
Higher-Dimensional Problems, Tensor Models and Applications

Renato Pajarola, Rafael Ballester-Ripoll
CP and Tucker: Limitations

- **Scales well** with dimensionality
- Cannot truncate λ
- Often, too many ranks needed
 - Slower decomposition
 - How to choose R?

- **Scales poorly** for $N \geq 4$
- Can truncate core
- Decomposition uses SVD
 - Fast and stable
 - Better control over R_n
Tensor Train Decomposition

- More recent model [O10a]
- **One 3D core per dimension**
 - Great for 4D+ dimensions
- Core n has size $R_{n-1} \times I_n \times R_n$
- $R_0 = R_N = 1 \Rightarrow$ **first and last cores are matrices**

3D

4D
Tensor Train Decomposition

- Decomposition time: $O(I^N R)$ (SVD-based)
- Reconstruction time (full): $O(I^N R)$
- Storage space: $O(NIR^2)$
- Reconstruction time (one element): $O(NR^2)$
Tensor Train Manipulation

- **Linear transforms** (DCT, DFT, separable DWT)
- **Convolution**
- Element-wise **product** between two tensors
- Element-wise **function of a tensor**
- **Derivatives** and **integrals**
- N-variate **projections** and **statistics**
- **Adaptive sampling**

All in time $O(NIR^3)$ at most
Tensor Train Reconstruction (4D)

- Element-wise:

\[\mathcal{A}(i_1, i_2, i_3, i_4) \approx \sum_{r_1, r_2, r_3} G^{(1)}(i_1, r_1) \cdot G^{(2)}(r_1, i_2, r_2) \cdot G^{(3)}(r_2, i_3, r_3) \cdot G^{(4)}(r_3, i_4) \]

- Full:

\[\mathcal{A} \approx \sum_{r_1, r_2, r_3} G^{(1)}(\; ; r_1) \circ G^{(2)}(r_1, \; ; r_2) \circ G^{(3)}(r_2, \; ; r_3) \circ G^{(4)}(r_3, \; ;) \]
Computing a Tensor Train (3D)

1. **Input**: $I_1 \times I_2 \times I_3$

2. **Reshape** to $I_1 \times I_2 I_3$

3. **Compress (SVD)**: we get $(I_1 \times R_1)$ and $(R_1 \times I_2 I_3)$
Computing a Tensor Train (3D)

1. **Input**: \((R_1 \times I_2 I_3)\)
2. **Reshape** to \(R_1 I_2 \times I_3\)
3. **Compress (SVD)**: we get \((R_1 I_2 \times R_2)\) and \(R_2 \times I_3\)
Computing a Tensor Train
Tensor Networks

- Graphical way to see tensors
 - A free edge is a dimension
Tensor Networks

- Graphical way to see tensors
 - A free edge is a dimension

Matrix
Tensor Networks

- Graphical way to see tensors
 - A free edge is a dimension

4D tensor
Tensor Networks

- Tensors can **connect** with each other (**tensor contraction**)
 - Sizes must match!

\[I_1 \quad A \quad I_2 \]

Matrix times vector
Tensor Networks

- Principal component analysis
 - Compress along 1 dimension

![Diagram of Tensor Networks](image)
Tensor Networks

- Singular value decomposition
 - Compress along 2 dimensions
Tensor Networks

4D Tucker decomposition
Tensor Networks

4D tensor train
Tensor Networks

Tucker + tensor train
Blessing of Dimensionality

• Reshaping data can **reveal patterns and structure**
 ‣ Example: multiresolution analysis in 1D signals
• Curse of dimensionality — *blessing of dimensionality*
 ‣ The more dimensions, the more correlation we can potentially remove
• **TT copes well with dimensionality**
• Strategy: add **new dimensions** to the data (*tensorization*)
Quantized Tensor Train

- Suppose we reshape a vector into a cube
- Similarity between segments \leftrightarrow similarity between tensor slices
Quantized Tensor Train

1. Reshape: $2^N \leftrightarrow 2 \times \ldots \times 2$
2. Compress as ND tensor train
3. Example: 1D vector with 32 elements \rightarrow 5D QTT
Quantized Tensor Train

- Cube to QTT:
 - Reshape: $2^N \times 2^N \times 2^N \leftrightarrow (2 \times 2 \times 2)^N \times \ldots \times (2 \times 2 \times 2)$
- Each core slice maps to half the voxels
Quantized Tensor Train

- Core 1 maps to:
Quantized Tensor Train

- Core 2 maps to:
Quantized Tensor Train

- Core 3 maps to:
Quantized Tensor Train

- Core 4 maps to:
Quantized Tensor Train

- Core 5 maps to:
Quantized Tensor Train

- Core 6 maps to:
Quantized Tensor Train

- Core 7 maps to:
Quantized Tensor Train

- Core 8 maps to:
Quantized Tensor Train

- Core 9 maps to:
Quantized Tensor Train

- It is in fact a 3D multiresolution decomposition
- Connections to the wavelet transform [OT10], [K13]
Tensor Decomposition Software

- Many open-source packages exist

- **Tensor format:**
 - CP
 - Tucker
 - TT
 - Variants

- **Data type:**
 - Dense
 - Sparse
 - Missing values

- **Sampling strategy:**
 - Fixed
 - Adaptive

- **Languages:**
 - MATLAB
 - C++
 - FORTRAN
 - Python (more recently)
Tensor Decomposition Software

<table>
<thead>
<tr>
<th>Link</th>
<th>Paper/manual</th>
<th>Last Update</th>
<th>Language</th>
<th>Tensor Format(s)</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>tensorlib</td>
<td>Documentation</td>
<td>2014</td>
<td>Python</td>
<td>CP; Tucker</td>
<td>Dense compression</td>
</tr>
<tr>
<td>h Tucker</td>
<td>Paper</td>
<td>2013</td>
<td>MATLAB</td>
<td>HT</td>
<td>Dense compression; adaptive sampling</td>
</tr>
<tr>
<td>GeomCG</td>
<td>Paper</td>
<td>2013</td>
<td>MATLAB</td>
<td>Tucker</td>
<td>Tensor completion</td>
</tr>
<tr>
<td>TDALAB</td>
<td>Manual</td>
<td>2012</td>
<td>MATLAB</td>
<td>CP; Tucker</td>
<td>Dense compression</td>
</tr>
<tr>
<td>FSTD</td>
<td>Paper</td>
<td>2010</td>
<td>MATLAB</td>
<td>Tucker</td>
<td>Adaptive sampling</td>
</tr>
<tr>
<td>Cross3D (variant)</td>
<td>Paper</td>
<td>2008</td>
<td>MATLAB</td>
<td>Tucker</td>
<td>Adaptive sampling</td>
</tr>
</tbody>
</table>
Tensor Decomposition Software

<table>
<thead>
<tr>
<th>Link</th>
<th>Paper/manual</th>
<th>Last Update</th>
<th>Language</th>
<th>Tensor Format(s)</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tensorlab</td>
<td>Documentation</td>
<td>2016</td>
<td>MATLAB</td>
<td>CP; Tucker; BTD; advanced variants</td>
<td>Dense and sparse compression; tensor completion; adaptive sampling</td>
</tr>
<tr>
<td>tucker_opt</td>
<td>Paper</td>
<td>2015</td>
<td>MATLAB</td>
<td>Tucker</td>
<td>Tensor completion</td>
</tr>
<tr>
<td>NTFLib</td>
<td>-</td>
<td>2015</td>
<td>Python</td>
<td>NTF</td>
<td>Sparse compression</td>
</tr>
<tr>
<td>vmmlib</td>
<td>vmmlib classes</td>
<td>2015</td>
<td>C++</td>
<td>CP; Tucker</td>
<td>Dense compression</td>
</tr>
<tr>
<td>scikit-tensor</td>
<td>-</td>
<td>2015</td>
<td>Python</td>
<td>CP; Tucker; RESCAL; DEDICOM; INDSCAL</td>
<td>Dense/sparse compression</td>
</tr>
<tr>
<td>Tensor Toolbox</td>
<td>T. Toolbox classes</td>
<td>2015</td>
<td>MATLAB</td>
<td>CP; Tucker</td>
<td>Dense/sparse compression</td>
</tr>
<tr>
<td>Tensor CUR</td>
<td>Paper</td>
<td>2015</td>
<td>Python</td>
<td>Tucker</td>
<td>Adaptive sampling</td>
</tr>
</tbody>
</table>
Tensor Decomposition Software

<table>
<thead>
<tr>
<th>Link</th>
<th>Paper/manual</th>
<th>Last Update</th>
<th>Language</th>
<th>Tensor Format(s)</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>ttpy</td>
<td>Paper 1, 2</td>
<td>2016</td>
<td>Python</td>
<td>TT</td>
<td>Dense compression; adaptive sampling</td>
</tr>
<tr>
<td>TT-Toolbox</td>
<td>(see above)</td>
<td>2016</td>
<td>MATLAB</td>
<td>TT</td>
<td>Dense compression; adaptive sampling</td>
</tr>
<tr>
<td>TTTeMPS</td>
<td>PhD Thesis</td>
<td>2016</td>
<td>MATLAB</td>
<td>TT</td>
<td>Tensor completion</td>
</tr>
<tr>
<td>C++ TT</td>
<td>-</td>
<td>2016</td>
<td>C++</td>
<td>TT</td>
<td>Dense compression; adaptive sampling</td>
</tr>
<tr>
<td>Polara</td>
<td>Paper</td>
<td>2016</td>
<td>Python</td>
<td>Tucker</td>
<td>Sparse compression</td>
</tr>
<tr>
<td>vmmlib-tensor</td>
<td>-</td>
<td>2016</td>
<td>C++</td>
<td>Tucker</td>
<td>Dense compression</td>
</tr>
<tr>
<td>SPLATT</td>
<td>Slides</td>
<td>2016</td>
<td>C++; MATLAB</td>
<td>CP</td>
<td>Sparse compression</td>
</tr>
</tbody>
</table>
Tensor Decomposition Software

- Full list available at:

 https://github.com/rballester/tensor_notes/blob/master/implementations.md
Tensors in Photo-realistic Rendering

- Material properties: high-dimensional data
- Reflectance is recorded (or simulated) according to several parameters
 - View position
 - Light position
 - Texture coordinates
 - Wavelength/color channel

Source: UBO2014 database
Bidirectional Reflectance Distribution Functions

- Reflectance for one single point
- **5D tensor**: $\mathcal{A}(\phi_l, \theta_l, \phi_v, \theta_v, \lambda)$
 - Incoming ray: (ϕ_l, θ_l)
 - Outgoing ray: (ϕ_v, θ_v)
 - Wavelength: λ
- Imitate “homogenous” materials
 - Same behaviour at every point
- Types:
 - **Isotropic**: \mathcal{A} independent from $(\theta_l, \theta_v) \rightarrow$ 3D tensor
 - **Anisotropic**: general case

Source: [RSK12]
Bidirectional Texture Functions

- Reflectance for every 2D material point
- **7D tensor**: $\mathcal{A}(x, y, \phi_l, \theta_l, \phi_v, \theta_v, \lambda)$
 - Incidence point: (x, y)
 - Incoming ray: (ϕ_l, θ_l)
 - Outgoing ray: (ϕ_v, θ_v)
 - Wavelength: λ
3D Reflectance Fields

• Light transport in a 3D scene
 ‣ Reflection between every possible pair of points

• 11D tensor: \(A(x_1, y_1, z_1, \phi_1, \theta_1, x_2, y_2, z_2, \phi_2, \theta_2, \lambda) \)
 ‣ 3D source point: \((x_1, y_1, z_1)\)
 ‣ Incoming ray: \((\phi_1, \theta_1)\)
 ‣ 3D reflection point: \((x_2, y_2, z_2)\)
 ‣ Outgoing ray: \((\phi_2, \theta_2)\)
 ‣ Wavelength: \(\lambda\)
Dimensionality Reduction

- **Dimensions** are sometimes **merged together**
 - Depending on the sampling strategy
- Example: UBO2003 BTF materials
 - Light: 1 index l instead of (ϕ_l, θ_l)
 - View: 1 index v instead of (ϕ_v, θ_v)
 - 5D **tensor** instead of 7D tensor
- **Unmerging would require resampling**
 - Introduces additional error
 - Higher sampling density around the pole
 - More redundancy
Sparse BTF Compression

- **K-SVD for many dimensions**

 - $A \approx DX$ where:
 - D is a dictionary matrix (dense)
 - X is the translation matrix (sparse)

- For tensors: express **each slice as a sum of few slices** (words/atoms)

Source: [RK09]
Sparse BTF Compression

• [RK09]: compress the dictionary iteratively for all modes
 ‣ Result:
 \[
 \mathcal{A}(i_1, \ldots, i_N) \approx \sum_{r_1, \ldots, r_{N-1}} \mathcal{D}(i_1, r_1) \cdot \mathcal{K}^{-1}(r_1, i_2, r_2) \cdot \ldots \cdot \mathcal{K}^{(N-1)}(r_{N-1}, i_N)
 \]
 ‣ \(\mathcal{D}\) is dense, \(\mathcal{K}^{-n}\) are sparse
• An (early) \textbf{sparse version} of the TT

• \textbf{Good compression rate}

• Disadvantages:
 ‣ K-SVD is expensive
 ‣ How to optimize parameters \(R_1, \ldots, R_{N-1}\)?
 ‣ Sparsity \(\rightarrow\) reconstruction hard to parallelize
TT BTF Compression

- [BP16]: compress the BTF into a **dense TT** using the **TT-SVD algorithm**
 - SVD algorithm is **fast**
 - Adaptive truncation → **ranks** R_1, \ldots, R_{N-1} **automatically found**
- Dimension order is important!
 - Put **smallest dimension** (color) in the **center**
TT BTF Compression

- Reconstruction: dense vector-times-matrix
 - Good parallelization
 - Also during interpolation
- Optionally: Tucker + TT
Clustered Tensor Approximation

- Idea [TS06], [TS12], [T15]:
 - **Cluster** parts of the tensor together. Then, **compress** each cluster independently.
- Example [TS12]: cluster slices together
 \[\mathcal{A}(:, \ldots, J_n, \ldots, :) \text{ with } J_n \subset \{1, \ldots, I_n\} \]
- Example [T15]: cluster sub-tensors together
 \[\mathcal{A}(J_1, \ldots, J_N) \text{ with } J_1 \subset \{1, \ldots, I_1\}, \ldots, J_N \subset \{1, \ldots, I_N\} \]

Source: [T15]
Clustered Tensor Approximation

- **Generalization of sparse Tucker and CP**
 - Instead of summing rank-1 components, we sum small $R_1 \times \ldots \times R_N$ cores
- **Fast reconstruction**

Source: [T15]
Recap

• We often have to deal with **many dimensions**
 ‣ Complex structures in e.g. graphics
 ‣ **Tensorization** → dimensionality can be good!

• Typical requirements:
 ‣ **Good compression rates**
 ‣ **Reasonable compression time**
 ‣ **Fast decompression**

• There are tensor models specifically tailored for these needs
 ‣ **TT (tensor train)**, **QTT** (quantized tensor train)
 ‣ **Sparse** tensor decompositions
 ‣ **Clustered** tensor decompositions

Completion, Inpainting and Adaptive Sampling

Renato Pajarola, Rafael Ballester-Ripoll
Incomplete Data

• Only some signal parts are available
 ‣ Limited observations (e.g. scatter points):
 ‣ Sensor was damaged
 ‣ Or: tensor too big to sample completely!

• We want to **predict** the rest

• Related keywords:
 ‣ Interpolation
 ‣ Completion
 ‣ Recovery
Incomplete Data

• Only *some* signal parts are available
 ‣ **Limited observations** (e.g. scatter points):
 ‣ Sensor was damaged
 ‣ Or: tensor too big to sample completely!

• We want to **predict** the rest

• Related keywords:
 ‣ Interpolation
 ‣ Completion
 ‣ Recovery
Related Work

• Many interpolation techniques:
 ‣ ND splines
 ‣ Radial basis functions
 ‣ Gaussian process models (*kriging*)
 ‣ Texture synthesis, e.g. Perlin noise
 ‣ Other predictive models (autoregression, SVM, NN, etc.)

• Frequent assumptions:
 ‣ **Local** spatial correlation
 ‣ **Smoothness**
Tensor Completion

- Interpolation with tensor decomposition
- All samples contribute with the same weight to a prediction
- Assumption: low rank
 - We don’t need smoothness
- Smooth usually means low rank
 - In the sense of “using few frequencies”
 - Filter with a separable kernel that uses k frequencies \rightarrow result has rank $\leq k$
Smoothness vs. Rank

\[\sigma = 0 \]

\[
\ln(\sigma)
\]

Singular values
Smoothness vs. Rank

\[\sigma = 2 \]
Smoothness vs. Rank

\[\sigma = 4 \]
Smoothness vs. Rank

\[\sigma = 6 \]
Smoothness vs. Rank

\[\sigma = 8 \]
Smoothness vs. Rank

\[\sigma = 10 \]
Smoothness vs. Rank

\[\sigma = 12 \]
Smoothness vs. Rank

\[\sigma = 14 \]
Smoothness vs. Rank

\[\sigma = 16 \]
Smoothness vs. Rank

\[\sigma = 18 \]
Smoothness vs. Rank

- Matrix rank is in fact a good **perceptual metric**
- E.g. [NL10]:
 - Compute SVD from (a) **reference** image; (b) **distorted** image
 - Score: combined similarity of
 - Pairwise **singular vectors**
 - Pairwise **singular values**
 - Tested with Gaussian blur, JPEG compression, quantization noise, etc.
Smoothness vs. Rank

• So: smooth usually means low rank

• But: **low rank ⇒ smooth**
 ‣ We do not require smoothness!
 ‣ E.g. we can permute slices → **rank does not change**
Rank Invariance

Rank R
Rank Invariance

Still rank R!
Tensor Completion

- Ω: known sample positions
- $A|_\Omega$: known sample values
- We look for X such that:
 - $A|_\Omega - X|_\Omega = 0$; or
 - $\|A|_\Omega - X|_\Omega\|$ is penalized
 - In denoising applications: Ω is the whole domain
- Many variants exist
 - For CP, Tucker, TT, etc.
 - See e.g. [OST08], [KSV13], [CHL14], [FJ15]
Tensor Completion

- Low-rank assumption:
 - \(\text{rank}(\mathcal{X}) = R \); or
 - \(\text{rank}(\mathcal{X}) \leq R \); or
 - \(\text{rank}(\mathcal{X}) \) is penalized

- But: \(\text{rank}(\mathcal{X}) \) is not convex

- Usual substitute: the *nuclear norm*
 - In 2D: \(\sum_i |\sigma_i| \)
 - Has generalizations to ND
 - It is the tightest convex envelope
Slice Generation

• Approach from [CSS08]:
 › Time-varying data: \(\mathcal{A} \approx \mathcal{B} \times_1 U^{(1)} \times_2 U^{(2)} \times_3 U^{(3)} \)
 › \(U^{(1)} \) and \(U^{(2)} \) are spatial dimensions, \(U^{(3)} \) is temporal
 › Each factor column maps to a slice of \(\mathcal{B} \)
 › Each factor row maps to a slice of \(\mathcal{A} \)
• Each time frame \(j \) comes from row \(U^{(3)}(j,:) \)
• How to generate a new time frame? **Generate a new row**
• They use a **combination** of previous rows (autoregression)
Volume Completion

- Ω: a volume minus a solid region
Volume Completion

• Approach from [BP16]:
 ‣ Fix a core, optimize for best Tucker factors

\[
\arg\min_{U^{(1)}, U^{(2)}, U^{(3)}} \| A - B \times_1 U^{(1)} \times_2 U^{(2)} \times_3 U^{(3)} \|
\]
Volume Completion

\[
\arg\min_{U^{(1)}, U^{(2)}, U^{(3)}} \| \mathcal{A} - \mathcal{B} \times_1 U^{(1)} \times_2 U^{(2)} \times_3 U^{(3)} \|
\]

• Solution: alternating least squares (ALS):

\[
\left\{
\begin{align*}
1. & \quad U^{(1)} = \mathcal{A}^{(1)} (\mathcal{B} \times_2 U^{(2)} \times_3 U^{(3)})^{\dagger}_{(1)} \\
2. & \quad U^{(2)} = \mathcal{A}^{(2)} (\mathcal{B} \times_1 U^{(1)} \times_3 U^{(3)})^{\dagger}_{(2)} \\
3. & \quad U^{(3)} = \mathcal{A}^{(3)} (\mathcal{B} \times_1 U^{(1)} \times_2 U^{(2)})^{\dagger}_{(3)} \\
4. & \quad \text{Repeat}
\end{align*}
\right.
\]
Volume Completion
Texture Synthesis

- Approach from [WXC+08]:
 - **Example-based synthesis** (after [KEB05])
 - Many 3D patches have to be compared

- Key idea:
 \[
 \mathcal{A}_1 \approx \mathcal{B}_1 \times_1 U^{(1)} \times_2 U^{(2)} \times_3 U^{(3)} \\
 \mathcal{A}_2 \approx \mathcal{B}_2 \times_1 U^{(1)} \times_2 U^{(2)} \times_3 U^{(3)}
 \]
 \[
 \Rightarrow \quad \| \mathcal{A}_1 - \mathcal{A}_2 \| \approx \| \mathcal{B}_1 - \mathcal{B}_2 \|
 \]

- Compress patches $32 \times 32 \times 32 \rightarrow 5 \times 5 \times 5$

- **Distance between patches** \approx **distance between their cores**

- Up to x200 speed-up
Texture Synthesis

Source: [WXC+08]
Other Data Types

- Synthesis and completion can be applied to other data types
- Restriction: we need **multidimensional Cartesian grids**
- **Parameterization** is fundamental
 - Example: geometry images
Other Data Types

• With a proper parameterization, tensor approximation can be exploited
• Example: mesh rank truncation
Adaptive Sampling

- Tensor size: I^N
 - Often: **too big** to sample completely!
- But: we can **choose** where to sample
- Strategy: learn **adaptively** best locations to sample
Adaptive Sampling

- Example strategy: 2D
 1. Choose a **random point**
 2. **Sample** fibers (row + column)
 3. **Update** current decomposition
 4. Guess next **best point**
 5. **Repeat**
CUR Factorization

• From the chosen samples, **recover** the full tensor

\[
A \approx C \cdot U^{-1} \cdot R
\]

• How?

 ‣ **C**: known columns
 ‣ **R**: known rows
 ‣ **U**: intersection
CUR Factorization

\[A \approx C \cdot U^{-1} \cdot R \]

- If \(\text{rank}(A) = R \), \(R \) columns and rows are enough to recover \(A \) exactly.
- If not, a good heuristic is the maxvol principle:
 - Select \(C \) and \(R \) so that \(\det(U) \) is maximal
 - We want the intersection to span the biggest possible subspace.
- Synonyms:
 - Pseudo-skeleton decomposition
 - Column-row factorization
CUR Factorization

- Application in rendering: [HPB07]
- \(A \) is the lights-samples matrix
 - One column per light source
 - One row per scene sample
 - Total light received by samples = sum of \(A \)'s columns
- \(A \) is low-rank → sample just some rows and columns
 - Ad-hoc search strategy (they cluster columns first)
 - But same driving idea
CUR Factorization

reference (13 min)

Source: [HPB07]
CUR Factorization

432 rows, 864 columns, 13.5 s

Source: [HPB07]
CUR Factorization

300 rows, 300 columns, 6.4 s

Source: [HPB07]
CUR Factorization

reference (20 min)

Source: [HPB07]
CUR Factorization

300 rows, 900 columns, 16.9 s

Source: [HPB07]
CUR Factorization

100 rows, 300 columns, 5.6 s

Source: [HPB07]
CUR Factorization

reference (8 min)

Source: [HPB07]
CUR Factorization

300 rows, 900 columns, 7.9 s

Source: [HPB07]
CUR Factorization

100 rows, 100 columns, 1.6 s

Source: [HPB07]
N-Dimensional Sampling

- **Fiber sampling** generalizes to any dimension
Cross Approximation

• **Generalization** of CUR

• E.g. for:
 ‣ Tucker [OST08], [CC10]
 ‣ TT [O10a], [S11]
Cross Approximation

- Example: sampled and recovered 3D tensor
Surrogate Visualization Models

• We have a simulation depending on multiple parameters
 ‣ Function $f : \mathbb{R}^N \rightarrow \mathbb{R}$ or \mathbb{R}^M

• We want a model that quickly predicts the result

• Related keywords:
 ‣ Hyperparameter optimization
 ‣ Meta-modeling
 ‣ Response surface models
Surrogate Visualization Models

• It is a form of machine learning
• But **geared towards visualization:**
 ‣ Prediction (reconstruction) must be extremely fast (**interactive rates**)
 ‣ For many points at once
 ‣ Bonus: get global or local statistics on the data
• If we can **choose** where to sample → **adaptive cross approximation**
Surrogate Visualization Models

- How to gain intuition?
- Typical approach:
 - **Trial and error**: move one parameter, fix the rest (e.g. using loops)
 - Very similar to fiber sampling
- Idea: let cross approximation do the work
 1. **Learn** the tensor
 2. **Navigate** interactively
Interactive Tensor Reconstruction

- We want to reconstruct a **subspace from an interpolated space**
 - It consists of predictions
- E.g. in 4D: $\mathcal{A}[:, i_2 = a, :, i_4 = b]$
- How many slices are possible?

$$\begin{cases}
\mathcal{A}[i_1, i_2, :, :] & \mathcal{A}[:, i_2, i_3, :] \\
\mathcal{A}[i_1, :, i_3, :] & \mathcal{A}[:, i_2, :, i_4] \\
\mathcal{A}[i_1, :, :, i_4] & \mathcal{A}[:, :, i_3, i_4]
\end{cases}$$

- Precomputing infeasible
 - Space needed: $\binom{N}{2} \cdot I^N$
Interactive Tensor Reconstruction

• But: very efficient tensor reconstruction [BPP16]

• A subspace of dimension M can be reconstructed in:
 ‣ $O(IMR + NR)$ ops. (CP)
 ‣ $O(IMR + R^N)$ ops. (Tucker)
 ‣ $O(IMR + N R^2)$ ops. (TT)

• 1D and 2D plots: usually a few milliseconds
Interactive Navigation
Interactive Navigation
Interactive Navigation
Projections

• N-variate projections are very **efficient to compute**
• Idea: sum along all cores except a few
• Example: **projection matrix**
 ‣ Billions of tensor entries
 ‣ Computed via vector-vector and matrix-matrix operations
 ‣ Under 10 milliseconds
From TT to Parallel Coordinates

- Parallel coordinates:
 - A point \((i_1, \ldots, i_N)\) is represented by a polyline \((0, i_1) \to (1, i_2) \to \ldots \to (N-1, i_N)\)
- One vertical bar per dimension
- Example: point \((1, 3, 2, 4)\)
From TT to Parallel Coordinates

• One can define a **dense version** [HW13]
• For every point \((i_1, ..., i_N)\), a polyline is drawn
 ‣ **Opacity** proportional to the **tensor value** \(\mathcal{A}(i_1, ..., i_N)\)
• We assume **linearity**:
 ‣ Opacity of two coincident segments = sum of their opacities
• Every segment \((i_n, j_n) \rightarrow (i_{n+1}, j_{n+1})\) is drawn
 ‣ Opacity: \(\sum \mathcal{A}\) restricted to \(i_n = j_n, i_{n+1} = j_{n+1}\)
• Compute **projection** \(\rightarrow\) very fast from a compressed tensor
Algorithm 1 Plot a parallel coordinates diagram from a TT

Require: \mathcal{A} is a low-rank TT approximation of the simulation s

$\mathcal{B} := \text{empty } N\text{-dimensional TT-tensor}$

for n in $1, \ldots, N$ do

$\mathcal{B}(n) := \sum_{i=1}^{I_n} \mathcal{A}(n)(i,:,:)$

end for

$\triangleright \mathcal{B}$ has size $1 \times \ldots \times 1$

for n in $1, \ldots, N - 1$ do

$\mathcal{C} := \mathcal{B}$

$\mathcal{C}(n) := \mathcal{A}(n)$

$\mathcal{C}(n+1) := \mathcal{A}(n+1)$ \hspace{1cm} $\triangleright \mathcal{C}$ has now size $1 \times \ldots \times I_n \times I_{n+1} \times \ldots \times 1$

$S := \text{decompress}(\mathcal{C})$ \hspace{1cm} $\triangleright S$ has now size $I_n \times I_{n+1}$

for i in $1, \ldots, I_n$ do

for j in $1, \ldots, I_{n+1}$ do

source := (n, i)

target := $(n+1, j)$

opacity := $S(i, j)$

drawSegment(source, target, opacity)

end for

end for

end for
From TT to Parallel Coordinates
Recap

- **Tensors for visualization:** fast reconstruction
- **Cheap operations** in the **compressed domain**
 - Projections, statistical moments
 - Multiresolution
- **Methods for sampling from full data**
- **Methods for sampling and completing sparse data**
 - Fixed sampling
 - Adaptive sampling