
MasterProject

Christine Graff
Mohit Narang

July 1, 2016

1

Contents

1 Introduction 3

2 Concept of Now 3

3 Temporal Primitives 4

4 Integration of Now 5
4.1 Time Domain . 5
4.2 Generally Valid Functions . 7
4.3 Predicates . 13

5 Normalize Primitive 15
5.1 Parsing of the query . 16
5.2 Execution of the query . 16

5.2.1 Pseudo code of the algorithm for execution of the query . 19
5.3 Reference Query . 21

6 Results and Empirical Evaluation 22

7 Conclusion 25

2

1 Introduction

Temporal databases has been an important topic of interest in database re-
search since the origin of databases because many real world applications are
associated with time intervals. A lot of concepts exist to handle the historical
data in huge data warehouses [4]. In this project we implement generally valid
concept of now in the Postgres kernel. We focus on valid time, which is the real
world time during which a fact is true.

In this project we worked on four major areas namely the implementation of
NOW in the kernel, the query tree of a normalize statement, execution of a
normalize query.

This report introduces the concept of now in the section 2. It is a very brief
introduction of the problems faced by databases when it comes to time varying
data and how can those problems be solved using now. We show the implemen-
tation from a real world use-case point of view. This gives an understanding
of our choices when it comes to implementation. Some technical details are
self explanatory while the others which need more reasoning to why we chose a
particular way to implement something are described in this report.

Section 4 describes the details about physical implementation of now in the
kernel along with supporting functions which makes the queries and implemen-
tation more efficient. Then follow the generally valid predicates. In next part
we go into technical details of how the parse tree of a query using a new key-
word normalize is built. This is followed by the implementation details of an
algorithm to output the tuples for an executor function.

In the next part we take a reference query which shows an overview of the
entire workflow of a query which goes from a database user into the postgresql
kernel. We show the evolution of a simple text based query and how it goes
through the parser finally put into the executor to make actual function calls to
the functions created in the implementation of now. Next we show the empirical
results and performance considerations when it comes to the implementation.

2 Concept of Now

The value of Now represents the current real world time at a specific granu-
larity. Suppose an employee, Susan, is hired in March 2014 and her employment
extends until November 2016. The valid time of her employment is recorded
in the database as Employee(”Susan”, ”[March2014, November2016)”) where
Susan is the value of employee name and [March2014, November2016) is the
value of employment duration. However, suppose Susan’s employment contract
is open-ended. How can the end time of her employment be represented in the
database? In this case the end time could be updated every day (or at every

3

increment of the given granularity) to the current time in order to accurately
represent the valid time of Susan’s employment thus far. However, updating
the database at each time increment is costly. A more efficient way to represent
valid time is using the concept of Now.

We can specify the valid time range of Susan’s employment as
”[March2014, November2016|Now)”. This, represents Susan’s employment valid
time as beginning on March 2014, continuing at least until November 2016, and
possibly beyond. In this way, the open-endedness of her employment can be
modeled without the need to constantly update the tuple in the database. Once
the current time passes November 2016, the end time of the range becomes Now,
which represents the current time at each increment.

The advantage of using Now in time ranges is that the database does not
need to be updated at each time interval, and can perform generally valid calcu-
lations, which give correct results at every point in time. This greatly improves
the efficiency and reduces the complexity of database operations involving time
ranges.

However, there are also a few drawbacks. For example, if the user wants
to query whether Susan will be employed at some future time, the database
will only consider her valid employment time to continue until the current time.
Thus it makes a pessimistic assumption about her continued employment, and
does not recognize her employee status in the future as valid even though there
may be no reason to believe she will be fired. Another problem could occur in
cases where the database is updated with some degree of delay, and the Now
value reflects the real world time of the update rather than of the event it is
supposed to describe. In this case, there is an unrealistic assumption about the
punctuality of an update. For example, if our granularity is days, and Susan is
fired on March 3rd 2016, but the database is only updated on March 10th, the
Now value representing the upper bound of her valid employment time range
will be represented as March 10th rather than time she was actually fired, March
3rd. This is because Now represents the current time, and will therefore be in-
terpreted as the current time of the update. [4]

3 Temporal Primitives

In order to get native database support for processing interval timestamped
data, Dignos et al [5] implemented the two temporal primitives, temporal split-
ter and temporal aligner into the kernel of PostgreSQL. These primitives allow
operators of temporal algebra to be reduced to their non-temporal counterparts.
The temporal splitter splits an argument tuple at each start and end point of
all tuples in a specific group, whereas the temporal aligner adjusts an argument
tuple according to each tuple of a specific group which it overlaps.

4

Temporal alignment and temporal splitter functionality was implemented
in version 9.2 of the Postgres kernel. The definition of temporal splitter is as
follows:

In our project we handle integration of the temporal splitter, normalization, with
our implementation of Now, however we do not handle temporal alignment.

4 Integration of Now

4.1 Time Domain

The time domain is defined as Ωv = T ∪ {< t|Now >,min(a,< t|Now >)}.
T represents a linear, discrete time point, such as 01 − 01 − 2015. The time
domain also includes now-relative time points such as < 01− 01− 2015|Now >
or now-relative minimums such as min(01−01−2015, < 01−01−2017|Now >)
We represent a time interval as [Ts, Te), a contiguous set of time points where
Ts is the inclusive start point and Te is the exclusive end point. For example,
[01− 01− 2018, < 01− 01− 2019|Now >).

To implement the concept of Now we worked from existing kernel version 9.4,
which uses a daterange struct to encode time ranges.To represent a now-relative
time range, we implemented structs RangeType and RangeBound. RangeType
represents a whole time range, and RangeBound represents the upper and lower
bounds of the range. Using a struct to represent the start and end times of
an interval allows us to represent Now and other concepts, through the use of
descriptive flags.

5

We use a series of flags to describe the properties of a RangeBound in-
stance. For instance, a bound representing January 1st 2015 has ”val” set
to the Datum 01-01-2015 and all other flags set to false. Now is also rep-
resented with a flag. For example, the bound [... , 01-01-2015 — Now) is
represented by setting the ”val” flag to Datum 01-01-2015 and the ”now” flag
to true. We can also describe a bound represented as a minimum function,
min(ta, < tb|Now >), using the flags ”min” and ”val2”. For example, in the
case of bound min(01 − 01 − 2015, < 01 − 01 − 2017|Now >) we set ”val” to
01− 01− 2017, ”val2” to 01− 01− 2015, ”now” to true, and ”min” to true.

Canonicalization Canonicalization is performed on the result in another
function, range serialize, which combines two RangeBounds into a RangeType.
In this way we ensure that new ranges are always canonicalized.
Canonicalization is the process of transforming a range T of the form [Ts, Te)
where it undergoes two basic transformations. First transformation transforms
the rangebound Te such that it is max(Ts,Te). The second step is to apply
canonicalization function such that a range is not further reducible from the
given possible forms.

It has been implemented in the code in rangeTypes.c file as a separate
function which takes in two rangebounds and canonicalizes it using the min
representation reduction rules as shown in the figure above.

6

4.2 Generally Valid Functions

A function ϕ on time ranges or time points is generally valid if its result eval-
uated at every possible current time is equivalent to the result of ϕ determined
over the time ranges or time points evaluated at every possible current time
[1]. In order to use intersection and difference queries on now-relative relations,
we implemented generally valid intersection and difference functions on time
ranges. We implemented generally valid minimum and maximum functions, as
part of our intersection and difference function implementations.

Minimum and Maximum Functions The maximum and minimum func-
tions take two RangeBounds as input and return either the maximum or min-
imum RangeBound respectively. In cases dealing with now-relative time range
bounds, determining the minimum or maximum of two bounds often varies with
respect to the current time (Now). Since our functions must be generally valid
(always return the same result regardless of the current time) it is not possible
to always return one of the two input arguments as a result. Both the mini-
mum and maximum functions are symmetric. To ensure that the minimum and
maximum functions are closed under the time domain, we use reduction rules
for all possible combinations of input arguments from the time domain [1].

7

In our implementation, the maximum and minimum functions take a Type-
CacheEntry and two RangeBounds as arguments.

Inside the functions we check to see which reduction rule case applies by
comparing the values of the first and second RangeBound flags with one an-
other in a series of if statements. We define a new RangeBound instance, re-
sult, and based on the applicable case, we modify the flags of the result in-
stance and then return it at the end of the function. For example, the case
min(< 01 − 01 − 2017|Now >,< 01 − 01 − 2020|Now >) is captured in the
range minimum function as follows:

8

We check whether both RangeBounds r1 and r2 have their ”min” flag set to
false and their ”now” flag set to true to determine whether the input bounds fit
the description min(< ta|Now > | < tb|Now >). The applicable case in the re-
duction rules state that if ta ≤ tb, the result should be < ta|Now >, which is the
same as RangeBound input r1, and otherwise the result should be < tb|Now >,
which is the same as RangeBound input r2. We compare the ”val” flags of r1
and r2, and if ta ≤ tb we assign *r1 to result, otherwise we assign *r2 to result.
In our example, min(< 01 − 01 − 2017|Now >,< 01 − 01 − 2020|Now >), the
result should therefore be < 01− 01− 2017|Now >.

To ensure symmetry, we add a check to the start of the range maximum and
range minimum functions:

In our implementation of the reduction rules, we assume that in cases such
as min(ta, < tb|Now >) and max(ta,min(t

′

b, < tb|Now >)) we will always have
RangeBound inputs with their ”now” or ”min” flags set to true come second
after RangeBound inputs with ”now” or ”min” set to false respectively. If this
is not the case, then the order of the inputs has to be switched. To do this, we
simply assign r1 to the variable r2 and r2 to the variable r1. In a case where
the first input has ”now” and ”min” set to true, but the second input only
has ”now” set to true and not ”min”, we also switch the order of the inputs.
For example, if the inputs are [< 01 − 01 − 2015|Now >, 01 − 01 − 2016), we
would assign the second input to r1 and the first input to r2. If the inputs are
[min(01− 01− 2016, < 01− 01− 2014|Now >)), we would also assign the first
input to r2 and the second input to r1.

9

Intersection Function The generally valid intersection function makes use
of the generally valid maximum and minimum functions. The intersection func-
tion is defined as follows [1]:

Version 9.4 of the project contains a function range intersect to handle in-
tersection queries involving time ranges.

Consider the following table containing two tuples with time ranges and ids.

The existing range intersect function is called when the user issues the query:

SELECT (a.range * b.range) FROM table as a, table as b where a.id = 1
AND b.id = 2

The result returned from this query is the intersection of the two time ranges:
[01− 01− 2014, 01− 01− 2016).

However, the existing range intersect function cannot handle queries on
time ranges including Now. We implement a second intersection function,
range intersection to handle cases using the definition of the generally valid
intersection function. Our implementation takes a TypeCacheEntry and two
RangeTypes as input.

We modify the existing range intersect function to check whether any of the
RangeBounds from the input include Now. If so, we call our implementation,
range intersection, and return the result of that function.

10

Inside the function range intersection, as in the existing range intersect,
we call the function range deserialize(TypeCacheEntry *typecache, RangeType
*range, RangeBound *lower, RangeBound *upper, bool *empty), which takes
a TypeCacheEntry and a RangeType, and deconstructs it into its upper and
lower RangeBounds, which are stored in the variables upper and lower.

Once we have the upper and lower RangeBounds of the RangeType we can
feed them to the range maximum and range minimum functions to get the up-
per and lower bounds of the result.

Our implementations of the generally valid maximum and minimum func-
tions, range maximum and range minimum, cannot be called directly by the
user in a query. However, since our implementation of the now-inclusive inter-
section function, range intersection, uses range maximum and range minimum,
we can test range maximum and range minimum with intersection queries to
make sure the reduction rules of the various generally valid minimum and max-
imum cases are working correctly. For example suppose our database contains
a relation ”table” containing the following tuples:

We can use a query to find the intersection of the ranges with ”id” values 1 and
2:
SELECT (a.range * b.range) FROM table as a, table as b where a.id = 1 AND
b.id = 2
As stated in the definition of the generally valid intersection function, the
lower bound of the result is max(l1, l2) and the upper bound of the result is
min(u1, u2). This coincides with the generally valid maximum and minimum
reduction rule cases min(ta, < tb|Now >) and max(ta, < tb|Now >). Accord-
ing to these rules, the result of the query should be [min(01 − 01 − 2016, <
01 − 01 − 2019|Now >,< 01 − 01 − 2 − 15|Now >). In this way, we can is-
sue queries coinciding with all of the minimum and maximum reduction rules
to check whether our implementation of range minimum, range maximum and
range intersection are working correctly.

11

Difference Function The generally valid minimum and maximum functions
are also used by our implementation of the difference function, which allows the
user to query the difference between two now-relative time ranges. The differ-
ence function is defined as follows [1]:

The difference function can return either one, two, or zero results. In cases
where there are two results of a the difference function, both Ta and Tb return a
non-empty range. In cases where there is only one result, either Ta or Tb returns
a non-empty range, and in cases where there are zero results, both Ta and Tb

return empty ranges. Ta covers the range between the lower bound of the first
input range and the lower bound of the second input range. The minimum
function in its upper bound makes sure that this value never exceeds the upper
bound of the first input range. Tb covers the range between the upper bound
of the second input range and the upper bound of the first input range. The
maximum function in its lower bound ensures that the range never gets below
the lower bound of the first input range.

Postgres only supports contiguous difference functions. It is not possible to
return two results from a single function at once. Therefore we chose to imple-
ment the generally valid difference function by creating two separate functions
for the possible lower and upper results of difference, Ta and Tb, and defining
them in pg proc as functions minus ta and minus tb, so that they can be directly
called in queries. We also implement a new function range difference which,
similar to range intersection, takes a TypeCacheEntry and two RangeTypes as
input. However, because there can be up to two results, it returns a pointer to
a RangeList struct instead of a RangeType.

The RangeList struct can store up to two pointers to RangeTypes, which
are the results of the difference query. The range difference function calculates

12

Ta and Tb and adds the results to the RangeList before returning it.

As in the case of range intersection, canonicalization occurs in the serialize
function responsible for making the result RangeType out of two RangeBounds.
To query now-relative difference, the user calls both minus ta and minus tb.
Both functions call the range difference function. If there is one result, it is
returned by minus ta while minus tb returns an empty range. If there are two
results, minus ta returns the lower result and minus tb returns the upper result.
In the case of zero results, both functions return empty ranges.

4.3 Predicates

We implemented the three predicates, equals, overlaps, and isEmpty as they
are required for a correct implementation of the generally valid interseciton and
difference function and for filtering tuples within queries.

Equals The equals predicate is true if two time ranges describe the same
range at every possible point in time. For example, the time ranges [2015, <
2015|Now >) and [2015, < 2014|Now >) are equal. Until the current time
reaches 2015, both time ranges are empty, and after 2015 both ranges represent
a valid time range which starts at 2015 and ends at the current time or Now
[1]. Our implementation of the function which calculates the equals predicate
is called range equals. It returns a boolean representing the equals predicate,
and takes a TypeCacheEntry and two RangeBounds as arguments.

Inside the function, we compare the values of all of the flags of the two
RangeBound inputs r1 and r2, except the lower and inclusive flags. If every
relevant flag of r1 has the same value as the corresponding flag of r2, then the
ranges are equal and the function returns true. Otherwise they are not equal
and the function returns false.

Empty In cases where the result of the range difference or range intersection
function is an empty time range, we have to specifically make and return an
empty RangeType. To detect whether now-relative time ranges are empty, we
implement two functions: range emptynowinc, which takes a TypeCacheEntry
and a RangeType as arguments, and range emptyNowIncBound, which takes a

13

TypeCacheEntry and two RangeBounds as arguments.

The range intersection function checks whether the upper and lower bound
of the resulting time range constitute an empty time range, and if so makes and
returns and empty RangeType.

The range difference function checks the results of Ta and Tb and only adds
them to the RangeList result if they are non-empty.

To determine whether a now-relative time range is empty in both the range emptynowinc
and range emptyNowIncBound functions, we first determine the maximum of
the upper and lower RangeBounds of the time range, and then compare the
lower RangeBound with the result using range equals. If range equals returns
true, then the lower RangeBound must be greater than the upper RangeBound,
and thus the time range is empty.

14

Overlaps The overlaps predicate is true if two now-relative time ranges over-
lap one another. We use the intersection and the equals predicate to deter-
mine whether two time ranges overlap. For example, if we have time ranges
[2013, 2017) and [2013, < 2013|Now >), and the current time is 2015, then their
intersection is [2013, 2015). Since this non-empty intersection exists for at least
one point in time, we know that the time ranges must overlap. [1] We im-
plement this calculation in the function range overlaps nowinc, which takes a
TypeCacheEntry and two RangeTypes, and returns a boolean which is true if
the RangeTypes overlap one another and false if they do not overlap.

To determine whether two RangeTypes overlap, we find the upper and lower
RangeBounds of the intersection, and then check whether the maximum of these
two RangeBounds is equal to the lower bound of the intersection range. If so,
then the intersection must be empty, and thus the input time ranges do not
overlap.

We use the range overlaps nowinc function in our range difference function.
If the ranges to not overlap, we know that the difference of the two RangeTypes
is equal to r1.

5 Normalize Primitive

Normalization was already implemented in postgresql version 9.2 for the tempo-
ral alignment project [2] using datetime types and two attributes ts and te. In
this project we first ported that implementation to postgresql version 9.4. After
that we changed the analyze.c and nodeadjustment.c files to start using the
newly updated Daterange to work with time domain Ωv and NOW. Normalize

15

is a type of select predicate which is implemented in execAdjustment function
for its execution. The simple text query from a terminal client like psql is first
parsed in the transformAdjustmentStmt function in analyze.c. This function
takes in the parse state and the statement as parameter and transforms the nor-
malize part of the query into standard parse tree which removes the normalize
keyword and instead replaces it with a custom select statement. This new tree is
then passed on to the executor function execAdjustment in nodeAdjustment.c

file in the form of a data structure called AdjustmentState which includes extra
information like result tuples as well.

5.1 Parsing of the query

The parser takes in the simple text query of the form:
SELECT ALIASNAME.* FROM (R1 NORMALIZE R2 USING()) ALIASNAME;

The normalize part is then simplified by using transformAdjustmentStmt func-
tion in analyze.c. The parsing is done according to the below query tree:

5.2 Execution of the query

The high level of processing of a query in postgres kernel is as following:

The executor function takes in the adjustmentstate node as an argument. The
adjustment state is a data structure defined in the execnodes.h file.

16

The adjustment state stores the status of execution in variable ss. The ba-
sic idea of the algorithm is to go through each tuple group from the query tree.
The algorithm expects validity attribute as default attribute in a relation to
perform normalize upon and it is defined in the structure as validityPosition.

The algorithm for executor is implemented in function ExecAdjustment in the
file nodeAdjustment.c. As soon as the function gets called the first time it
initializes the variables plannode, currentTuple which contain the execution
plan state and the current tuple in the plan respectively. The group is main-
tained in the variable leftTuple. The temporaryRangeStack variable in the
adjustment state maintains list of range splits for the processing of each group

17

in the input node which persists multiple calls to the executor during an ex-
ecution plan. As soon as that group is processed the temporaryRangeStack

is emptied and the algorithm proceeds to process the next group in the input
adjustmentState node. To perform the normalize splits the the algorithm gets
the difference of a group with all the tuples, and existing stack. Then stores it
into the stack until there are no more possible splits and then starts to output
the tuples one by one until the temporaryRangeStack gets empty.
A more detailed pseudo code of the algorithm is shown below. We show an ex-
ample run of the algorithm with a relation r1 and r2 containing following data
where r1 is normalized by r2:

During the first call to the algorithm, the variables leftTuple and currentTuple

are both initialized by a tuple which is the result of left join from the query tree
result. In this case it would contain the data [2010 − 01 − 01, 2012 − 01 − 02)
in the overlap position of the join result tuple. Since this is the first call of the
execution plan the variable firstcall is true and hence leftTuple which rep-
resents a group is set to current tuple and firstcall is updated to false. Next
it moves to check the temporaryRangeStack to see if a previous group is already
in execution in which case the function outputs those tuples. But since we are
in the first call to the function we move on to the next part and check if the
tuples belong to the same group to determine if the algorithm should proceed
to start outputting the tuple of still keep updating the temporaryRangeStack.
Then we go into a while loop, iterating over all the existing values in tempo-
raryRangeStack for each new tuple in the same group. Whenever a new overlap
is found after difference and intersection between the validity of a tuple and the
stack the stack is updated with newly split ranges. This keeps on iterating until
a group is successfullly processed till the end. Then the algorithm goes to next
group and hence enters a base case of outputting the exisiting tuples.

18

5.2.1 Pseudo code of the algorithm for execution of the query

19

20

5.3 Reference Query

In this section we show a reference query being transformed during its way to
the final execution in the kernel. The database hosts relations r1 and r2 which
has following data:

Normalize query is a kind of select query which have a normalize keyword
in the from clause of the query. For example relations r1 and r2 a normalize
select would look like:
SELECT * FROM (r1 NORMALIZE r2 USING ()) resultAlias;

When the above query goes through the analyzer, the function transformAdjustment

from file analyze.c, the r1 NORMALIZE r2 USING () part of the query is trans-
formed into the following query tree:

The above query (only the normalize subquery) needs to be re-written
to an equivalent query which looks like:
SELECT r1.*, r1.Validity*r2.Validity

FROM r1 LEFT JOIN r2

21

ON r1&r2

WHERE r1.validity OVERLAPS r2.validity

AND <Expr>

ORDER BY r1.*

The result is then given as below:

6 Results and Empirical Evaluation

We created a relation r which has three attributes n,p and validity. It has fol-
lowing rows:

We query the above relation with the following query:

The result of the above query is as following:

22

For the performance evaluation of normalize we created two relation T1 and
T2. T1 with dynamic number of rows and T2 contains a single row spanning
entire rows in T1. The query we used for this test was:
SELECT count(*) FROM (t2 NORMALIZE t1 using()) normalias;

. The number of rows containing NOW in this case were zero. This tested a
worst case scenario for the algorithm where it had to go through each entry
creating multiple stack entries in the executor function. The time spent for
different number of rows is shown in the table below followed by its graph. The
result is as following:

Number of rows Execution time in ms
100 21.393
200 60.023
400 211.672
800 865.637
1600 3599.63
3200 14733.274

23

Next in the performance evaluation is a self normalization case. We test the
query SELECT count(*) FROM (t1 ts NORMALIZE t1 te using()) normalias;.
The query is timed against a relation containing different number of tuples as
seen in the table below to find out the relation between execution time and size
of the table. The server ran out of memory at 625 rows in relation, crashing the
postgres server process:

Number of rows Execution time in ms
39 75
78 384
156 3288
312 34517
625 Memory overFlow

Next in the performance evaluation is a case containing rows with NOW.
The query is:
SELECT count(*) FROM (t2 NORMALIZE t1 using()) normalias;

It is run against following number of tuples in T1. Every additional tuple con-
taining now doubles the execution time and the server eventually crashes at 25
tuples. :

24

Number of rows containing now Execution time in ms
10 22.76
20 5681
21 11289
22 22433
23 45710
25 memory overflow

7 Conclusion

This project was a great introduction for us to get into postgresql development.
We went through the most structural components of the kernel. We learned the
following basic tasks when it comes to postgresql kernel development:

• Basic workflow of how a client-server architecture based dbms works. How
to set up development environment for such an environment and debugging
individual queries through the development process.

• Adding new keywords to the grammar

• Parsing a query and how to deal with particular keywords

• Extending existing data types in the kernel

• Working with temporal primitives

25

• Executing a query by writing a custom executor function

• How an adjustment state is used to operate on intermediate tuples and
how to effectively modify those tuples to produce custom results.

We did not implement alignment in the executor with the Daterange type.
This implementation can be further improved using better way to execute the
normalize query. Currently the performance of normalize query is not adequate
for practical usage in production environments, but it serves a good proof of
concept of using normalize to query data with time domain. It shows that
queries can be simplified with easy to use predicates.

26

References

[1] Yvonne Mülle, Generally valid queries on databases with ongoing times-
tamps, Working paper.

[2] http://www.ifi.uzh.ch/dbtg/research/align.html

[3] PostgreSQL development environment: postgresql in eclipse. https://

wiki.postgresql.org/wiki/Working_with_Eclipse

[4] Clifford, James and Dyreson, Curtis and Isakowitz, Toma s and Jensen,
Christian S. and Snodgrass,RichardThomas. On the Semantics of NOW in
Databases. ACMTrans.Data- base Syst., 1997

[5] A.Dignös, M.Böhlen, and J. Gamper. Temporal alignment. In Proceedings
of the 2012 ACM SIGMOD International Conference on Management of
Data, pages 433444. ACM, 2012.

27

