
Requirements
Engineering

Research  
Group"Department of Informatics!

Requirements Engineering I

Martin Glinz

Department of Informatics, University of Zurich
www.ifi.uzh.ch/~glinz

© 2013, 2017 Martin Glinz. All rights reserved. Making digital or hard copies of all or part of this work for educational, non-commercial use is permitted. Using this material
for any commercial purposes and/or teaching is not permitted without prior, written consent of the author. Note that some images may be copyrighted by third parties."

Requirements Engineering I – Part I: Fundamentals "© 2016 Martin Glinz" 2"

Part I: Fundamentals"

Part II: Requirements Engineering Practices"

Part III: Enablers and Stumbling Blocks"

Conclusions"

References"

"

1 Introduction"

A communication problem"

Requirements Engineering I – Part I: Fundamentals "© 2013 Martin Glinz" 3"

What the
customer
wanted"

Need"

What the
analyst
understood"

Analysis"

What the
architect
designed"

Design" Deployed"
System"

What the
programmers
implemented"

Requirements Engineering I – Part I: Fundamentals "© 2015 Martin Glinz" 4"

We need to know the requirements."

DEFINITION. Requirement – "
1. "A need perceived by a stakeholder."
2. " A capability or property that a system shall have."
3. "A documented representation of a need, capability or

property."
"
DEFINITION. Requirements Specification – A systematically
represented collection of requirements, typically for a system
or component, that satisfies given criteria."

" [Glinz 2014] (based on IEEE 610.12-1990, 
slightly modernized)"

Requirements specification: terminology"

In some situations we distinguish between a customer (or
stakeholder) requirements specification (typically written by
the customer) and a system requirements specification or
software requirements specification (written by the supplier)."

German terminology:"
❍  Customer/stakeholder requirements specification:

Lastenheft"
❍  System/software requirements specification: Pflichtenheft"
"

Requirements specification may also denote the activity of
specifying requirements."
Requirements Engineering I – Part I: Fundamentals "© 2013 Martin Glinz" 5"

Beyond requirements specifications"

Agile projects frequently do not produce a comprehensive
requirements specification"

Instead, they express requirements in "
❍  collections of user stories, issues, storyboards, etc."

❍  acceptance criteria associated with user stories"
❍  a vision document"
❍  implicit shared understanding among the people involved"

Requirements Engineering I – Part I: Fundamentals "© 2017 Martin Glinz" 6"

Requirements Engineering I – Part I: Fundamentals "© 2013 Martin Glinz" 7"

A sample problem"

A ski resort operates several chairlifts. Skiers buy RFID-
equipped day access cards. Access to the lifts is controlled
by RFID-enabled turnstiles. Whenever a turnstile senses a
valid access card, it unlocks the turnstile for one turn, so
that the skier can pass.

Build a software-controlled
system for managing the access
of skiers to the chairlifts.

The task"

When building such a system..."

❍  How do we determine the requirements?"
❍  How can we analyze and document these requirements?"

❍  How do we make sure that we’ve got the right
requirements?"

❍  How do we manage and evolve the requirements? "

Requirements Engineering I – Part I: Fundamentals "© 2013 Martin Glinz" 8"

Requirements Engineering – the classic notion"

DEFINITION. Requirements Engineering (RE) [Classic] – The
application of a systematic, disciplined, quantifiable approach
to the specification and management of requirements; that is
the application of engineering to requirements."

"
"
Metaphor: upfront engineering"
Goal: complete, unambiguous requirements prior to design"

Smells: paper, process"
Reality check: Does this always work?"
"Requirements Engineering I – Part I: Fundamentals "© 2013 Martin Glinz" 9"

[Adapted from the definition of Software
Engineering in IEEE 610.12-1990]"

Wait a minute – it’s about customers’ needs"

DEFINITION. Requirements Engineering [Customer-oriented] –
Understanding and documenting the customers’ desires and
needs."

"
Metaphor: Customer satisfaction"
Goal: Understand the customer"

Reality check:"
(1) "Why not just code what the customer desires and needs?"
(2) "Who is “the customer”?"

Requirements Engineering I – Part I: Fundamentals "© 2013 Martin Glinz" 10"

[Glinz 2004, Chapter 7, inspired
by Gause and Weinberg (1989)]"

Where’s the value?"

DEFINITION. Requirements Engineering [Risk-oriented] –
Specifying and managing requirements to minimize the risk of
delivering a system that does not meet the stakeholders’
desires and needs."

Metaphor: Balancing effort and value"

Goal: Mitigate risk"

Requirements Engineering I – Part I: Fundamentals "© 2014 Martin Glinz" 11"

[Glinz (2014) based on my
work on requirements risk]"

Requirements Engineering I – Part I: Fundamentals "© 2013 Martin Glinz" 12"

Risk-based RE"

“We have no time for a complete specification.”	
“This is too expensive!”	
“We’re agile, so rough stories suffice.”"

"➪ "Wrong approach"

Right question: “How much RE do we need such that the risk
of deploying the wrong system becomes acceptable?”"

Rule: "
The effort spent for Requirements Engineering shall be
inversely proportional to the risk that one is willing to take."

A synoptic definition of RE"

DEFINITION. Requirements Engineering – A systematic and
disciplined approach to the specification and management of
requirements with the following goals:"
(1) Knowing the relevant requirements, achieving a consensus
among the stakeholders about these requirements, document-
ing them according to given standards, and managing them
systematically,"
(2) Understanding and documenting the stakeholders’ desires
and needs,"
(3) Specifying and managing requirements to minimize the risk
of delivering a system that does not meet the stakeholders’
desires and needs."
Requirements Engineering I – Part I: Fundamentals "© 2015 Martin Glinz" 13"

[Glinz (2014); for the definition
of ‘stakeholder’ see Chapter 2]"

A note on terminology"

❍  Lots of sources for today’s terminology"
●  Textbooks and articles about RE"
●  IEEE 610.12 (1990) – a slightly aged glossary of software

engineering terminology"
●  IEEE 830-1998 – an outdated, but still cited RE standard"
●  ISO/IEC/IEEE 29148 (2011) – a new, but still rather unknown

RE standard; provides definitions of selected terms, some of
them being rather uncommon"

●  IREB Glossary [Glinz 2014] – influential through IREB’s
certification activities; used as a terminology basis in this
course"

Requirements Engineering I – Part I: Fundamentals "© 2015 Martin Glinz" 14"

Requirements Engineering I – Part I: Fundamentals "© 2013 Martin Glinz" 15"

Why specify requirements?"

❍  Lower cost"
●  Reduce error cost"
●  Reduce rework cost"

❍  Manage risk"
●  Meet stakeholders’ desires and needs"
●  Reliable estimates for deadlines 

and cost"

☞ The economic effects of Requirements Engineering are
(almost ever) indirect ones; RE as such just costs!"

Supplier makes profit"

Customer is satisfied"

2 Principles of Requirements Engineering"

Nine basic principles"
1. Stakeholders"
2. Systems and context"
3. Problems, requirements and solutions"
4. Value-orientation"
5. Shared understanding"
6. Validation"
7. Evolution"
8. Innovation"
9. Systematic and disciplined work "

"Requirements Engineering I – Part I: Fundamentals "© 2016 Martin Glinz" 16"

Requirements Engineering I – Part I: Fundamentals "© 2013 Martin Glinz" 17"

2.1 Stakeholders"

Who is “the customer”?"
In our sample problem: Just the skiers? "

In reality: Many persons in many roles are involved"
"
DEFINITION. Stakeholder – A person or organization that has a
(direct or indirect) influence on a system’s requirements."

Indirect influence also includes situations where a person or
organization is impacted by the system. "

[Glinz and Wieringa 2007]"
[Macaulay 1993]"

Requirements Engineering I – Part I: Fundamentals "© 2013 Martin Glinz" 18"

Viewpoints"

The same building."
Different views."

[Nuseibeh, Kramer und Finkelstein 2003]"

Different viewpoints by different stakeholders must be taken
into account."

Requirements Engineering I – Part I: Fundamentals "© 2013 Martin Glinz" 19"

Consensus and variability"

The viewpoints and needs of different stakeholders may
conflict"

Requirements Engineering implies"
●  Discovering conflicts and inconsistencies"
●  Negotiating"
●  Moderating"
●  Consensus finding"

"
But: also determine where variability is needed"

2.2 Systems and context"

Requirements never come in isolation."
❍  Requirements specify a system"

❍  The system may be part of another system"
❍  The system is embedded in a domain context"
❍  The scope of a system may exceed the system boundary"
"

Requirements Engineering I – Part I: Fundamentals "© 2017 Martin Glinz" 20"

Requirements Engineering I – Part I: Fundamentals "© 2013 Martin Glinz" 21"

Which system?"

Some requirements for our sample problem:"
For every turnstile, the system shall count the number of skiers
passing through this turnstile.

The system shall provide effective access control to the resort’s
chairlifts.

The system shall operate in a temperature range of -30° C to +30°
C.

The operator shall be able to run the system in three modes: normal
(turnstile unlocked for one turn when a valid card is sensed), locked
(all turnstiles locked), and open (all turnstiles unlocked).

The computer hardware and the devices"

The turnstile control software"

Everything: equipment, computers, cards, software"

The access control software for a chairlift"

Requirements Engineering I – Part I: Fundamentals "© 2013 Martin Glinz" 22"

Systems of systems"

➪ Requirements need to be framed in a context"
➪ Dealing with multi-level requirements is unavoidable"

Turnstile control"
software"

Access control software"
Access 

card"

Turnstile"

Control hardware"

Chairlift access control"

Requirements Engineering I – Part I: Fundamentals "© 2013 Martin Glinz" 23"

Context"

DEFINITION. Context – 1. In general: The network of thoughts
and meanings needed for understanding phenomena or
utterances. 2. Especially in RE: The part of a system’s
environment being relevant for understanding the system and
its requirements. "

"
"

"

World"

System"

Context"
Domain"

Context boundary"

System boundary"

System boundary and context boundary"

DEFINITION. System boundary – The boundary between a
system and its surrounding context."

DEFINITION. Context boundary – Boundary between the
context of a system and those parts of the application domain
that are irrelevant for the system and its requirements."

"
❍  The system boundary separates the system to be

developed from its environment"
❍  RE needs to determine the system boundary"
❍  Information outside of the context boundary is not

considered"

"
"

Requirements Engineering I – Part I: Fundamentals "© 2013 Martin Glinz" 24"

Context models"

Modeling a system in its context"
❍  Determine the level of specification"

❍  Usually no system internals (➜ system as black box)"
❍  Model actors which interact directly with the system"
❍  Model interaction between the system und its actors"
❍  Model interaction among actors"
❍  Represent result graphically"

Requirements Engineering I – Part I: Fundamentals "© 2013 Martin Glinz" 25"

A context diagram"

Requirements Engineering I – Part I: Fundamentals "© 2013 Martin Glinz" 26"

Ausleihen

Zurückgeben

...

...
Schleuse

BibliothekarIn
BenutzerIn

Alarm
schlagen

Buch
katalogisieren

Ausleihen

Zurückgeben

...

...
Schleuse

BibliothekarIn
BenutzerIn

Alarm
schlagen

Buch
katalogisieren

Ausleihen

Zurückgeben

...

...
Schleuse

BibliothekarIn
BenutzerIn

Alarm
schlagen

Buch
katalogisieren

Ausleihen

Zurückgeben

...

...
Schleuse

BibliothekarIn
BenutzerIn

Alarm
schlagen

Buch
katalogisieren

Skier"

Maintainer"

Manager"

Service  
employee"

Chairlift access"
control"

call"

set mode"

query"

statistics"

setup"

card"

pass/block"

Requirements Engineering I – Part I: Fundamentals "© 2013 Martin Glinz" 27"

➁ satisfies ➀ only if these domain assumptions hold:"
❍  An unlock command actually unlocks the turnstile device"
❍  When a turnstile is unlocked, a single person passes through it"
❍  Nobody passes through a locked turnstile (e.g. by crouching down)"

For every turnstile, the system shall count the number of persons
passing through this turnstile.

The turnstile control software shall count the number of ‘unlock for
a single turn’ commands that it issues to the controlled turnstile."

➀ A requirement in the world:"

➁ Mapped to a requirement for the system to be built:"

Mapping world phenomena to machine
phenomena: a major RE problem"

The world and the machine"

Requirements must hold in the world."
But we need them to build machines (aka systems)."

Requirements Engineering I – Part I: Fundamentals "© 2013 Martin Glinz" 28"

The requirements problem (according to Jackson):"
Given a machine satisfying the specification S and assuming
that the domain properties D hold, the requirements R in the
world must be satisfied: S ∧ D R!

Properties D"
of the domain"
In the real world"

[Zave and Jackson 1997]"
[Jackson 2005]"

A machine with capa-
bilities described by
the specification S"

Required behavior R
in a real world domain "

Mini-Exercise"

Imagine the problem of two traffic lights that regulate traffic at
a road construction site where only a single lane may be used.
The following real-world requirement shall be satisfied:"

“Ensure that, at each point in time, traffic flows at most in one
direction in the one-lane region and that the control regime is
both effective (actual throughput in both directions) and fair
(does not favor one direction over the other).” !

Determine"
●  the system requirements that the control system must meet"
●  which domain properties/assumptions must hold"

in order to satisfy the given real-world requirement"
Requirements Engineering I – Part I: Fundamentals "© 2014 Martin Glinz" 29"

The role of the system scope"

DEFINITION. Scope (of a system) – The range of things that
can be shaped and designed when developing a system."

System scope ≠ Everything within the system boundary"
"

"
"

❍  The scope of a system may comprise parts of its context"
"If this is the case, (re)-designing the context may lead to
"better systems than designing the system to a given context"

❍  Some parts of a system may be given and not changeable"
Requirements Engineering I – Part I: Fundamentals "© 2017 Martin Glinz" 30"

System"
Context"

Scope"

2.3 Problems, requirements and solutions"

Having a problem, we need requirements for a system that
solves the problem"

Traditional Requirements Engineering: the waterfall"
●  Start with a complete specification of requirements"
●  Then proceed to desiging and implementing a solution"

❍  Does not work properly in most cases"
❍  Specification and implementation are inevitably intertwined:"

●  Hierarchical intertwinement: high-level design decisions
inform lower-level requirements"

●  Technical feasibility: non-feasible requirements are useless"
●  Validation: what you see is what you require"

Requirements Engineering I – Part I: Fundamentals "© 2016 Martin Glinz" 31"

[Swartout and Balzer 1982]"

Requirements Engineering I – Part I: Fundamentals "© 2016 Martin Glinz" 32"

Requirements vs. solution decisions"

➪ Solution decisions inform lower level requirements"
➪ Requirements and solutions are inevitably intertwined"

The system shall provide effective access
control to the resort’s chairlifts. A requirement"

Manual  
control"

Automatic 
control"

Potential solution"
decisions"

Requirements about 
selecting and training  
people"

Requirements about 
turnstiles, access cards, 
and control software"

Lower level"
requirements"

33"

Requirement	

Requirement	

Requirements vs. solution decisions"

Problem: Sonja Müller
has completed her
university studies and
does no longer receive
any money from her
parents. Hence, she is
confronted with the
requirement to secure
her living. She is
currently living in
Avillage and has a job
offer by a company in
Btown. Also, she has a
rich boy friend and she
is the only relative of
an equally rich aunt."

Buy a car	Buy a bike" Use public
transport"

Solution
decisions "

Commute from
Avillage to Btown

""

Get a job in
Avillage"

Move to Btown" Solution
decisions "

Get a job	 Solution
decisions "

Get married" Poison the
aunt"

Requirement	Secure living"

Requirements Engineering I – Part I: Fundamentals "© 2016 Martin Glinz"

34"

Typical requirement layers"

Using a railway system as an example"
✩  Business:"“More people than today shall be transported

using the existing tracks.”"
✩  System:" “The minimal distance between two trains shall

always be greater than the current maximum braking
distance of the successive train.”"

✩  Software: "“The current maximum braking distance shall be
computed every 100 ms.”"

Requirements Engineering I – Part I: Fundamentals "© 2013 Martin Glinz"

Requirements Engineering I – Part I: Fundamentals "© 2016 Martin Glinz" 35"

WHAT vs. HOW in Requirements Engineering"

Traditional belief: WHAT = Specification, HOW = Design"

But: is this a requirement or a solution design decision?"

“The system prints a list of ticket purchases for a given day. Every
row of this report lists(in this order) date and time of sale, ticket
type, ticket price, and payment method. Every page has a footer
with current date and page number.” "

➜ "WHAT vs. HOW is context-dependent and doesn’t provide a
useful distinction. "

Requirements Engineering I – Part I: Fundamentals "© 2016 Martin Glinz" 36"

Distinguishing requirements and solutions"

❍  WHAT vs. HOW doesn’t work"
❍  Requirements and solutions should be documented

separately"

❍  Distinguish operationally:"
●  If a statement is owned by stakeholders (i.e., changing it

requires stakeholder approval), it’s a requirement"
●  If a statement is owned by the supplier (i.e. the supplier may

change it freely), it’s part of the solution"

2.4 Value-orientation"

Traditional Requirements Engineering: always write a complete
specification"

However..."
❍  Customers typically pay for systems, not for requirements"

❍  Many successful projects don’t have a complete
specification"

❍  Good Requirements Engineering must create value"
❍  Value comes indirectly"
"

Requirements Engineering I – Part I: Fundamentals "© 2013 Martin Glinz" 37"

Requirements Engineering I – Part I: Fundamentals "© 2015 Martin Glinz" 38"

Requirements are a means, not an end"

❍  Requirements shall deliver value"
❍  Value of a requirement:"

●  The benefit of reducing development risk 
(i.e. the risk of not meeting the stakeholders’ desires and
needs)"

●  minus the cost of specifying the requirement"

☞ Adapt the effort put into RE such that the specification
yields optimum value"
●  Low risk: little RE" " "High risk: full-fledged RE"

☞ Assessment of value requires assessment of risk"

[Glinz 2008]"

Requirements Engineering I – Part I: Fundamentals "© 2015 Martin Glinz" 39"

Assessing risk"

❍  Assess the criticality of
the requirement"

❍  Consider other factors
(next slide)"

❍  Use requirements
triage techniques"

 Minor Major Critical"

Im
pa

ct
"

Critical:"
Deserves
high effort"

Uncritical:"
Deserves"
little effort"

Lo
w

 M
ed

iu
m

 H
ig

h"

Importance of stakeholder"

[Glinz 2008]"

Requirements Engineering I – Part I: Fundamentals "© 2013 Martin Glinz" 40"

Assessing risk: other factors"

❍  Specification effort"
❍  Distinctiveness"

❍  Shared understanding"
❍  Reference systems"
❍  Length of feedback-cycle"
❍  Kind of customer-supplier relationship"
❍  Certification required"

The effort invested into requirements engineering shall be
inversely proportional to the risk that one is willing to take."

2.5 Shared understanding"

❍  A basic prerequisite for any successful development of
systems"

❍  Created, fostered and assured in Requirements
Engineering"

❍  For more, see Chapter 4"

Requirements Engineering I – Part I: Fundamentals "© 2016 Martin Glinz" 41"

2.6 Validation"

Every requirement  
needs to be validated"

Requirements Engineering I – Part I: Fundamentals "© 2016 Martin Glinz" 42"

Stakeholders’"
desires and needs"

Requirements
specification"

Deployed system"

The ultimate question:"
Does the deployed system actually
match the stakeholders’ desires
and needs?"

The risk-reduction question:"
Do the documented requirements
match the stakeholders’ desires
and needs?"

Requirements Engineering I – Part I: Fundamentals "© 2017 Martin Glinz" 43"

2.7 Evolution"

The world evolves."
So do requirements."

The problem:"
Keeping requirements stable..."
... while permitting requirements to change"

Potential solutions"
●  " Very short development cycles (1-6 weeks)"
●  " Explicit requirements change management"

Image © C. Sommer /EKHN"

Requirements Engineering I – Part I: Fundamentals "© 2016 Martin Glinz" 44"

2.8 Innovation"

“Give the customers exactly what they want.” 	

“We know perfectly well what is good for the customer.” "

“Our new system does all the rubbish we did manually before.�
But it’s much faster now.”	

Image © Apple"Maybe the worst you can do onto them."

Your customers will love you for your attitude."

Don’t just automate – satisfying stakeholders is not enough."
More of the same will not excite anybody."
Strive for making stakeholders happy. "
Innovative requirements are the key."

Wow, what a progress."

2.9 Systematic and disciplined work"

We can’t do without."
Requirements need to be elicited, documented, validated and
managed systematically"

●  using a suitable process"
●  with suitable practices"

Also applies for agile development, just with a different process
and maybe different practices"

Systematics does not mean “One size fits all”"
●  Adapt your processes and practices to the problem"
●  No unreflected reuse of RE techniques from previous projects"

Requirements Engineering I – Part I: Fundamentals "© 2016 Martin Glinz" 45"

Requirements Engineering I – Part I: Fundamentals "© 2013 Martin Glinz" 46"

3 Classifying requirements"

The operator shall be able to run the system in three modes: normal
(turnstile unlocked for one turn when a valid card is sensed), locked
(all turnstiles locked), and open (all turnstiles unlocked).

The turnstile control software shall count the number of ‘unlock for
a single turn’ commands that it issues to the controlled turnstile."

A function"

A behavior"

The system shall be deployed at most five months after signing
the contract." A project requirement"

Requirements Engineering I – Part I: Fundamentals "© 2013 Martin Glinz" 47"

The system must comply with the privacy law of the country
where the resort is located."

The reaction time from sensing a valid card to issuing an
‘unlock for a single turn’ command must be shorter than 0.5 s.	

The system shall be highly available.	

A legal constraint"

A performance attribute"

A quality attribute"

Requirements Engineering I – Part I: Fundamentals "© 2013 Martin Glinz" 48"

Requirements have a concern"

Was this requirement stated because we need
to specify ..."
... some of the system’s behavior, data, input, or
reaction to input stimuli – regardless of the way
this is done?"
... restrictions about timing, processing or
reaction speed, data volume or throughput?"
... a specific quality that the system or a
component shall have?"
... any other restriction about what the system
shall do, how it shall do it, or any prescribed
solution or solution element?"

functional
requirement 
"
performance
requirement"
specific quality
requirement"
constraint"

Question" Kind of"
requirement"

Ap
pl

ic
at

io
n

or
de

r"

Requirements Engineering I – Part I: Fundamentals "© 2013 Martin Glinz" 49"

Classification according to kind"
Requirement

Project
requirement

Process
requirement

System
requirement

Functional
requirement

Quality requirement (Attribute) Constraint

Performance
requirement

Specific quality
requirement

Functionality
and
behavior:
Functions
Data
Stimuli
Reactions
Behavior

Time and
space bounds:
Timing
Speed
Volume
Throughput

“-ilities”:
Reliability
Usability
Security
Availability
Portability
Maintainability
...

Physical
Legal
Cultural
Environmental
Design&Im-
plementation
Interface
...

[Glinz 2007]"

Also called non-functional
requirement

50"

Beyond kind: A faceted classification"

Representation"
• "Operational  
• "Quantitative  
• "Qualitative  
• "Declarative"

Kind"
• "Function, Data,  
"Behavior 

• "Performance  
• "Specific Quality 
• "Constraint"

Satisfaction"
• "Hard  
• "Soft"

Role"
• "Prescriptive  
• "Normative  
• "Assumptive  
"

Requirement"

Requirements Engineering I – Part I: Fundamentals "© 2013 Martin Glinz"

[Glinz 2005, 2007]"

Requirements Engineering I – Part I: Fundamentals "© 2013 Martin Glinz" 51"

Classification according to representation"

The system shall be highly available.	

During the operating hours of the chair lift, the system must be
available for 99.99% of the time."

Qualitative"

Quantitative"

The system must comply with the privacy law of the country
where the resort is located.

Declarative"

The turnstile control software shall count the number of ‘unlock
for a single turn’ commands that it issues to the controlled
turnstile." Operational"

Representation informs validation"

Representation "Validation technique(s)"
Operational "Test, Review, Formal verification"

Quantitative "Measurement"
Qualitative "No direct validation technique. Use  

"• Stakeholder judgment 
 "• Prototypes 

"• Indirect validation by derived metrics"
Declarative (informally) "Review  
Declarative (formally) "Review, Model checking"
"

Requirements Engineering I – Part I: Fundamentals "© 2013 Martin Glinz" 52"

53"

Classification according to satisfaction"

✧  Hard – The requirement is satisfied totally or not at all"
✧  Soft – There is a range of satisfaction"

1"

0"

value"

cost"

1"

0"

value"

cost"

Hard" Soft"

planned"

min  
acceptable"

Requirements Engineering I – Part I: Fundamentals "© 2013 Martin Glinz"

Binary acceptance criterion" Range of acceptable values"

54"

Classification according to role"

Prescriptive: “Classic” requirement pertaining the system-to-
be  
“The sensor value shall be read every 100 ms.”	

Normative: A norm in the system environment that is relevant
for the system-to-be  
“The social security number uniquely identifies a patient.”	

Assumptive: Required behavior of an actor that interacts with
the system-to-be  
“The operator shall acknowledge every alarm message.”	

à Makes norms and assumptions explicit"

Requirements Engineering I – Part I: Fundamentals "© 2013 Martin Glinz"

4 Shared understanding"

Two disturbing observations:"
❍  Specifying everything explicitly is impossible and infeasible"

❍  Explicitly specified requirements may be misunderstood "
àRequirements Engineering has to deal with the problem of
"shared understanding"

●  How do we establish shared understanding?"
●  How can we rely on shared understanding?"

Requirements Engineering I – Part I: Fundamentals "© 2015 Martin Glinz" 55"

[Glinz and Fricker 2013, 2015]"

Shared understanding: the problem"

❍  Explicit / implicit"
❍  True / false"
❍  Relevant / irrelevant"
❍  “Dark”"

Requirements Engineering I – Part I: Fundamentals "© 2013 Martin Glinz" 56"

Alice" Bart"

We need a
swing for the
kids in the
garden."

Forms of shared understanding"

Requirements Engineering I – Part I: Fundamentals "© 2015 Martin Glinz" 57"

[Glinz and Fricker 2015]"

Implicit Explicit

True shared understanding
False shared understanding!
(misunderstandings exist)

Context boundary:!
separates relevant from !
irrrelevant information

True implicit shared!
understanding of considered,!
but irrelevant information

Explicitly specified and truly!
understood, but irrelevant

Explicitly specified and!
misunderstood and not !
relevant

False implicit shared!
understanding of considered,!
but irrelevant information Shared understanding !

boundary

Relevant, but not!
noticed by anybody!
(“Dark” information)

Dependable implicit!
shared understanding!
of relevant information

Explicitly specified and!
truly understood and!
relevant information

Explicitly specified!
and misunderstood!
and relevant

False implicit shared!
understanding of!
relevant information

Explicit shared!
understanding (ESU)

Implicit shared!
understanding (ISU)

Relevant
information

Rephrasing the problem"

Achieve successful software development by:"
(P1) "Achieving shared understanding by explicit

specifications as far as needed,"
(P2) "Relying on implicit shared understanding of relevant

information as far as possible,"
(P3) "Determining the optimal amount of explicit

specifications, i.e., striking a proper balance between
the cost and benefit of explicit specifications."

Requirements Engineering I – Part I: Fundamentals "© 2013 Martin Glinz" 58"

Note that P1, P2 and P3 are not orthogonal"

In fact a value problem"

How can we achieve specifications that create optimal value? !

Value means"
❍  The benefit of an explicit specification"

Bringing down the probability for developing a system that
doesn’t satisfy its stakeholders’ expectations and needs to an
acceptable level"

minus "

❍  The cost of writing, reading and maintaining this
specification"

Requirements Engineering I – Part I: Fundamentals "© 2014 Martin Glinz" 59"

(cf. Principle 4 in Chapter 2)"

Shared understanding: Enablers and obstacles"

+ "Domain knowledge"
+ "Previous joint work or collaboration"
+ "Existence of reference systems"
+ "Shared culture and values"
+ "Mutual trust"
+/– "Contractual situation"
+/– "Normal vs. radical design"
– "Geographic distance"
– "Outsourcing"
– "Regulatory constraints"
– "Large and/or diverse teams"
– "Fluctuation"
Requirements Engineering I – Part I: Fundamentals "© 2013 Martin Glinz" 60"

Achieving and relying on shared understanding"

❍  Building shared understanding: The essence of
requirements elicitation (cf. Chapter 7)"

❍  Assessing shared understanding"
●  Validate all explicitly specified requirements"
●  Test (non-specified) implicit shared understanding"

❍  Reducing the impact of false shared understanding"
●  Short feedback cycles"
●  Build and assess shared understanding early"
●  Specify and validate high risk requirements explicitly"

Requirements Engineering I – Part I: Fundamentals "© 2013 Martin Glinz" 61"

Mini-Exercise"

Consider the chairlift access control case study."
(a) "How can you make sure that the following explicit

requirement is not misunderstood: 
“The ticketing system shall provide discounted tickets
which are for sale only to guests staying in one of the
resort’s hotels and are valid from the first to the last day
of the guest’s stay.”"

(b) "We have used the term “skier” for denoting an important
stakeholder role. 
How can we test whether or not there is true implicit
shared understanding among all people involved about
what a “skier” is?"

 "Requirements Engineering I – Part I: Fundamentals "© 2013 Martin Glinz" 62"

