing the size of blocks called blockSize. The (vii)

11

counter lruCounter is the global LRU counter and initialized with 1. Also (viii) the size
of the header blocks in bytes is stored in a parameter called headerSize. headerSize is
calculated in the constructor.
The following functions are provided by the class BufferManager as public functions: (i)
a constructor, which initializes the different size parameters; functions to (ii) create a binary
file readable for the buffer manager, (iii) to open an existing file, (iv) to close an open file and
(v) to delete a file; and functions (vi) to read a block, (vii) to add a block and (viii) to write
a block. There are also a (ix) getter and (x) setter function to access the second header of the
file (readSecondHeader; writeSecondHeader), which can be used by other classes.
All these functions are described in detail in the following sections.

The constructor

The constructor of the buffer manager takes three input arguments that are used to initialize
(i) maxOpenFiles, (ii) blockSize and (iii) maxLoadedBlocks. All three parameters
have a default value. The input arguments are checked and if they have an invalid value, they
are set to the default values. After this, headerSize is calculated, so the header is big
enough to store all necessary information. At the end the arrays pages and openFiles are
initialized and the memory space for the pages is allocated.

Buffe rManager : : Buf fe rManager (i n t maxOpenFiles_ , i n t b l o c k S i z e _ , i n t
maxLoadedBlocks_) : maxOpenFi les (maxOpenFi les_) , b l o c k S i z e (b l o c k S i z e _)
, maxLoadedBlocks (maxLoadedBlocks_) {
i f (maxOpenFi les < 1) maxOpenFi les = 1 ;
i f (b l o c k S i z e < 100) b l o c k S i z e = 100 ;
i f (maxLoadedBlocks < 3) b l o c k S i z e = 3 ;

/ / C a l c u l a t e s i z e o f header
h e a d e r S i z e = 3∗ s i z e o f (i n t) + s i z e o f (b i t s e t <MAXBLOCKS>) ;

/ / I n i t i a l i z e a r r a y s
pages = new Page [maxLoadedBlocks] ;
o p e n F i l e s = new OpenFi l e [maxOpenFi les] ;

/ / A l l o c a t e memory f o r pages
f o r (i n t i = 0 ; i < maxLoadedBlocks ; i ++) {

pages [i] . b l o c k P o i n t e r = m a l l oc (b l o c k S i z e) ;
}

} ;

createFile

The function createFile creates a binary file, which can be read and written by the buffer
manager. It takes one input argument fileName for the name of the file. This function only
creates the file. To use this newly created file with the buffer manager the file has to be opened
after being created.
When this function is called, at first the buffer manager checks if there is already a file with this
name. If so the corresponding error code is set in errorManager, which then automatically

12

prints an error message to the console, and the function stops.
If no error occurs the file is created, the number of blocks and the bitmap (both initialized with
zeros) are written to the file using the <fstream> library. After that the file is closed.

void Buffe rManager : : c r e a t e F i l e (char ∗ f i l eName) {

/ / Check i f f i l e e x i s t s a l r e a d y
i f (f i l e E x i s t s (f i l eName)) {

e r r o r M a n a g e r . s e tCode (F i l e A l r e a d y E x i s t s) ;
re turn ;

}
/ / Cr ea t e f i l e
f s t r e a m n e w f i l e ;
n e w f i l e . open (f i leName , i o s : : b i n a r y | i o s : : o u t) ;

/ / W r i t e header i n f o r m a t i o n t o a new f i l e
i n t headerNumberOfBlocks = 0 ;
b i t s e t <MAXBLOCKS> headerBi tMap ;
n e w f i l e . w r i t e ((char ∗)&headerNumberOfBlocks , s i z e o f (i n t)) ;
n e w f i l e . w r i t e ((char ∗)&headerBi tMap , s i z e o f (b i t s e t <MAXBLOCKS>)) ;

n e w f i l e . c l o s e () ;
} ;

openFile

To open a file with the buffer manager the function openFile is implemented. The first
input arguments fileName identifies the file, the second argument fileId is a pointer to
an integer. This pointer is used to return the index value of the file in openFiles, which is
needed for further actions to refer to the correct open file.
When the function is called, the buffer manager checks if a file with the name exists and
if it is already open by the buffer manager. If everything is ok, an invalid OpenFile in
the openFiles array is searched. After one has been found the file is opened. Then all
OpenFile variables are updated: fileName is assigned and the header of the file is copied
to numberOfBlocks and validBlocks. At the end the OpenFile variable valid is
set to 1 and fileId is returned by assigning the position of the file in the openFiles array
to the argument fileId.

void Buffe rManager : : o p e n F i l e (char ∗ f i leName , i n t ∗ f i l e I d) {

/ / Check i f f i l e e x i s t s
i f (! f i l e E x i s t s (f i l eName)) {

e r r o r M a n a g e r . s e tCode (F i l e N o t E x i s t s) ;
∗ f i l e I d = −1;
re turn ;

}
/ / Check i f f i l e i s a l r e a d y open
i f (f i n d O p e n F i l e (f i l eName) != −1) {

e r r o r M a n a g e r . s e tCode (F i l e A l r e a d y O p e n) ;
∗ f i l e I d = f i n d O p e n F i l e (f i l eName) ;

13

re turn ;
}
/ / Find empty e n t r y i n o p e n F i l e s and load f i l e i n f o r m a t i o n t o

o p e n F i l e s
i n t i = f indEmptyOpenF i l e () ;
i f (i == −1) {

e r r o r M a n a g e r . s e tCode (MaxOpenFilesReached) ;
re turn ;

}
o p e n F i l e s [i] . f i l e D e s c . open (f i leName , i o s : : b i n a r y | i o s : : i n | i o s

: : o u t) ;

o p e n F i l e s [i] . f i l eName = f i l eName ;
o p e n F i l e s [i] . f i l e D e s c . r e a d ((char ∗)&o p e n F i l e s [i] . numOfBlocks ,

s i z e o f (i n t)) ;
o p e n F i l e s [i] . f i l e D e s c . r e a d ((char ∗)&o p e n F i l e s [i] . v a l i d B l o c k s ,

s i z e o f (b i t s e t <MAXBLOCKS>)) ;
o p e n F i l e s [i] . v a l i d = 1 ;

∗ f i l e I d = i ;
} ;

addBlock

The function addBlock is implemented to add a new block to an open file. It adds a
new empty block to the file. This function has two input arguments, (i) fileId and (ii)
blockId. fileId is needed to refer to the correct file, as there can be more than one open
files. blockId, a pointer to an integer, is used to return the index value of the new block in
the file. Only using the correct id, the block can later be accessed.
First, this function checks if fileId is valid. Then an invalid block in the file is searched
in validBlocks. If for this a new block is added at the end of the file, the counter
numberOfBlocks is increased by 1. The corresponding bit in validBlocks is set to
1 to mark this block as valid. Then a page is requested. The function getFreePage returns
the position of an empty page in pages. This function is explained in more detail later. Then
the page variables are updated: blockId, fileId and valid. The variable dirty is
set to 1, so even if the block stays empty it is eventually written to the file and can later be
accessed without reading beyond the end of the file. The value of lruCounter is assigned
to usedLruCounter of the page. The global variable lruCounter is then increased by
one.

void Buffe rManager : : addBlock (i n t f i l e I d , i n t ∗ b l o c k I d) {

/ / Check i f f i l e I d i s v a l i d
i f (f i l e I d < 0 | | f i l e I d > maxOpenFi les | | o p e n F i l e s [f i l e I d] .

v a l i d == f a l s e) {
e r r o r M a n a g e r . s e tCode (F i l e I d N o t C o r r e c t) ;
∗ b l o c k I d = −1;
re turn ;

}

14

/ / Find empty b l o c k i n f i l e
i n t i = f indEmptyBlock (f i l e I d) ;
i f (i == −1) {

e r r o r M a n a g e r . s e tCode (MaximumBlocksPerFi leReached) ;
∗ b l o c k I d = −1;
re turn ;

}
/ / Update numOfBlocks
i f (i + 1 > o p e n F i l e s [f i l e I d] . numOfBlocks) {

o p e n F i l e s [f i l e I d] . numOfBlocks ++;
}
o p e n F i l e s [f i l e I d] . v a l i d B l o c k s [i] = 1 ;
∗ b l o c k I d = i ;
/ / Cr ea t e Page
i n t p ag e I d = g e t F r e e P a g e () ;
pages [p ag e I d] . b l o c k I d = i ;
pages [p ag e I d] . f i l e I d = f i l e I d ;
pages [p ag e I d] . d i r t y = 1 ;
pages [p ag e I d] . v a l i d = 1 ;
pages [p ag e I d] . u s e d L r u C o u n t e r = l r u C o u n t e r ++;

} ;

readBlock

The function readBlock provides the function to read data from a block. This func-
tion has three input arguments; (i) fileId, (ii) blockId and (iii) blockPointer.
fileId and blockId are needed to identify and locate the requested block. Input argu-
ment blockPointer should point to separate memory. The requested block is then copied
to the memory pointed by the blockPointer. That means the read requestor has to assure
to allocate memory of at least blockSize. By returning only a copy of the block, the re-
questor can not make changes directly to the buffered blocks without using the writeBlock
function provided by the buffer manager. This way the page variable dirty is always correct.
First, fileId and blockId is checked. After that, it is checked if the requested block is
already loaded in pages. If so, the block of the page is copied to the memory pointed by the
blockPointer of the input argument and the usedLruCounter of that page is updated.
If not, a page is requested with the getFreePage function. The variables of the empty page
are updated the same way like in the addBlock function except the variable dirty, this is
set to 0, since the block in the file and in the page do not differ. Then the block in the file is
copied to the memory of the page. For this, the file is read from the beginning of the requested
block. After this, the block is copied to the memory pointed by blockPointer of the input
argument.

void Buffe rManager : : r e a d B l o c k (i n t f i l e I d , i n t b l o c k I d , void ∗
b l o c k P o i n t e r) {

/ / Check i f f i l e I d i s v a l i d
i f (f i l e I d < 0 | | f i l e I d > maxOpenFi les | | o p e n F i l e s [f i l e I d] .

v a l i d == f a l s e) {
e r r o r M a n a g e r . s e tCode (F i l e I d N o t C o r r e c t) ;

15

re turn ;
}
/ / Check i f b l o c k i s v a l i d
i f (b l o c k I d < 0 | | b l o c k I d >= o p e n F i l e s [f i l e I d] . numOfBlocks | |

o p e n F i l e s [f i l e I d] . v a l i d B l o c k s [b l o c k I d] == 0) {
e r r o r M a n a g e r . s e tCode (BlockNotVa l id) ;
re turn ;

}
/ / Check i f b l o c k i s a l r e a d y lo ad ed
f o r (i n t i = 0 ; i < maxLoadedBlocks ; i ++) {

i f (pages [i] . v a l i d == t rue && pages [i] . f i l e I d == f i l e I d &&
pages [i] . b l o c k I d == b l o c k I d) {
pages [i] . u s e d L r u C o u n t e r = l r u C o u n t e r ++;
i f ((i n t ∗) b l o c k P o i n t e r == NULL) {

e r r o r M a n a g e r . s e tCode (NoMemAllocated) ;
re turn ;

}
memcpy (b l o c k P o i n t e r , pages [i] . b l o c k P o i n t e r , b l o c k S i z e) ;
re turn ;

}
}
/ / Cr ea t e Page i f b l o c k i s n o t a l r e a d y lo ad ed
i n t p ag e I d = g e t F r e e P a g e () ;
pages [p ag e I d] . b l o c k I d = b l o c k I d ;
pages [p ag e I d] . f i l e I d = f i l e I d ;
pages [p ag e I d] . d i r t y = 0 ;
pages [p ag e I d] . v a l i d = 1 ;
pages [p ag e I d] . u s e d L r u C o u n t e r = l r u C o u n t e r ++;
o p e n F i l e s [f i l e I d] . f i l e D e s c . seekg (2 ∗ h e a d e r S i z e + b l o c k I d ∗

b l o c k S i z e) ;
o p e n F i l e s [f i l e I d] . f i l e D e s c . r e a d ((char ∗) pages [p ag e I d] .

b l o c k P o i n t e r , b l o c k S i z e) ;

i f (b l o c k P o i n t e r == NULL) {
e r r o r M a n a g e r . s e tCode (NoMemAllocated) ;
re turn ;

}
memcpy (b l o c k P o i n t e r , pages [pa ge Id] . b l o c k P o i n t e r , b l o c k S i z e) ;

} ;

writeBlock

The buffer manager provides the function writeBlock to modify an existing block. This
function takes the same three input arguments as the function readBlock; (i) fileId, (ii)
blockId and (iii) blockPointer. fileId and blockId are used to identify the correct
block. The requestor has to pass blockPointer which points to the modified block. By
passing a pointer to a separate block in memory it can be ensured that the requestor can not
modify the blocks directly without using the provided functions.
When the function is called fileId and blockId are checked. Then the requested block is
searched in pages. If the block has not been found a new page is requested with the function

16

getFreePage. So in both cases a page is available. Next the page variables fileId and
blockId are updated. Then the modified block is copied to the memory of the page. Finally,
usedLruCounter is updated and the variables dirty and valid is set to 1.

void Buffe rManager : : w r i t e B l o c k (i n t f i l e I d , i n t b l o c k I d , void ∗
b l o c k P o i n t e r) {

/ / Check i f f i l e I d i s v a l i d
i f (f i l e I d < 0 | | f i l e I d > maxOpenFi les | | o p e n F i l e s [f i l e I d] .

v a l i d == f a l s e) {
e r r o r M a n a g e r . s e tCode (F i l e I d N o t C o r r e c t) ;
re turn ;

}
/ / Check i f b l o c k i s v a l i d
i f (b l o c k I d < 0 | | b l o c k I d >= o p e n F i l e s [f i l e I d] . numOfBlocks | |

o p e n F i l e s [f i l e I d] . v a l i d B l o c k s [b l o c k I d] == 0) {
e r r o r M a n a g e r . s e tCode (BlockNotVa l id) ;
re turn ;

}
/ / Check i f b l o c k i s a l r e a d y lo ad ed
i n t p ag e I d = −1;
f o r (i n t i = 0 ; i < maxLoadedBlocks ; i ++) {

i f (pages [i] . f i l e I d == f i l e I d && pages [i] . b l o c k I d == b l o c k I d
&& pages [i] . v a l i d == t rue) {
p ag e I d = i ;

}
}
/ / I f b l o c k i s n o t a l r e a d y loaded , g e t empty Page
i f (p ag e I d == −1) {

p ag e I d = g e t F r e e P a g e () ;
}
/ / F i l l Page w i t h i n f o r m a t i o n and b lock−c o n t e n t
pages [p ag e I d] . b l o c k I d = b l o c k I d ;
pages [p ag e I d] . f i l e I d = f i l e I d ;
memcpy (pages [p a ge Id] . b l o c k P o i n t e r , b l o c k P o i n t e r , b l o c k S i z e) ;
pages [p ag e I d] . u s e d L r u C o u n t e r = l r u C o u n t e r ++;
pages [p ag e I d] . d i r t y = 1 ;
pages [p ag e I d] . v a l i d = 1 ;

} ;

getFreePage

The function getFreePage returns the position of an empty page in pages. First, pages
is searched for an invalid page. If one has been found, the index value of this page is returned.
If no invalid page has been found, the page with the lowest usedLruCounter is searched.
As soon this page has been found, it is emptied. If the variable dirty is 1, the block is written
to the file in disk. Next, valid and dirty are set to 0. Finally, the index value of the page
is returned.

i n t Buffe rManager : : g e t F r e e P a g e () {
/ / I f empty Page e x i s t s r e t u r n t h i s PageId
f o r (i n t i = 0 ; i < maxLoadedBlocks ; i ++) {

17

i f (pages [i] . v a l i d == f a l s e) {
re turn i ;

}
}
/ / Find Page w i t h l o w e s t u sedLruCoun te r and c l e a r Page
i n t minimum = pages [0] . u s e d L r u C o u n t e r ;
i n t p ag e I d = 0 ;

f o r (i n t i = 0 ; i < maxLoadedBlocks ; i ++) {
i f (pages [i] . u s e d L r u C o u n t e r < minimum) {

minimum = pages [i] . u s e d L r u C o u n t e r ;
p ag e I d = i ;

}
}
i f (pages [p ag e I d] . d i r t y == t rue)

loadBlockToDisk (pages [pa ge I d] . f i l e I d , pages [pa g e I d] . b l o c k I d ,
pages [p ag e I d] . b l o c k P o i n t e r) ;

pages [p ag e I d] . v a l i d = f a l s e ;
pages [p ag e I d] . d i r t y = f a l s e ;

re turn p ag e I d ;
} ;

deleteBlock

The function deleteBlock deletes the block that is identified by the input arguments
fileId and blockId. First, these two arguments are checked for reasonable values. Then
the block is searched in pages. If it has been found, the page is set to invalid. At the end
the block is set to invalid in validBlocks of the OpenFile. The block in the file is not
deleted explicitly to reduce I/O operations. When a new bock is added a previously deleted
block is used.

void Buffe rManager : : d e l e t e B l o c k (i n t f i l e I d , i n t b l o c k I d) {

/ / Check i f f i l e I d i s v a l i d
i f (f i l e I d < 0 | | f i l e I d > maxOpenFi les | | o p e n F i l e s [f i l e I d] .

v a l i d == f a l s e) {
e r r o r M a n a g e r . s e tCode (F i l e I d N o t C o r r e c t) ;
re turn ;

}
/ / Check i f b l o c k i s v a l i d
i f (b l o c k I d < 0 | | b l o c k I d >= o p e n F i l e s [f i l e I d] . numOfBlocks | |

o p e n F i l e s [f i l e I d] . v a l i d B l o c k s [b l o c k I d] == 0) {
e r r o r M a n a g e r . s e tCode (BlockNotVa l id) ;
re turn ;

}
/ / Search b l o c k i n pages and s e t i n v a l i d
f o r (i n t i = 0 ; i < maxLoadedBlocks ; i ++) {

i f (pages [i] . f i l e I d == f i l e I d && pages [i] . b l o c k I d == b l o c k I d
)

18

pages [i] . v a l i d = 0 ;
}
o p e n F i l e s [f i l e I d] . v a l i d B l o c k s [b l o c k I d] = 0 ;

} ;

closeFile

This function closes the file identified with fileId passed by the input arguments. First, it
is checked if the file with fileId is valid. In that case, one by one all pages of that file in
pages are set invalid. If a page is dirty the block is written to the disk. Then the variable
valid is set to 0. After all pages of this file have been set invalid, the header of the file from
openFiles is written to the file in disk and finally the open file is set to 0 and the file is
closed.
The destructor of BufferManager uses also this function to close all open files, so all
dirty pages are eventually written to the disk even without explicitly calling the closeFile
function.

void Buffe rManager : : c l o s e F i l e (i n t f i l e I d) {
/ / Check i f f i l e i s open
i f (o p e n F i l e s [f i l e I d] . v a l i d == f a l s e) {

e r r o r M a n a g e r . s e tCode (F i leNotOpen) ;
re turn ;

}
/ / Find f i l e , l oad b l o c k s & header t o d i s k and c l o s e f i l e
f o r (i n t i = 0 ; i < maxLoadedBlocks ; i ++) {

i f (pages [i] . f i l e I d == f i l e I d && pages [i] . v a l i d == t rue) {
i f (pages [i] . d i r t y == t rue)

loadBlockToDisk (f i l e I d , pages [i] . b l o c k I d , pages [i] .
b l o c k P o i n t e r) ;

pages [i] . v a l i d = 0 ;
}

}
loadHeaderToDisk (f i l e I d) ;
o p e n F i l e s [f i l e I d] . v a l i d = 0 ;
o p e n F i l e s [f i l e I d] . f i l e D e s c . c l o s e () ;

} ;

deleteFile

This function deletes a closed file from the disk. If the file is still open in the buffer manager,
then an error is reported. If the file is closed, it is deleted with the standard function remove
and then checked for errors.

void Buffe rManager : : d e l e t e F i l e (char ∗ f i l eName) {
/ / Check i f f i l e i s open
f o r (i n t i = 0 ; i < maxOpenFi les ; i ++) {

i f (o p e n F i l e s [i] . v a l i d == t rue && s t r c mp (o p e n F i l e s [i] .
f i l eName . c _ s t r () , f i l eName)) {
e r r o r M a n a g e r . s e tCode (F i l e S t i l l O p e n) ;
re turn ;

19

}
}
/ / D e l e t e and check i f f i l e i s d e l e t e d
i f (remove (f i l eName) != 0)

e r r o r M a n a g e r . s e tCode (F i l e N o t D e l e t e d) ;
} ;

3.2 Quadtree
The quadtree is able to create files, that represent point quadtrees, and to insert and search
points in them using the buffer manager. A point, represented by the class Point, that has
two fields of type floating point: x and y. For every inserted point an instance of QTreeNode,
representing a node, is created that stores the point and also five NodePointers; four for
each child and one for the parent. The nodes are stored in blocks and the maximum number of
nodes per block is restricted by the constant MAXNODESPERBLOCK. NodePointer is used
to identify a node in the file. NodePointer has two fields: (i) blockId identifies the block
where the node is stored and (ii) nodeId identifies the position of the node in the block.
Five main classes have been implemented to provide the main functionality of the quadtree:
(i) QTree, (ii) QTreeHeader, (iii) BufferManager, (iv) QErrorManager and (v)
OpenScan. The class diagram is illustrated in 3.4.

3.2.1 The file structure
To create a quadtree file, first a file is created by BufferManager. As described before
such a file starts with a header block used by the buffer manager. After that there is a second
header block which is used by the quadtree to store additional header information about the
quadtree; namely numberOfPoints, root and a bitmap fullBlocks. In the following
data blocks the quadtree nodes are stored. Each of these blocks start with a bitmap called
blockHeader, which stores information about which nodes in the block are valid. After the
bitmap the nodes are stored one by one. Up to MAXNODESPERBLOCK nodes can be stored
in each block. Figure 3.5 illustrates a quadtree file. The file starts with the first header block
used by the buffer manager. In the second header block the additional information for the
quadtree are stored. It can be seen, that three points are stored in the quadtree file. The root
of the quadtree is identified by the nodepointer 0

1 meaning the root is stored in Block#0 at
position Node#1. In the bitmap fullblocks it can bee seen, that Block#1 is not full, all
the other blocks are either full or invalid. A data block starts with bitmap blockHeader to
know which nodes are valid in this block. Then the nodes are stored. First, the nodepointer to
the parent then to the four children are stored. If the node has no child or parent, it is indicated
with blockId -1. After the nodepointers, the point x

y is stored.

3.2.2 The class QTreeHeader
This class stores information about one open quadtree file additionally to OpenFile of the
buffer manager. It has three fields (i) fullBlocks, a bitmap to know if a block is full, (ii)

20

Figure 3.4: Quadtree - UML class diagram

21

2 1100000000 1011111111

file

1st header block 2nd header block

Block #0

113

number
of points

0
1

root
fullblocks

blockheader

0
1
-1 -1 -1 -1
0 0 0 0

1.3
55.2

-1
0

0 -1 1 -1
0 0 0 0

12.9
77.2

Node #0 Node #1

parent
children

coordinates

Block #1

10 0
1
-1 -1 -1 -1
0 0 0 0

43.4
36.3

Node #0 Node #1

empty node

Figure 3.5: File structure of a quadtree file

root, a nodepointer to the root and (iii) numberOfPoints counting the number of points
inserted in this quadtree. The bitmap fullBlocks is used to know if a new node can be
inserted into a block: 0 means the block is not full and valid and can be used to insert a new
node; 1 means the block is either full or invalid so this block can not be used directly. Every
quadtree file stores its QTreeHeader in the second header block of the file.

3.2.3 The class QErrorManager
This class has been implemented to handle the errors of the quadtree. It works exactly the
same way as ErrorManager of the buffer manager but with another enumeration type called
QErrorCode as the current error state. Figure 3.6 shows all the possible error codes of the
quadtree.

Figure 3.6: Error codes of the quadtree

3.2.4 The class OpenScan
The class OpenScan is implemented to handle a search with a search region. It represents
one open search. This class is used to return found points one by one. Since the goal of this
quadtree is to work with files that do not fit in memory, it would not make sense to load all the
found points to memory at once.
The search region is a rectangle, represented by the class Rectangle, that is defined by

22

two Point values (SW and NE). The class OpenScan has the following input arguments: (i)
fileDesc, to identify the file the search belongs to, (ii) valid, a boolean to know if it is
still open, (iii) scanRange as the search region, (iv) searchTree, (v) visitedNodes,
an integer for the number of visited nodes and (vi) foundPoints, an integer for the number
of found points. To track which nodes have to be checked next, the searchTree, a stack,
stores the nodepointers of the nodes to be checked next and the search region for this check.
Using this stack, the search does not need to start from the beginning after one point has been
found, but can continue with the remaining nodes. More details about how the region search
is implemented are given later, in the subsections where the functions startRegionScan
and getNextFoundPoint are described.

3.2.5 The class QTree
The class QTree uses instances of the aforementioned classes to provide all the main
functions for the quadtree. The class has: (i) buffermanager, an instance of
BufferManager, (ii) qtreeheaders, a QTreeHeader array of size maxOpenFiles,
(iii) an integer maxOpenScans, (iv) openscans, an OpenScan array of size
maxOpenScans and (vi) qErrorManager, an instance of QErrorManager. The fol-
lowing functions are provided by the QTree as public functions: (i) a constructor to initialize
all parameters; a function (ii) to create a quadtree file, (iii) to open a quadtree file, (iv) to close
a file, (v) to insert a point, (v) to insert a point with balancing afterwards, (vi) to delete a point,
(vii) to open and initialize a search, (vii) to get the next found point of a search and (viii) to
close an open search. These functions are described in detail in the following subsections.

The constructor

The constructor of QTree takes four input arguments. The first three are the same as in
constructor of BufferManager and they are used to initialize buffermanager. The
forth argument is used to initialize maxOpenScans. If the forth argument has a value smaller
than 1, maxOpenScans is set to 1. The arrays openscans and qtreeheaders are
initialized with sizes maxOpenScans and maxOpenFiles.

QTree : : QTree (i n t maxOpenFiles_ , i n t b l o c k S i z e _ , i n t maxLoadedBlocks_ ,
i n t maxOpenScans_) {
b u f f e r m a n a g e r = new Buffe rManager (maxOpenFiles_ , b l o c k S i z e _ ,

maxLoadedBlocks_) ;
i f (maxOpenScans_ > 0)

maxOpenScans = maxOpenScans_ ;
e l s e

maxOpenScans = 1 ;
o p e n s c a n s = new OpenScan [maxOpenScans] ;
q t r e e h e a d e r s = new QTreeHeader [b u f f e r m a n a g e r−>maxOpenFi les] ;

} ;

23

createQTree

This function creates a quadtree file with the name given as input argument. First, a file is
created by the buffer manager. If no errors occur, an instance of QTreeHeader is written to
the second header of the file. fullBlocks is first filled with 1s since at the beginning all
data blocks are invalid.

void QTree : : c r e a t e Q T r e e (char∗ f i l eName) {
/ / Check ing f o r e r r o r s
b u f f e r m a n a g e r−>e r r o r M a n a g e r . s e tCode (OK) ;
b u f f e r m a n a g e r−> c r e a t e F i l e (f i l eName) ;
i f (b u f f e r m a n a g e r−>e r r o r M a n a g e r . ge tCode () != OK)

re turn ;
/ / Cr ea t e QTree−header w i t h b i tmap (f u l l B l o c k s) a l l 1 ’ s
QTreeHeader h e a d e r ;
f o r (i n t i = 0 ; i < MAXBLOCKS; i ++) {

h e a d e r . f u l l B l o c k s [i] = 1 ;
}
/ / Open f i l e and add QTree−header
i n t f i l e I d ;
b u f f e r m a n a g e r−>o p e n F i l e (f i leName , &f i l e I d) ;
i f (b u f f e r m a n a g e r−>e r r o r M a n a g e r . ge tCode () != OK)

re turn ;
b u f f e r m a n a g e r−>w r i t e S e c o n d H e a d e r (f i l e I d , (char ∗) &h e a d e r) ;
b u f f e r m a n a g e r−> c l o s e F i l e (f i l e I d) ;

} ;

openQTree

The function openQTree is implemented to open a quadtree file and load all the relevant
header information of this file. First, the file with the name fileName is opened with the
buffer manager. After that, the second header block of the file is copied to qtreeheaders
at index position fileId.

void QTree : : openQTree (char ∗ f i leName , i n t ∗ f i l e I d) {
/ / Check ing f o r e r r o r s
b u f f e r m a n a g e r−>e r r o r M a n a g e r . s e tCode (OK) ;
b u f f e r m a n a g e r−>o p e n F i l e (f i leName , f i l e I d) ;
i f (b u f f e r m a n a g e r−>e r r o r M a n a g e r . ge tCode () != OK)

re turn ;
/ / Copying QTree−header
void ∗ h e a d e r = ma l l oc (b u f f e r m a n a g e r−>h e a d e r S i z e) ;
b u f f e r m a n a g e r−>readSecondHeader (∗ f i l e I d , (char ∗) h e a d e r) ;
memcpy ((void ∗) &q t r e e h e a d e r s [∗ f i l e I d] , header , s i z e o f (QTreeHeader)) ;
f r e e (h e a d e r) ;

} ;

closeQTree

This function closes an open quadtree file. First, it checks if the file identified by fileId is
open. If not, an error is set by the buffer manager. After the check the QTreeHeader of that

24

file is written to the second header of the file and then closed by the buffer manager.
void QTree : : c l o s e Q T r e e (i n t f i l e I d) {

/ / Check i f f i l e i s open
i f (b u f f e r m a n a g e r−>o p e n F i l e s [f i l e I d] . v a l i d == f a l s e) {

b u f f e r m a n a g e r−>e r r o r M a n a g e r . s e tCode (F i leNotOpen) ;
re turn ;

}
/ / f l u s h QTree−header t o d i s k and c l o s e f i l e
b u f f e r m a n a g e r−>w r i t e S e c o n d H e a d e r (f i l e I d , (char ∗) &q t r e e h e a d e r s [

f i l e I d]) ;
b u f f e r m a n a g e r−> c l o s e F i l e (f i l e I d) ;

} ;

insertEntry

This function inserts a point into an open quadtree. It has two input arguments; fileId and
point p. The insertion has four main steps. (i) First, the block, in which the point is stored
later, is copied to memory. (ii) Into this copy the new point is inserted and the nodepointer to
the parent is updated. (iii) Then a write of this edited copy is requested. (iv) And at the end
the parent node is updated with its new child. In the following these steps are explained in
more detail.
First, a nodepointer nP is created pointing to the position in the file where the new node is
inserted later. For this, a block is searched which has at least one free place for a new node.
The function getIncompleteBlock searches for a 0 in fullBlocks, that means the
block is valid and not full. If no block is found, this function adds a new block to the file with
the buffer manager. The returned value is saved as blockId of nP. Then the block identified
with blockId is copied to block in memory. An empty position is searched in block,
which is then saved as nodeId of nP.
Next the header of block is updated since a new node is being inserted. The point p is
copied into the empty node. Before loading block back to the file the parent of this new
node is determined. If the quadtree is empty, the new node is set as root of the quadtree. Since
then the new node has no parent node, the nodepointer to the parent remains a null pointer
(blockId = -1). If the quadtree is not empty, the appropriate parent is searched. This is done
with the function getDirectParent, which recursively searches an empty child node in
the quadtree. The nodepointer to the parent of the new node in block is then updated.
Then a write of block is requested using writeBlock.
After that the parent node is updated with its new child node, by calling
addSuccessorToParent. At the end numberOfPoints is increased by 1 and
the NodePointer of the new node is returned.

N o d e P o i n t e r QTree : : i n s e r t E n t r y (i n t f i l e I d , P o i n t p) {
/ / Check i f f i l e i s open
i f (b u f f e r m a n a g e r−>o p e n F i l e s [f i l e I d] . v a l i d == f a l s e) {

b u f f e r m a n a g e r−>e r r o r M a n a g e r . s e tCode (F i leNotOpen) ;
re turn ;
}

/ / B u i l d n o d e p o i n t e r f o r t h e new p o i n t

25

N o d e P o i n t e r nP ;
nP . b l o c k I d = g e t I n c o m p l e t e B l o c k (f i l e I d) ;
i f (nP . b l o c k I d == −1){

b u f f e r m a n a g e r−>e r r o r M a n a g e r . s e tCode (MaximumBlocksPerFi leReached)
;

re turn N o d e P o i n t e r () ;
}

/ / Find f r e e nodeId
void ∗ b l o c k P o i n t e r = ma l l oc (b u f f e r m a n a g e r−>b l o c k S i z e) ;
b u f f e r m a n a g e r−>r e a d B l o c k (f i l e I d , nP . b l o c k I d , b l o c k P o i n t e r) ;
Block ∗ b l o c k = (Block ∗) b l o c k P o i n t e r ;
f o r (i n t i = MAXNODESPERBLOCK − 1 ; i > −1; i−−) {

i f (b lock−>b lockHeade r [i] == 0)
nP . nodeId = i ;

}
/ / Update b lock−da ta
block−>b lockHeade r [nP . nodeId] = 1 ;
i f (b l o c k I s F u l l (b lock−>b lockHeade r))

q t r e e h e a d e r s [f i l e I d] . f u l l B l o c k s [nP . b l o c k I d] = 1 ;
b lock−>nodes [nP . nodeId] . c o o r d i n a t e s = p ;
/ / I f t h e r e i s no roo t , s e t t h e new node as r o o t
i f (q t r e e h e a d e r s [f i l e I d] . r o o t . b l o c k I d == −1){

q t r e e h e a d e r s [f i l e I d] . r o o t . b l o c k I d = nP . b l o c k I d ;
q t r e e h e a d e r s [f i l e I d] . r o o t . nodeId = nP . nodeId ;
b u f f e r m a n a g e r−>w r i t e B l o c k (f i l e I d , nP . b l o c k I d , (void ∗) b l o c k) ;

} e l s e {
/ / E l s e f i n d p a r e n t and w r i t e node t o f i l e p l u s u pda t e paren t−

node
i n t s u c c e s s o r I d ;
N o d e P o i n t e r p a r e n t P o i n t e r = g e t D i r e c t P a r e n t (f i l e I d , q t r e e h e a d e r s

[f i l e I d] . r o o t , p , s u c c e s s o r I d) ;
/ / Errormessage i f p o i n t e x i s t s a l r e a d y
i f (p a r e n t P o i n t e r . b l o c k I d == −1) {

qEr ro rManager . s e tCode (P o i n t E x i s t s A l r e a d y) ;
re turn nP ;

}
/ / Update p a r e n t and w r i t e t o f i l e
block−>nodes [nP . nodeId] . p a r e n t = p a r e n t P o i n t e r ;
b u f f e r m a n a g e r−>w r i t e B l o c k (f i l e I d , nP . b l o c k I d , (void ∗) b l o c k) ;
/ / Update t h e p a r e n t node
a d d S u c c e s s o r T o P a r e n t (f i l e I d , p a r e n t P o i n t e r , nP , s u c c e s s o r I d) ;

}
f r e e (b l o c k P o i n t e r) ;
q t r e e h e a d e r s [f i l e I d] . numberOfPo in t s ++;
re turn nP ;

} ;

smartInsertEntry

The function smartInsertEntry inserts a point into a quadtree and balances the new
leaf like proposed by Finkel and Bentley [FB74]. It has the same two input arguments as

26

insertEntry. First, the point is inserted using insertEntry. After it has been inserted
without errors, it is checked if the conditions for a balancing are given. For this the new
node (firstNode), its parent (secondNode) and the parent of the parent (thirdNode)
are loaded to memory. Then secondNode and thirdNode are checked for the number of
child nodes. The balancing can only be applied if both have only one child. When checking
the number of children, the index value of the child is also stored in firstSuccessorId
and secondSuccessorId. These are needed to determine later which type of balancing
should be applied.
To apply the balancing, first the three nodes are separated from the quadtree by delet-
ing the corresponding child nodepointers. Then in a specific sequence the three nodes are
reinserted to the quadtree using the function reallocateSuccessors. This function
reallocateSuccessors basically edits only the nodepointers (to parent and to child) to
connect the node again with the quadtree. The order in which these three nodes are reinserted
depends if a double or a single balance is applied. To determine this, firstSuccessorId
and secondSuccessorId are checked with the function conjugates. This function
compares these two integers and since they represent the four intercardinal directions (NE,
NW, SW, SE) they can be used to check if firstNode lays in the rectangle set up by the
other two nodes. If this is the case, double balance is applied, by first reinserting firstNode
and then the other two. If this is not the case, single balance is applied by first reinserting
secondNode and then the other two.

void QTree : : s m a r t I n s e r t E n t r y (i n t f i l e I d , P o i n t p) {
/ / I n s e r t p o i n t and check f o r e r r o r s
b u f f e r m a n a g e r−>e r r o r M a n a g e r . s e tCode (OK) ;
N o d e P o i n t e r f i r s t N P = i n s e r t E n t r y (f i l e I d , p) ;
i f (b u f f e r m a n a g e r−>e r r o r M a n a g e r . ge tCode () != OK | | f i r s t N P . b l o c k I d ==

−1)
re turn ;

/ / A cc e s s t h e new node and a c c e s s t h e p a r e n t & p a r e n t o f p a r e n t
QTreeNode f i r s t N o d e = getNode (f i l e I d , f i r s t N P) ;
i f (f i r s t N o d e . p a r e n t . b l o c k I d == −1) {

re turn ;
}
N o d e P o i n t e r secondNP = f i r s t N o d e . p a r e n t ;
QTreeNode secondNode = getNode (f i l e I d , secondNP) ;
i f (secondNode . p a r e n t . b l o c k I d == −1) {

re turn ;
}
N o d e P o i n t e r t h i r d N P = secondNode . p a r e n t ;
QTreeNode t h i r d N o d e = getNode (f i l e I d , t h i r d N P) ;
/ / Check how many c h i l d r e n t h e p a r e n t s do have
/ / And f i n d p o s i t i o n o f c h i l d i n s u c c e s s o r s [] o f p a r e n t
i n t s u c c e s s o r s C o u n t = 0 ;
i n t f i r s t S u c c e s s o r I d = −1;
i n t s e c o n d S u c c e s s o r I d = −2;
f o r (i n t i = 0 ; i < 4 ; i ++) {

i f (secondNode . s u c c e s s o r s [i] . b l o c k I d != −1)
s u c c e s s o r s C o u n t ++;

27

i f (secondNode . s u c c e s s o r s [i] . b l o c k I d == f i r s t N P . b l o c k I d &&
secondNode . s u c c e s s o r s [i] . nodeId == f i r s t N P . nodeId)
f i r s t S u c c e s s o r I d = i ;

i f (t h i r d N o d e . s u c c e s s o r s [i] . b l o c k I d != −1)
s u c c e s s o r s C o u n t ++;

i f (t h i r d N o d e . s u c c e s s o r s [i] . b l o c k I d == secondNP . b l o c k I d &&
t h i r d N o d e . s u c c e s s o r s [i] . nodeId == secondNP . nodeId)
s e c o n d S u c c e s s o r I d = i ;

}
/ / I f bo th p a r e n t s have o n l y one c h i l d , c o n t i n u e
i f (s u c c e s s o r s C o u n t != 2)

re turn ;
/ / S e p a r a t e t h e t h r e e nodes from t h e QTree
/ / I f t h i r d n o d e = roo t , d e l e t e r o o t
i f (t h i r d N o d e . p a r e n t . b l o c k I d == −1) {

q t r e e h e a d e r s −>r o o t = N o d e P o i n t e r () ;
} e l s e {

d e l e t e C h i l d F r o m P a r e n t (f i l e I d , t h i r d N o d e . p a r e n t , t h i r d N P) ;
}
d e l e t e C h i l d F r o m P a r e n t (f i l e I d , th i rdNP , secondNP) ;
d e l e t e C h i l d F r o m P a r e n t (f i l e I d , secondNP , f i r s t N P) ;
/ / F i r s t case : do ub l e b a l a n c e
i f (c o n j u g a t e s (f i r s t S u c c e s s o r I d , s e c o n d S u c c e s s o r I d)) {

r e a l l o c a t e S u c c e s s o r s (f i l e I d , f i r s t N P) ;
r e a l l o c a t e S u c c e s s o r s (f i l e I d , secondNP) ;
r e a l l o c a t e S u c c e s s o r s (f i l e I d , t h i r d N P) ;

}
/ / Second case : s i n g l e b a l a n c e
e l s e {

r e a l l o c a t e S u c c e s s o r s (f i l e I d , secondNP) ;
r e a l l o c a t e S u c c e s s o r s (f i l e I d , f i r s t N P) ;
r e a l l o c a t e S u c c e s s o r s (f i l e I d , t h i r d N P) ;

}
} ;

deleteEntry

This function provides the option to delete a node in a quadtree file. It has two input arguments,
(i) fileId and (ii) p, the point to delete. p is searched in the quadtree. As soon as it has been
found, the node is loaded to node in memory. Next the corresponding child nodepointer of
the parent is deleted, so this node is separated from the quadtree. Next the whole block, which
contains the node, is loaded to memory. In the header of the block the corresponding node is
set to invalid and all nodepointers of the node are deleted. If the block was full before deleting
the node, the block is marked as not full in fullBlocks of qtreeheaders. The modified
block is then loaded back to the file. After that, all child nodes of this deleted node are rein-
serted recursively into the quadtree. Even though the node has been deleted, all its nodepoint-
ers are still accessible with the variable node. At the end the variable numberOfPoints is
decreased by 1.

void QTree : : d e l e t e E n t r y (i n t f i l e I d , P o i n t p) {

28

/ / Check i f f i l e i s open
i f (b u f f e r m a n a g e r−>o p e n F i l e s [f i l e I d] . v a l i d == f a l s e) {

b u f f e r m a n a g e r−>e r r o r M a n a g e r . s e tCode (F i leNotOpen) ;
re turn ;
}

/ / Find node w i t h t h e p o i n t
N o d e P o i n t e r n o d e P o i n t e r ;
i f (! f indNode (f i l e I d , q t r e e h e a d e r s [f i l e I d] . r o o t , p , n o d e P o i n t e r)) {

qEr ro rManager . s e tCode (Po in tNotFound) ;
re turn ;

}
QTreeNode node = getNode (f i l e I d , n o d e P o i n t e r) ;
/ / D e l e t e c h i l d from p a r e n t
d e l e t e C h i l d F r o m P a r e n t (f i l e I d , node . p a r e n t , n o d e P o i n t e r) ;
/ / Load b l o c k w i t h node
void ∗ b l o c k P o i n t e r = ma l l oc (b u f f e r m a n a g e r−>b l o c k S i z e) ;
b u f f e r m a n a g e r−>r e a d B l o c k (f i l e I d , n o d e P o i n t e r . b l o c k I d , b l o c k P o i n t e r) ;
Block ∗ b l o c k = (Block ∗) b l o c k P o i n t e r ;
/ / D e l e t e t h e node (header−bi tmap , paren t , s u c c e s s o r s)
b u f f e r m a n a g e r−>r e a d B l o c k (f i l e I d , n o d e P o i n t e r . b l o c k I d , (void ∗) b l o c k)

;
b lock−>b lockHeade r [n o d e P o i n t e r . nodeId] = 0 ;
b lock−>nodes [n o d e P o i n t e r . nodeId] . p a r e n t . b l o c k I d = −1;
f o r (i n t i = 0 ; i < 4 ; i ++) {

block−>nodes [n o d e P o i n t e r . nodeId] . s u c c e s s o r s [i] . b l o c k I d = −1;
}
/ / Update t h e b l o c k h e a d e r
i f (! b l o c k I s F u l l (b lock−>b lockHeade r))

q t r e e h e a d e r s [f i l e I d] . f u l l B l o c k s [n o d e P o i n t e r . b l o c k I d] = 0 ;
b u f f e r m a n a g e r−>w r i t e B l o c k (f i l e I d , n o d e P o i n t e r . b l o c k I d , (void ∗) b l o c k

) ;
/ / r e a l l o c a t e s u c c e s s o r s r e c u r s i v e l y
s r a n d ((i n t) t ime (0)) ;
i n t random = rand () ;
f o r (i n t i = 0 ; i < 4 ; i ++) {

r e a l l o c a t e S u c c e s s o r s (f i l e I d , node . s u c c e s s o r s [(random + i) %4]) ;
}
f r e e (b l o c k P o i n t e r) ;
q t r e e h e a d e r s [f i l e I d] . numberOfPoin ts−−;

} ;

startRegionScan

This function only initializes an OpenScan for a new search but does not search for points.
The input arguments are (i) fileId of the quadtree file, (ii) range, the rectangle to be
searched and (iii) scanId. scanId is used to return the index value in openscans used
to store the new scan. First, an invalid OpenScan is searched in openscans and assigned
to scanId. If one has been found, all OpenScan variables are initialized. searchTree
is used to know the order in which the tree is searched next. At initialization, the root and
range are inserted into searchTree. Hence the search starts with the root.

29

void QTree : : s t a r t R e g i o n S c a n (i n t f i l e I d , R e c t a n g l e range , i n t ∗ s c a n I d) {
/ / Find emty OpenScan
∗ s c a n I d = findEmpyScan () ;
i f (∗ s c a n I d == −1) {

qEr ro rManager . s e tCode (MaxOpenScansReached) ;
re turn ;

}
/ / I n i t OpenScan v a r i a b l e s
o p e n s c a n s [∗ s c a n I d] . v a l i d = t rue ;
o p e n s c a n s [∗ s c a n I d] . f i l e D e s c = f i l e I d ;
o p e n s c a n s [∗ s c a n I d] . scanRange = r a n g e ;
o p e n s c a n s [∗ s c a n I d] . v i s i t e d N o d e s = 0 ;
o p e n s c a n s [∗ s c a n I d] . f o u n d P o i n t s = 0 ;

S e a r c h S t a c k E l e m e n t s t a c k E l e m e n t ;
s t a c k E l e m e n t . nP = q t r e e h e a d e r s [f i l e D e s c] . r o o t ;
s t a c k E l e m e n t . r e g i o n = r a n g e ;
o p e n s c a n s [∗ s c a n I d] . s e a r c h T r e e . push (s t a c k E l e m e n t) ;

} ;

getNextFoundPoint

The function getNextFoundPoint returns the next found point of a valid OpenScan.
The input arguments of this function are: (i) scanId of the corresponding scan and (ii)
foundPoint, a pointer to a point, which is used to return the found point. The return type
of the function is bool. It returns 1 if a point is found, otherwise it returns 0 if the scan
has finished and no more points have been found. The search is implemented as a depth-first
search using the stack searchTree, meaning that the child nodes are checked before the
neighbor nodes.
The function starts the search by accessing the topmost SearchStackElement of
searchTree. Before checking the node of this stack element, it is checked if the region
of the four children overlap the search region. If it does, the corresponding child is inserted
into the searchTree, since this node has to be checked later. The search region of this child
node is set by the coordinates of the parent and the corresponding x and y of region. After
all four children have been processed, the point of the node is checked. If the point lays in
scanRange it is assigned to foundPoint and 1 is returned. If the node does not lay in
scanRange, the next topmost SearchStackElement is processed the same way until
a point is found. If at the end searchTree is empty, the OpenScan is closed and 0 is
returned to indicate that no point has been found.

bool QTree : : g e t N e x t F o u n d P o i n t (i n t scan Id , P o i n t ∗ f o u n d P o i n t) {
whi le (! o p e n s c a n s [s c a n I d] . s e a r c h T r e e . empty ()) {

/ / S t a r t w i t h t h e t o p o f t h e search−t r e e−s t a c k
S e a r c h S t a c k E l e m e n t s t ackE lem = o p e n s c a n s [s c a n I d] . s e a r c h T r e e . t o p

() ;
o p e n s c a n s [s c a n I d] . s e a r c h T r e e . pop () ;
o p e n s c a n s [s c a n I d] . v i s i t e d N o d e s ++;
QTreeNode node = getNode (o p e n s c a n s [s c a n I d] . f i l e D e s c , s t ackE lem .

nP) ;

30

/ / Push s u c c e s s o r s t o s t a c k i f i t ’ s no n u l l−p o i n t e r
/ / and r e g i o n o f s u c c e s s o r o v e r l a p s t h e search−range
i f (node . s u c c e s s o r s [0] . b l o c k I d != −1 && o v e r l a p p i n g (o p e n s c a n s [

s c a n I d] . scanRange , s t ackE lem . r e g i o n . NE . y , node . c o o r d i n a t e s . y ,
s t ackE lem . r e g i o n . NE . x , node . c o o r d i n a t e s . x)) {
S e a r c h S t a c k E l e m e n t s ;
s . nP = node . s u c c e s s o r s [0] ;
s . r e g i o n = R e c t a n g l e (s t ackE lem . r e g i o n . NE . y , node . c o o r d i n a t e s

. y , s t a ckE lem . r e g i o n . NE . x , node . c o o r d i n a t e s . x) ;
o p e n s c a n s [s c a n I d] . s e a r c h T r e e . push (s) ;

}
i f (node . s u c c e s s o r s [1] . b l o c k I d != −1 && o v e r l a p p i n g (o p e n s c a n s [

scanDesc] . scanRange , s t ackE lem . r e g i o n . NE . y , node . c o o r d i n a t e s . y
, node . c o o r d i n a t e s . x , s t a ckE lem . r e g i o n .SW. x)) {
S e a r c h S t a c k E l e m e n t s ;
s . nP = node . s u c c e s s o r s [1] ;
s . r e g i o n = R e c t a n g l e (s t ackE lem . r e g i o n . NE . y , node . c o o r d i n a t e s

. y , node . c o o r d i n a t e s . x , s t a ckE lem . r e g i o n .SW. x) ;
o p e n s c a n s [s c a n I d] . s e a r c h T r e e . push (s) ;

}
i f (node . s u c c e s s o r s [2] . b l o c k I d != −1 && o v e r l a p p i n g (o p e n s c a n s [

scanDesc] . scanRange , node . c o o r d i n a t e s . y , s t ackE lem . r e g i o n .SW. y
, node . c o o r d i n a t e s . x , s t a ckE lem . r e g i o n .SW. x)) {
S e a r c h S t a c k E l e m e n t s ;
s . nP = node . s u c c e s s o r s [2] ;
s . r e g i o n = R e c t a n g l e (node . c o o r d i n a t e s . y , s t ackE lem . r e g i o n .SW

. y , node . c o o r d i n a t e s . x , s t a ckE lem . r e g i o n .SW. x) ;
o p e n s c a n s [s c a n I d] . s e a r c h T r e e . push (s) ;

}
i f (node . s u c c e s s o r s [3] . b l o c k I d != −1 && o v e r l a p p i n g (o p e n s c a n s [

scanDesc] . scanRange , node . c o o r d i n a t e s . y , s t ackE lem . r e g i o n .SW.
y , s t ackE lem . r e g i o n . NE . x , node . c o o r d i n a t e s . x)) {
S e a r c h S t a c k E l e m e n t s ;
s . nP = node . s u c c e s s o r s [3] ;
s . r e g i o n = R e c t a n g l e (node . c o o r d i n a t e s . y , s t ackE lem . r e g i o n .SW

. y , s t ackE lem . r e g i o n . NE . x , node . c o o r d i n a t e s . x) ;
o p e n s c a n s [s c a n I d] . s e a r c h T r e e . push (s) ;

}
/ / Check i f t h e node i t s e l f l a y s i n t h e search−range
i f (i n R e g i o n (node . c o o r d i n a t e s , o p e n s c a n s [scanDesc] . scanRange)) {

∗ f o u n d P o i n t = node . c o o r d i n a t e s ;
o p e n s c a n s [s c a n I d] . f o u n d P o i n t s ++;
re turn true ;

}
}
c l o s e R e g i o n S c a n (s c a n I d) ;
re turn f a l s e ;

} ;

31

closeRegionScan

This function closes a valid OpenScan. It has one input argument scanId. First, the
function sets the corresponding scan to invalid. Then an empty stack is exchanged with
searchTree, so the new stack is empty.

void QTree : : c l o s e R e g i o n S c a n (i n t s c a n I d) {
/ / S e t scan t o f a l s e and empty s t a c k
o p e n s c a n s [s c a n I d] . v a l i d = f a l s e ;
s t a c k < S e a r c h S t a c k E l e m e n t > emptyStack ;
swap (o p e n s c a n s [scanDesc] . s e a r c h T r e e , emptyStack) ;

} ;

32

4 Experiments

In this chapter the experiments on the implementation of a quadtree on top of a buffer manager
are described. These experiments illustrate different good and bad scenarios of the implemen-
tation.
The system used for the experiments was a MacBook Air (2012), equipped with a 1.7 GHz
Intel Core i5, 4 GB of RAM and a SSD. The operating system was OS X Yosemite.
The experiments are divided into two parts. The first part analyzes the impact of the size of
the input data and of the insertion method used (insertEntry / smartInsertEntry) on
the efficiency of insertion and search. The second part focuses on the impact of the parameters
of the buffer manager, namely the size of blocks and the buffer size.

4.1 Experiments focusing on the quadtree
The first part of the experiments was done to analyze the efficiency of a quadtree relative to
the size of the input data. For this (i) input data of various sizes and (ii) the two insertion
methods were used. Insertion and region search on the different quadtrees were tested for five
different input sizes from 1 mil. points to 30 mil. points. For each input size four input files
were generated with random points ranging from 0 to 1. These uniformly distributed random
points were generated with the library <random>. For testing the region search, a file with
25 randomly located rectangles for three different edge sizes was generated.
For every input file two quadtrees were created to test the insertion, one using insertEntry
(from now called naive insertion) and one using smartInsertEntry (from now called
smart insertion). For each data size two quadtrees were selected to test the region search, one
created with the naive insertion and one with the smart insertion. The 75 rectangles were used
to perform the region searches on the selected quadtrees. Table 4.1 shows the constellation of
all these experiments.
For all these experiments the size of a block was fixed at 10 KB (holding 200 nodes) and the
number of pages of the buffer manager was fixed at 3200, meaning the size of the buffer to be
32 MB.
For every generated quadtree the following data was collected: (i) average path length, (ii)
maximum path length, (iii) standard deviation of the path length, (iv) requested block reads,
(v) effective block reads, (vi) requested block writes, (vii) effective block writes, (vii) time to
insert all nodes. The maximum path length is equal to the height of a tree, and the average
path length equal to the average depth of all nodes.
For each search the following data was collected: (i) number of visited nodes, (ii) number
of found nodes, (iii) requested block reads, (iv) effective block reads, (v) time for finding all
nodes.

33

input size insertion type (each 4x) edge size (each 25x)
1 mil. naive / smart 0,125 / 0,25 / 0,5
5 mil. naive / smart 0,125 / 0,25 / 0,5

10 mil. naive / smart 0,125 / 0,25 / 0,5
20 mil. naive / smart 0,125 / 0,25 / 0,5
30 mil. naive / smart 0,125 / 0,25 / 0,5

Table 4.1: Experiments with different input size

4.2 Experiments focusing on the buffer manager
The second part of the experiments was done to analyze the impact of the parameters of the
buffer manager (block size, number of pages). Keeping the size of the tree fixed at 5 mil.
points, the block size and also the number of pages were varied. There were two parts; (i)
in the first part the number of pages was fixed while the block size was varied (increasing
the block size increases the buffer size) and (ii) in the second part the total buffer size was
fixed and both the block size and the number of pages was varied (increasing the block size
decreases the number of pages). For both parts the different block sizes were: (i) 2,5 KB, (ii)
5 KB, (iii) 10 KB, (iv) 25 KB, (v) 50 KB. For the experiments with the same number of pages
the number of pages was fixed at 3200 (Table 4.2). For the experiments with the same buffer
size the size of the buffer was fixed at 32 MB and therefore the number of pages were: (i)
640, (ii) 1280, (iii) 3200, (iv) 6400, (v) 12800 (Table 4.3). The insertion was only done for
the smart insertion type. Again for every constellation of the parameters four quadtree were
generated and again 25 searches were performed per edge size and for each experiment the
same variables were gathered.

input size block size # of pages insertion type (each 4x) edge size (each 25x)
5 mil. 2,5KB 3200 smart 0,125 / 0,25 / 0,5
5 mil. 5KB 3200 smart 0,125 / 0,25 / 0,5
5 mil. 10KB 3200 smart 0,125 / 0,25 / 0,5
5 mil. 25KB 3200 smart 0,125 / 0,25 / 0,5
5 mil. 50KB 3200 smart 0,125 / 0,25 / 0,5

Table 4.2: Experiments with fixed number of pages

input size block size # of pages insertion type (each 4x) edge size (each 25x)
5 mil. 2,5KB 12800 smart 0,125 / 0,25 / 0,5
5 mil. 5KB 6400 smart 0,125 / 0,25 / 0,5
5 mil. 10KB 3200 smart 0,125 / 0,25 / 0,5
5 mil. 25KB 1280 smart 0,125 / 0,25 / 0,5
5 mil. 50KB 640 smart 0,125 / 0,25 / 0,5

Table 4.3: Experiments with fixed buffer size

34

5 Results

5.1 Results of quadtree experiments
The insertion of nodes to a quadtree and the region search have been tested with different tree
sizes. Also the quadtrees generated by the naive and the smart insertion method have been
differentiated for the results. Figure 5.1 shows the results of the insertion and Figure 5.3 the
results of the search.

5.1.1 Insertion
Different quadtrees have been generated with different tree sizes using both the naive and
the smart insertion. Figure 5.1(a) shows the average and the maximum path length of the
quadtrees relative to the data size (number of nodes). Also the average and the maximum path
length of a perfect tree of the same size is plotted. A perfect quadtree is a tree in which all
nodes have four child nodes and all leaves have the same depth. The maximum path length of
a perfect tree represents also the minimum height of a quadtree for a given number of nodes.
The maximum path length of a perfect quadtree can be calculated with following formula,
where N is the number of nodes and h is the height of the tree:

N = 1 + 4 + 16 + ...4h

N =
h∑

t=0

4t

N =
4h+1 − 1

3
h = log4(3N + 1)− 1

The average path length of a perfect quadtree can be calculated with following formula,

35

using the before calculated height:

avgh =
0 ∗ 1 + 4 ∗ 1 + 16 ∗ 2 + ...4h ∗ h

N

avgh =

∑h
t=0 4

tt

N

avgh =

h4h+2−(h+1)4h+1+4
(1−4)2

N

avgh =
4

9N
(3 ∗ 4hh− 4h + 1)

In Figure 5.1(a) it can be seen, that both the maximum and the average path length is lower
when the smart insertion is used. For bigger tree sizes the path length increases in a loga-
rithmic way for both methods and also for a perfect quadtree. The difference of average and
maximum path length is almost non-existent for the perfect tree whereas it is much bigger
for the naive and the smart insertion. Because the naive insertion does not balance at all and
therefore has a higher maximum path length, the standard deviation is bigger than for the
smart insertion, which can also be verified with Figure 5.1(b).
Figure 5.1(c) shows the average requested reads and the average effective reads for both in-
sertion types for one single inserted point. Because the smart insertion additionally balances
leaves of the trees, more blocks are requested. The effective reads are much lower than the
requested and they are nearly the same for the two insertion types. Regarding the balancing,
the smart insertion type requests blocks which have just been requested before, so the buffer
manager does not perform effective reads again. The requested and also the effective reads for
both insertion types increase logarithmically with the tree size. The reason is, that the number
of reads depends on the average path length, since for every insertion the parent of the new
node has to be found by traversing the path from the root to the new parent node. And since
the average path length increases logarithmically, the number of reads also increases logarith-
mically.
Figure 5.1(d) shows the same as Figure 5.1(c) but for the number of writes. It shows that the
requested writes are constant. For the naive insertion two writes are requested; one to insert
the new node and one to modify the parent node. For the smart insertion it is higher, at about
3.25, as the balancing requires additional write requests. The number of effective writes are
not constant, they increase logarithmically and the ones for the smart insertion are slightly
higher.
Figure 5.1(e) shows the total time required for inserting all points. It can be seen, that it is
increasing at a disproportionate rate. The reason for this can be found in Figure 5.1(f), which
shows the time for the insertion of one node. It increases logarithmically basically because
the effective reads and writes for one inserted node increase logarithmically. The total time
then can be calculated by multiplying the time per insertion with the number of nodes, which
increases at a disproportionate rate. The smart insertion requires more time, because of higher
effective writes and the additional computation, while effective reads are the same as in naive
insertion.

36

It has to be mentioned that since the inserted points are uniformly distributed the resulting
trees are not very unbalanced. In terms of tree heights both the naive and the smart insertion
have worse results only by a factor 1,5 than the perfect tree. These experiments represent
the average case. But in the worst case scenario, the height of a tree can be much worse. If
sorted input data is used, the resulting trees for the naive insertion will have a height of N-1
and for the smart insertion a height of N−1

2
. Figure 5.2 shows an example of the resulting

trees, on the left with naive insertion and on the right with smart insertion. The worst case
scenario has not been included to the experiments since it takes too much time to generate the
quadtree files. Inserting 25’000 sorted points takes as much time as inserting 1 mil. uniformly
distributed points. Inserting only one input file with 30 mil sorted points is expected to take
several weeks.

0

5

10

15

20

25

30

35

40

0 10000000 20000000 30000000

pa
th
	 le
ng
ht

number	 of	 nodes

avg	 naive

max	 naive

avg	 smart

max	 smart

avg	 perfect	
tree
max	 perfect	
tree

(a) path length

0

0.5

1

1.5

2

2.5

3

3.5

0 10000000 20000000 30000000

st
an
da
rd
	 d
ev
ia
tio
n

number	 of	 nodes

std	 naive

std	 smart

(b) standard deviation of path length

0

5

10

15

20

25

30

35

0 10000000 20000000 30000000

av
er
ag
e	
nu
m
be
r	 o

f	 r
ea
ds
	 p
er
	 in
se
rti
on

number	 of	 nodes

requested	 naive

effective	 naive

requested	 smart

effective	 smart

(c) reads

0

0.5

1

1.5

2

2.5

3

3.5

0 10000000 20000000 30000000av
er
ag
e	
nu
m
be
r	 o

f	 w
rit
es
	 p
er
	 in
se
rti
on

number	 of	 nodes

requested	 naive

effective	 naive

requested	 smart

effective	 smart

(d) writes

0

2

4

6

8

10

12

14

0 10000000 20000000 30000000

ho
ur
s

number	 of	 nodes

time	 naive

time	 smart

(e) total time

0

0.0002

0.0004

0.0006

0.0008

0.001

0.0012

0.0014

0.0016

0.0018

0 10000000 20000000 30000000

se
co
nd
s

number	 of	 nodes

time	 naive

time	 smart

(f) average time

Figure 5.1: Insertion - different input sizes

37

A

B

C

D

E

B

D

F

G

A

C

E

F

G

Figure 5.2: Quadtrees generated with sorted points

5.1.2 Search
Various region searches have been performed on quadtrees with different tree sizes. Figure 5.3
shows the results of these experiments. Figure 5.3(a) shows the ratio visited nodes per found
nodes. It can be seen, that the ratio is just above one for any tree size. So the number of visited
nodes, that are not in the search region, is quite small proving the efficiency of the quadtree.
There is almost no difference between this ratio of the naive and smart insertion type.
In Figure 5.3(b) the average requested and the effective reads are plotted. The requested reads
are growing linearly with the tree size, because the number of found nodes is also growing
with the trees size. Interestingly the effective reads are almost as big as the requested. The
reason for this might be found in the implemented way of the region search; it traverses the
quadtree like a depth-first search meaning it checks the child nodes before the neighbor nodes.
It seems to be more likely that a block contains mainly neighbor nodes. This makes it unlikely
that a block is already in the buffer and the effective reads are almost as high as the requested.
And there is practically no difference between naive and smart type, as the average path length
does not differ much.
Figure 5.3(c) shows the average time for the performed region searches. It grows linearly like
the reads. The naive and the smart require almost the same time, strangely enough the smart
type is slightly, but not significantly higher. The time for the smart type for 30 mil. tree size
deviates from the rest. It seems to be just an outlier, else it can not be explained.
In Figure 5.3(d) the time per found node is plotted for the three edge sizes. It can be seen, that
the edge size does not affect the time per found node much. This means it would not make a
big difference in time if a region search with a big region is performed or several searches with
smaller regions are performed, if the number of found nodes would be the same. Again the
smart type requires more time than the naive one, even though it is not a significant variation.

5.2 Results of buffer manager experiments
In the second part of the experiments insertion and the region search have been tested with
different block sizes and different number of pages. First, the block size has been increased
while holding the number of pages fixed. Second the block size has been increased while the
number of pages decreased so that the total buffer size is fixed. For these experiments only

38

0

0.2

0.4

0.6

0.8

1

1.2

0 10000000 20000000 30000000

vi
sit
ed
	 /
	 fo
un
d

number	 of	 nodes

naive

smart

(a) visited per found length

0

500000

1000000

1500000

2000000

2500000

3000000

3500000

0 10000000 20000000 30000000

re
ad
s

number	 of	 nodes

naive	 requested

smart	 requested

naive	 effective

smart	 effective

(b) reads

0

50

100

150

200

250

300

350

0 10000000 20000000 30000000

se
co
nd
s

number	 of	 nodes

naive

smart

(c) time

0

0.00001

0.00002

0.00003

0.00004

0.00005

0.00006

0.00007

0.00008

0 0.1 0.2 0.3 0.4 0.5 0.6
se
co
nd
s

edge	 size

naive

smart

(d) time per found node

Figure 5.3: Search - different input sizes

the smart insertion has been used. Figure 5.4 shows the results of the insertion and Figure 5.5
the results of the region search.

5.2.1 Insertion
The same input files have been used to generate quadtrees with different block sizes and
number of pages. Because only the parameters of the buffer manager vary, the resulting
path length of these quadtrees and the requested reads and writes remain the same. But the
effective reads and writes and therefore the time varies. The results are shown in Figure 5.4.

Fixed number of pages

The orange line in Figure 5.4(a) indicates the insertion time for keeping the number of pages
fixed (at 3200 pages). This means, that the size of the buffer increases w.r.t. the block size.
For the same number of pages it can be seen, that the time is decreasing like a exponential
function with negative exponents. This means, that by increasing the size of the buffer (and
holding the number of pages fixed), the required time decreases. But beyond a certain level
there is only a marginal time difference. Figure 5.4(b) and 5.4(c) show that the effective reads
and writes are decreasing stronger than the time. The reason, why the time is not decreasing

39

as strong as the reads and writes, is that for a bigger block size the time for each effective
read/write increases also linearly.

Fixed size of buffer

The blue line indicates in Figure 5.4(a) the insertion time for keeping the size of the buffer
fixed (at 32MB). This means, that the number of pages decreases w.r.t. the block size. For
small block sizes the time is high. While the block size increases the time decreases, but
at a certain point the time is slowly increasing again. So for a given size of the buffer, the
constellation of the block size and number of pages has a strong impact on the time. Both small
blocks plus many pages and big blocks plus less pages are inefficient. For the performance
experiments the optimum block size lies between 10KB and 25KB.
Figure 5.4(b) and 5.4(c) show that the effective reads and writes are more or less constant
because the number of nodes stored in the buffer stays the same for any size of the blocks.
That is why on the one hand the time increases for bigger block sizes, since every read/write
needs more time. On the other hand, too many small blocks lead to a higher required time
because the linear search in pages takes more time. The impact of too many pages can be
seen for the block size of 5KB. For a buffer size of 32MB and 12800 pages the time is much
higher than for 3200 pages and a buffer size of 8MB. With less pages the time is lower. This
trade-off leads to the existence of an optimum block size and number of pages for a given
buffer size.

0

0.5

1

1.5

2

2.5

0 10 20 30 40 50 60

ho
ur
s

block	 size	 in	 KB

fixed	 buffer	 size

fixed	 #pages

(a) time

0

2000000

4000000

6000000

8000000

10000000

12000000

14000000

16000000

18000000

0 10 20 30 40 50 60

ef
fe
ct
iv
e	
re
ad
s

block	 size	 in	 KB

fixed	 buffer	 size

fixed	 #pages

(b) effective reads

0

1000000

2000000

3000000

4000000

5000000

6000000

7000000

0 10 20 30 40 50 60

ef
fe
ct
iv
e	
w
rit
es

block	 size	 in	 KB

fixed	 buffer	 size

fixed	 #pages

(c) effective writes

Figure 5.4: Insertion - different block sizes

40

5.2.2 Search
The generated quadtree files have been used to perform region searches to see the impact of
the block size and the number of pages. The number of visited/found nodes and the number of
read request remains the same as only the parameters of the buffer manager are varied. Only
the effective reads and the time varies. The results of the experiments are illustrated in 5.5.

Fixed number of pages

In Figure 5.5(a) it can be seen, that for a fixed number of pages the time for the search increases
with the block size in a logarithmic way. At a first glance, it might seem strange, since the
buffer size is also increasing w.r.t. the block size. The reason for this can be seen in 5.5(b).
The effective reads are decreasing w.r.t. the block size. But doubling the block size does not
result in halfing the effective reads. But a double block size means double time to read one
block. The lower effective reads can not compensate the additional time of accessing bigger
blocks. Thats why the time increases w.r.t the block size. This means, for the region search a
big buffer size with big block sizes is inefficient, because the number of effective reads is too
high.

Fixed size of buffer

In Figure 5.5(a) the time for different block sizes but fixed buffer size can be seen. For small
blocks it is high but decreases w.r.t. the block size. But then at a certain point the time
increases. The optimal block size seems to be around 10KB. Again there is a trade-off which
lead to this circumstance. On the one hand, the number of pages decreases with the block
size. Each time a block is requested, the buffer manager performs a linear search in pages.
Therefore, more pages lead to more needed time. On the other hand, the number of effective
reads is almost constant as it can be seen in Figure 5.5(b). Therefore, for a bigger block size
the reading time is increasing because each effective read requires more time.

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60

se
co
nd
s

block	 size	 in	 KB

fixed	 buffer	 size

fixed	 #pages

(a) time

0

100000

200000

300000

400000

500000

600000

0 10 20 30 40 50 60

ef
fe
ct
iv
e	
re
ad
s

block	 size	 in	 KB

fixed	 buffer	 size

fixed	 #pages

(b) effective reads

Figure 5.5: Search - different block sizes

41

6 Summary and Conclusion

The goal of this thesis was to implement a disk-resident quadtree and evaluate its efficiency.
First, I researched on related work to understand the concepts of quadtrees and paging. Then
a general purpose buffer manager has been implemented which performs the actual paging
so even very big files can be handled. On top of this buffer manager the quadtree has been
implemented to store the full tree structure in a file. In a next step the efficiency of this
implementation has been evaluated with different experiments.

The experiments have shown that the quadtree performs a region search very efficient, as
the number of visited nodes is not much higher than the number of found nodes. Even for
big number of nodes the region search is very efficient. The number of effective reads are
quite high, paging did not really improve the performance of region search. The time to insert
one point increases logarithmically w.r.t. the input size. Therefore inserting all nodes takes
linearithmic time (O(n log n)). For insertion, the buffer manager improved the performance by
significantly reducing the number of effective reads and writes. The smart insertion method
hasn’t proved to be more efficient than the naive one for uniformly distributed random points.

Also the experiments have shown that the block size and the number of pages have a strong
impact on the efficiency of the quadtree. For a given buffer size there is an optimal value for
the block size and the number of pages. These values are depending on the read and write
rates on the disk and on the power of the CPU. A bigger size of the buffer with optimal values
for the block size and the number of pages could lead to better performance. But beyond a
certain level there is only a marginal difference. Since the effective reads are too high, a bigger
buffer size due to bigger a block size does not lead to better performance of the region search.

As a future work, it would be interesting to implement the region search, which traverses
the quadtree like a breadth-first search (checking the neighbors before the children). If in
this way the number of effective reads are decreased, then the region search could be more
efficient. Another interesting approach to increase the performance would be to use a binary
tree or a hash table to find a block in the pages. The fileId and the blockId can be used as
key. An additional priority queue can be used to find the page with the lowest LRU counter.
In this way a linear search in pages can be avoided. With experiments the advantages and
disadvantages of this implementation could be detected.

42

Bibliography

[EN10] Ramez Elmasri and Sham Navathe. Fundamentals of database systems. Pearson
Education India, 2010.

[FB74] Raphael A. Finkel and Jon Louis Bentley. Quad trees a data structure for retrieval
on composite keys. Acta informatica, 4(1):1–9, 1974.

[GTM07] Michael Goodrich, Roberto Tamassia, and David Mount. DATA STRUCTURES
AND ALOGORITHMS IN C++. John Wiley & Sons, 2007.

[Sam84] Hanan Samet. The quadtree and related hierarchical data structures. ACM Com-
puting Surveys (CSUR), 16(2):187–260, 1984.

[Shn81] Michael Shneier. Two hierarchical linear feature representations: edge pyramids
and edge quadtrees. Computer Graphics and Image Processing, 17(3):211–224,
1981.

[SW84] Hanan Samet and Robert E Webber. On encoding boundaries with quadtrees. IEEE
Transactions on Pattern Analysis & Machine Intelligence, 16(3):365–369,
1984.

43

