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Abstract

Many economic problems require finding an efficient combinatorial assignment of multiple in-

divisible items to multiple agents. Popular examples include combinatorial auctions (CAs),

where a set of heterogeneous items is allocated among a set of bidders, and combinatorial course

allocation, where course seats are allocated among students at universities.

What all of these domains have in common is that the agents can report their values on bundles

(sometimes also called packages) of items rather than only on individual items. This allows them

to express more complex preferences, i.e., an agent’s value of a bundle is not simply the sum of

each individual item’s value, but it can be more (complementarity) or less (substitutability). A

mechanism that allows agents to report values for bundles rather than just for individual items

can achieve significantly higher efficiency. However, since the bundle space grows exponentially

in the number of items, agents cannot report values for all bundles, even in domains with a

modest number of items. Therefore, the key challenge in combinatorial assignment is the design

of a preference elicitation algorithm that is (i) practically feasible with respect to elicitation

costs and (ii) smart, i.e., it should elicit the information that is “most useful” for achieving high

efficiency. In this thesis, I study how to design such smart and practically feasible preference

elicitation algorithms using various machine learning (ML) algorithms.

In Research Question 1, I study how to use neural networks (NNs) and Fourier transforms

(FTs) for set functions to enhance existing value query-based preference elicitation algorithms

in combinatorial auctions (CAs). NNs enable the auctioneer to learn more complex bidder

preferences than prior approaches; via FTs an auctioneer can leverage Fourier sparsity of bidders’

preferences to reduce dimensionality and facilitate the learning task. Based on that, I introduce

two novel value query-based ML-powered iterative CA mechanisms (NN-ICA and Hybrid-ICA)

and experimentally show that they achieve state-of-the-art efficiency.

In Research Question 2, I study how to quantify posterior model uncertainty (i.e., epistemic

uncertainty) for NNs in regression. Specifically, I propose neural optimization-based model un-

certainty (NOMU). In contrast to a fully Bayesian approach, NOMU directly estimates posterior

model uncertainty (without explicitly defining a prior) by enforcing five important desiderata

that any method should satisfy. I experimentally show that NOMU works particularly well in

settings with zero or small data noise and scarce training data. This and the fact that NOMU’s

posterior model uncertainty estimate can be represented by a single NN in contrast to ensem-

ble methods, makes NOMU particularly well suited for preference elicitation in combinatorial

assignment.

In Research Question 3, I frame the design of an iterative combinatorial assignment mechanism

as a combinatorial Bayesian optimization (BO) task with an expensive-to-evaluate function. In

classic BO a well-suited domain-specific prior and an acquisition function based on a notion

of uncertainty are key. To address the domain-specific prior, I propose a new class of NNs:

monotone-value neural networks (MVNNs). MVNNs are specifically designed to model mono-

tone combinatorial value functions. I experimentally show that incorporating this important

prior knowledge leads to better generalization performance, specifically in settings with few

training data points. Regarding a notion of uncertainty over agents’ preferences, I combine

NOMU and MVNNs to define a new method for estimating an upper uncertainty bound (uUB)
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that can then be used to define an acquisition function to determine the next query. This re-

sults in the design of a value query-based Bayesian optimization-based combinatorial assignment

(BOCA) mechanism that uses MVNNs as domain-specific prior and makes use of NOMU’s pos-

terior model uncertainty in its query generation module. I experimentally evaluate BOCA and

show that not only exploiting but also properly exploring the bundle space during the preference

elicitation phase indeed leads to allocations with higher efficiency.

In Research Question 4, I study the course allocation problem, an instance of combinatorial

assignment where monetary transfers are not permitted. I introduce a machine learning-powered

course allocation mechanism. Concretely, I extend the state-of-the-art Course Match mecha-

nism with an MVNN-based preference elicitation algorithm. I call the proposed mechanism ma-

chine learning-powered course match (MLCM). MLCM generates in an iterative, asynchronous

manner, pairwise comparison queries that are tailored to each individual student. I perform

computational experiments using a simulator for students’ preferences that was fitted to real-

world data. I find that, compared to Course Match, MLCM is able to significantly increase

both average and minimum student utility, even with only ten additional pairwise comparison

queries.
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1 Introduction1

In recent years, artificial intelligence (AI) and machine learning (ML) in particular have found

widespread application in many real-world market mechanisms (with and without money). This

ranges from the development of sophisticated ML-based recommender systems on popular plat-

forms like TikTok, Instagram, Netflix, to the use of natural language processing to predict a

seller’s quality on eBay (Masterov et al., 2015), to ML-based optimal reserve prices in Google’s

Ad auctions (Milgrom and Tadelis, 2019), or to optimal refugee resettlement matching mecha-

nisms via gradient boosting regression trees (Bansak et al., 2018). In all these examples, ML

has helped greatly to design a better marketplace, e.g., by improving customers’ experiences, by

facilitating trades, by increasing a seller’s revenue or by achieving better societal outcomes.

In my thesis, I focus on combinatorial assignment. Many important economic problems in-

volve the combinatorial assignment of multiple indivisible items to multiple agents. In domains

with money, prominent examples include combinatorial auctions (CAs) and combinatorial ex-

changes (CEs). In CAs, heterogeneous items are allocated amongst a set of bidders, e.g., for the

sale of spectrum licenses (Cramton, 2013). In CEs, a set of items is allocated between multiple

agents who can be sellers and buyers at the same time, e.g., for the reallocation of catch shares

(Bichler et al., 2019). In domains without money, a popular example is combinatorial course

allocation, where course seats are allocated to students in business schools (Budish, 2011).

What all of these domains have in common is that the agents can report their values on

bundles of items rather than only on individual items. This allows them to express more complex

preferences, i.e., their value for a bundle is not just the sum of each individual item’s value, but

it can be more (complementarity) or less (substitutability). A mechanism that allows agents to

report values for bundles rather than just for individual items can achieve significantly higher

efficiency. However, this also implies that agents’ preferences are exponentially-sized (i.e., for

m items there are 2m different bundles), and thus agents cannot report values for all bundles,

even in settings with a modest number of items. Therefore, the key challenge in combinatorial

assignment is the design of a preference elicitation algorithm that is (i) practically feasible with

respect to elicitation costs and (ii) smart, i.e., it should elicit the information that is “most

useful” for achieving high efficiency.

In my thesis, I study how to use ML for the design of preference elicitation algorithms in

combinatorial assignment. On a high level, the ML-based preference elicitation algorithms I

consider in my thesis proceed iteratively in rounds and involve the following two key steps:

First, to use ML algorithms to learn agents’ preferences (including some notion of uncertainty)

from observed data points; second, to use those trained ML models to generate smart and

informative queries for the agents (I focus on value queries, i.e., “How much do you value bundle

1Some parts of this chapter are adapted from my own prior work (Weissteiner and Seuken, 2020; Heiss et al.,
2022; Weissteiner et al., 2022b,a, 2023; Soumalias et al., 2023)
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1 Introduction

A” and pairwise comparison queries, i.e., “Do you prefer bundle A or B?”). Specifically, for

the second step, a key requirement is to efficiently solve the resulting ML-based combinatorial

optimization problem. For example, in combinatorial auctions, a key step is to solve ML-based

winner determination problems (WDPs), i.e., finding allocations that maximize the predicted

social welfare with respect to the trained ML models. In combinatorial course allocation, a key

step is to determine for each student a feasible course schedule that maximizes the predicted

utility with respect to the student’s trained ML model.

1.1 Background, Problem Statements and Research Questions

In this section, I frame the four main research questions for my thesis. Each of those will address

the overarching question:

How to design better market mechanisms by integrating advanced ML methods?

Machine Learning-based Combinatorial Auctions

First, I study the design of ML-based combinatorial auction (CA) mechanisms, that aim for

approximately efficient allocations, i.e., allocations of items to bidders such that the total sum

of bidders’ values, i.e., the social welfare, is approximately maximized.

For general value functions, Nisan and Segal (2006) have shown that to guarantee full effi-

ciency in CAs, exponential communication in the number of items is needed. Thus, practical

CA designs cannot provide efficiency guarantees in large domains. Instead, recent proposals

have focused on iterative combinatorial auctions (ICAs), where the auctioneer interacts with

bidders over multiple rounds, eliciting a limited amount of information, aiming to find a highly

efficient allocation. Prior work by Brero et al. (2018, 2021), proposed the first ML-powered

ICA. At the core of their design is an ML-powered preference elicitation algorithm. As part

of their algorithm, they used kernelized support vector regressions (SVRs) to learn the highly

nonlinear value functions of bidders. Recently, Brero et al. (2021) showed that their ML-based

ICA achieves even higher efficiency than the state-of-the-art non-ML-based combinatorial clock

auction, which is a widely-used CA mechanism that has already generated more than $20 billion

in total revenue over the past years (Ausubel and Baranov, 2017). However, because of runtime

complexity issues, Brero et al. (2018, 2021) focused on SVRs with less expressive linear and

quadratic kernels. Note that a quadratic kernel, while more expressive than a linear kernel, can

still at most model two-way interactions between the items. This leaves room for improvement,

since bidders’ value functions can have more complex structures than can be captured by linear

or quadratic kernels and brings me to my first research question:

Research Question 1 How can we enhance ML-based preference elicitation in CAs and address

the limitations of prior work?

Quantifying Model Uncertainty for Neural Networks

Before, I motivate my next research question, I first briefly review the definition of model uncer-

tainty (a.k.a. epistemic uncertainty) and data noise (a.k.a. aleatoric uncertainty) (see (Heiss

2



1.1 Background, Problem Statements and Research Questions

et al., 2022, Section 2) for more details).

Remark 1 (Model Uncertainty versus Aleatoric Uncertainty) Let X ⊂ Rd, Y ⊂ R
denote some input and output space and let f : X → Y denote the unknown ground truth func-

tion. Let Dtrain := {(xtrain
i , ytrain

i ) ∈ X×Y, i ∈ {1, . . . , ntrain}}, with ntrain ∈ N be i.i.d samples from

the data generating process y = f(x)+ε, where ε|x ∼ N (0, σ2
n(x)). Let σn refer to the data noise

(aleatoric uncertainty). I follow the classic Bayesian uncertainty framework by modelling the

unknown ground truth function f as a random variable. Hence, with a slight abuse of notation, I

use the symbol f to denote both the unknown ground truth function as well as the corresponding

random variable. Given a prior distribution for f , known data noise σn, and training data points

Dtrain, the posterior of f and y are well defined. The model uncertainty (epistemic uncertainty)

σf (x) is the posterior standard deviation of f(x), i.e., σf (x) :=
√

V[f(x)|Dtrain, x], x ∈ X.

Assuming independence between f and ε, the variance of the predictive distribution of y can

be decomposed as V[y|Dtrain, x] = σ2
f (x) + σ2

n(x). Intuitively, model uncertainty describes the

uncertainty that arises from a lack of observed training data points while aleatoric uncertainty

describes the irreducible uncertainty in the environment, which, in contrast to model uncertainty,

cannot be reduced by observing more training data points.

In my thesis, I mainly focus on neural networks (NNs) as the ML algorithm in the design of

ML-based preference elicitation mechanisms. NNs are nowadays part of many state-of-the-art

systems across different ML disciplines (LeCun et al., 2015). This trend has also propagated

to the design of market mechanisms, where NNs are becoming an increasingly important tool,

e.g., in auction design (Dütting et al., 2019; Weissteiner and Seuken, 2020; Rahme et al., 2020;

Weissteiner et al., 2022b), in the design of combinatorial assignment mechanisms (Weissteiner

et al., 2022a, 2023), or in the design of course allocation mechanisms (Soumalias et al., 2023).

However, the increased popularity also demands for methods to quantify the posterior model

uncertainty (i.e., epistemic uncertainty) of such employed NNs.

More concretely, in this section, I consider NNs Ni : X → Y for learning the ground truth

function f from Dtrain, i.e., to obtain an estimate f̂(x) for E[f(x)|Dtrain, x], and I am further

interested to also obtain an estimate σ̂f (x) ≈ σf (x) via techniques that are based on NNs.

In applications such as autonomous driving or automated passport control, overconfident

predictions can even be dangerous (Amodei et al., 2016). Furthermore, good estimates of poste-

rior model uncertainty are important for the design of smart preference elicitation mechanisms,

where exploration is steered by (functions of) these posterior model uncertainty estimates.

Specifically, in combinatorial assignment it is often important to quantify posterior model

uncertainty in scarce and small data noise settings.

Remark 2 (Scarcity) Scarcity comes from the fact that in the combinatorial assignment

settings I consider in this thesis, i.e., combinatorial auctions and combinatorial course allocation,

agents typically can only report their value for a small number of bundles relative to the full

exponential bundle space.

Remark 3 (Small Data Noise) Small data noise relative to overall uncertainty can be jus-

tified as follows: First, it is important to note that in all combinatorial assignment domains

I consider, one is only interested in posterior model uncertainty (of the true value function)
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1 Introduction

and not in posterior predictive uncertainty (uncertainty with respect to the response variable),

i.e., for a data generating process yj = v(xj) + ε(xj) with ε(·) representing the heteroskedastic

data noise term, one only tries to capture the uncertainty corresponding to an agent’s true value

function v, since the goal is to maximize expressions based on the true agents’ values. How-

ever, the posterior model uncertainty of v entails the following two sources of uncertainty: (i)

non-data-noise-induced posterior model uncertainty and (ii) data-noise-induced posterior model

uncertainty.

In general, in scarce settings, typically non-data-noise-induced posterior model uncertainty

for not yet elicited bundles dominates the corresponding data-noise-induced posterior model un-

certainty, i.e., out-of-sample uncertainty is larger than in-sample uncertainty.

Moreover, in spectrum auctions, the most prominent application of combinatorial auctions,

agents’ reports are typically assumed to be observed with small data noise, i.e., network operators

can quite precisely value bundles they are offered by employing expert teams, such that for not

yet elicited bundles non-data-noise-induced posterior model uncertainty is even more dominant

than data-noise-induced posterior model uncertainty.2

In the course allocation domain, students usually make more significant mistakes when an-

swering queries (Budish and Kessler, 2022). Thus, to capture such reporting mistakes in course

allocation, I propose a reporting mistake simulation scheme (Soumalias et al., 2023, Section 4.2)

that was fitted to real-world data (Budish and Kessler, 2022). Nonetheless, even in the course

allocation domain where data noise is potentially larger, the domain scarcity typically implies

that for not yet elicited bundles non-data-noise-induced posterior model uncertainty is still the

dominant source of overall uncertainty.

All considered ML algorithms that provide point predictions (i.e., NNs, Fourier transforms,

monotone-value neural networks), can in general also be used in settings with larger data noise by

adapting their hyperparameters, e.g., incorporating explicit and implicit regularization. Never-

theless, my proposed uncertainty quantification method for NNs, i.e., neural optimization-based

model uncertainty (NOMU), is specifically designed for settings with small data noise. However,

I also evaluate NOMU in settings with data noise (Heiss et al., 2022, Section 4.1.4) and showed

that it performs on par with other considered benchmarks. Furthermore, in (Heiss et al., 2022,

Appendix C.1), I provide an extension on how to incorporate a data noise estimation in NOMU.

Its evaluation is postponed to future work.

However, estimating posterior model uncertainty well in a computationally efficient way for

NNs is still an open research problem. Especially for such settings with scarce training data

and negligible data noise, where posterior model uncertainty is the main source of uncertainty,

popular state-of-the-art methods show severe deficiencies (Heiss et al., 2022). Moreover, an

important step for the design of an ML-based preference elicitation mechanism in combinatorial

assignment is to find the predicted social welfare-maximizing allocation, i.e., solving the ML-

2Even in the case of large data noise, agents’ reports are typically legally binding in the considered mechanisms,
such that the mechanism’s trained ML models should exactly fit the reports, i.e., it could be particularly
problematic if an agent reports for a bundle that her value is 10$ but the corresponding ML model predicts
5$ and subsequently the agent accuses the mechanism designer of falsely representing her reports. Overall,
instead of explicitly modelling that reports are noisy to address the imprecision of agents’ reports in spectrum
auctions, it would be better to allow agents to report intervals instead of single points to the mechanism (see
Beyeler et al. (2021) for an extension of MLCA to interval reports). Future work could combine the interval
method by Beyeler et al. (2021) with my proposed ML algorithms.
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1.1 Background, Problem Statements and Research Questions

based winner determination problem (WDP). This is often achieved by reformulating the ML-

based WDP into a mixed integer linear program (MILP). Thus, to integrate posterior model

uncertainty estimates, one needs to be able to represent these estimates in a functional form

that can be encoded as a succinct, practically feasible MILP. In this context my second research

question is:

Research Question 2 How can we capture model uncertainty for NNs for scarce regression

settings with small data noise and ensure that the resulting model uncertainty estimates can be

encoded as a MILP?

Bayesian Optimization-based Combinatorial Assignment

In an (ML-based) iterative combinatorial assignment mechanism (e.g., an iterative combinatorial

auction), the central agency (e.g., the auctioneer) interacts iteratively with agents over multiple

rounds, eliciting a limited amount of information (e.g., via value queries), aiming to find a highly

efficient allocation.

Thus, it is apparent that these mechanisms can be seen as a Bayesian optimization (BO)

maximization task with an expensive-to-evaluate function (Frazier, 2018): First, the central

agency’s (e.g., an auctioneer) objective is to find a highly efficient allocation, i.e., to maximize

the social welfare function. Second, this objective in general lacks known structure and when

evaluating it (e.g., via value queries) one only observes it at a single input point and without

derivatives such that gradient-based optimization cannot be used. Third, in practice, one can

only elicit a very limited amount of information (expensive-to-evaluate) to find an approximately

optimal allocation. For example, in a real-world spectrum auction, the auctioneer could only

ask each bidder to answer on the order of hundreds of value queries for different bundles, even

though the space of possible bundles is exponential in the number of items m, i.e., there are 2m

possible bundles and (n + 1)m possible allocations for n bidders. However, in addition to the

challenges that arise in classic BO, the combinatorial nature in combinatorial assignment adds

its own set of challenges. For example, Gaussian process-based BO often does not extend beyond

10–20 input dimensions, which is problematic as in combinatorial assignment the input space

can be much larger, e.g., in the multi-region value model (Weiss et al., 2017) for m = 98 items

and n = 10 bidder the input space is 980-dimensional. In addition, integrality constraints to

obtain only whole items (i.e., combinatorial assignment deals with assigning m indivisible items

to agents) and feasibility constraints that ensure each item is only allocated once also need to

be enforced.

Overall, in (combinatorial) BO a well-suited domain-specific prior and an acquisition function

based on a notion of uncertainty are key. For example, in many combinatorial assignment

settings, agents can freely dispose of unwanted items. Thus, a common assumption about agents’

value functions is monotonocity (a.k.a. free disposal in CAs), i.e., “additional items increase

value”. However, prior work on ML-based iterative combinatorial assignment (Weissteiner and

Seuken, 2020; Brero et al., 2021; Weissteiner et al., 2022b) has neither taken this important

monotonicity property into account nor did they integrate a notion of uncertainty into their

mechanisms. Specifically, the latter means that these approaches are myopic in the sense that

the resulting mechanisms simply query the allocation with the highest predicted welfare. In

5



1 Introduction

particular, the mechanisms do not have any model of uncertainty over bidders’ values for not

yet elicited bundles, although handling uncertainty in a principled manner is one of the key

requirements when designing BO algorithms. Thus, these mechanisms cannot properly control

the exploration-exploitation trade-off inherent to BO. Concretely, this can imply that these

mechanisms may get stuck in local minima, repeatedly querying one part of the allocation space

while not exploring other, potentially more efficient allocations. This brings me to my third

research question:

Research Question 3 How can we perform Bayesian optimization in combinatorial assignment

via domain-specific NNs as prior?

ML-based Combinatorial Course Allocation

Finally, I study course allocation. The course allocation problem arises when educational in-

stitutions assign bundles of courses to students (Budish and Cantillon, 2012). Each course has

a limited number of seats, seats are indivisible, and monetary transfers are not permitted for

fairness reasons. What makes this problem particularly challenging is that students’ preferences

over bundles of courses exhibit a combinatorial structure because students may view certain

courses as complements or substitutes.

Popular mechanisms traditionally used in course allocation were the Harvard Business School

(HBS) mechanism and a bidding points auction (BPA) with artificial currency. However, both

of these approaches have severe design flaws that significantly impact the efficiency of the final

allocation: For HBS, there are significant opportunities for students to strategically misreport

their preferences for courses (Budish and Cantillon, 2012) and BPA treats the artificial currency

as if it were real assuming that students have value for left-over currency. To address these design

flaws, Budish (2011) proposed a new course allocation mechanism A-CEEI: An approximation to

competitive equilibrium from equal incomes that is approximately efficient, satisfies two fairness

criteria and is strategyproof in the large (i.e., if enough students participate, it is optimal for

them to report their true preferences). While attractive in theory, A-CEEI assumes students

can exactly report their full preferences to the mechanism.

In response to that, Budish et al. (2017) proposed the Course Match (CM) mechanism, a

practically feasible implementation of the A-CEEI mechanism. CM uses a simple reporting

language to elicit students’ preferences over schedules (i.e., course bundles). Concretely, CM

offers students a graphical user interface to enter a base value between 0 and 100 for each course,

and an adjustment value between −200 and 200 for each pair of courses. These adjustments

allow students to report complementarities and substitutabilities between courses, up to pairwise

interactions. The total value of a schedule is then the sum of the base values reported for each

course in that schedule plus any adjustments (if both courses are in the schedule). CM provides

a good trade-off between efficiency, fairness, and incentives and has now been adopted in many

universities such as theWharton School at the University of Pennsylvania and Columbia Business

School.

However, already Budish et al. (2017) were concerned that the CM language may not be able

to fully capture every student’s preferences. Furthermore, they mentioned that some students

might find it non-trivial to use the CM language and might therefore make mistakes when
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reporting their preferences. Indeed, the field experiment by Budish and Kessler (2022) revealed

several shortcomings of CM in this regard. First, students made very limited use of the CM

language: on average, students only reported a base value for half of the 25 courses in the

experiment. Furthermore, the average number of pairwise adjustments was only 1.08 (out of

300). This suggests that cognitive limitations negatively affect how well students can report

their preferences using the CM language. Second, in addition to not reporting part of their

preferences, students are also inaccurate when they do report their preferences. Budish and

Kessler (2022) found that both of these reporting mistakes negatively affected the welfare of

CM. In the experiment, about 16% of students would have preferred another schedule of courses,

with a median utility difference for these schedules of 13%. Thus, preference elicitation in course

allocation still remains an important challenge. In this context my fourth research question is:

Research Question 4 How can we design an ML-based preference elicitation mechanism for

course allocation, that enables students to express in a simple way more complex preferences and

is more robust to errors, ultimately leading to better allocations?

1.2 Further Related Work

1.2.1 Preference Elicitation in Combinatorial Auctions

Preference elicitation in combinatorial auctions (CAs) has been extensively studied in the past

(see Sandholm and Boutilier (2006) for an overview). Conen and Sandholm (2001) proposed

constraint networks, a general framework for how to represent a bidder’s incompletely specified

value function which can be updated with various different query types. Using constraint net-

works, Conen and Sandholm (2001, 2002, 2003) introduced a series of different rank lattice-based

elicitation (i.e., search) algorithms that provably find Pareto optimal or efficient allocations in

unstructured settings (i.e., without assumptions on bidders’ value functions), relying on rank,

value and bound queries. Similarly, Hudson and Sandholm (2004) proposed several elicitation

policies in unstructured settings that are restricted only to value queries. Moreover, Hudson and

Sandholm (2004) also studied elicitation policies that alternate between value and order queries

and finally they introduced the use of bound-approximation queries for CAs, where bidders are

asked to tighten their lower and upper bounds on their value for a given bundle.

However, the practical effectiveness of all the aforementioned algorithms is rather limited, i.e.,

they often need to elicit huge portions of the bundle space to guarantee an optimal allocation.

In contrast, in my thesis I study the design of ML-powered preference elicitation mechanisms for

CA that aim only for approximately efficient allocations but are practically feasible with respect

to elicitation costs, even for larger settings with many items and bidders.

Using demand queries for preference elicitation in CAs for unstructured settings was most

intensively studied in the context of ascending CAs (Parkes, 1999; Wurman and Wellman, 2000;

Kwasnica et al., 2005). There exist ascending discriminatory bundle-price CAs that yield efficient

allocations. These formats are based on primal-dual (de Vries et al., 2007) or subgradient

algorithms (Parkes and Ungar, 2000; Ausubel and Milgrom, 2002). Finally, Blum et al. (2004)

and Lahaie and Parkes (2004) showed that bundle-price queries have more power than item-

price queries. In contrast, in the part of my research on ML-powered preference elicitation

7



1 Introduction

mechanisms for CAs, I only use value queries.

Furthermore, there has also been considerable research for preference elicitation in CAs in

structured domains, i.e., when restricting bidders’ value functions to certain function classes.

Zinkevich et al. (2003), Conitzer et al. (2005), and Santi et al. (2004) introduced combinatorial

value function classes that can be exactly learned via value queries in polynomial time. Moreover,

Blum et al. (2004) showed that while learning certain value function classes via value queries

is hard (i.e., requiring super-polynomially many value queries), an efficient allocation can be

determined with only polynomially many value queries. In contrast, in my thesis I first study

in Research Question 1 ML-powered preference elicitation in CAs for general value functions,

i.e., making no assumptions on bidders’ value functions and then assume in Research Question

3 and Research Question 4 that bidders’ value functions are monotone (i.e., fulfill free disposal),

a relatively mild assumption that is fulfilled in most CA settings.

As in unstructured domains, most research on demand queries in structured domains has

been conducted in the context of ascending CAs, more concretely, in settings where ascending

item-price auctions yield efficient allocations. For example, Kelso Jr and Crawford (1982),Gul

and Stacchetti (2000), Ausubel (2006), and Nisan and Segal (2006) proposed ascending CAs for

substitute valuations.

1.2.2 Machine Learning-based Preference Elicitation and Mechanism Design

More recently, researchers have successfully used ML for preference elicitation. Early work

by Blum et al. (2004) and Lahaie and Parkes (2004) laid the foundation for this by studying

the relationship between computational learning theory and preference elicitation in CAs. As

mentioned, most related to this thesis is the work by Brero et al. (2017), Brero et al. (2018),

and Brero et al. (2021), who proposed a value query-based ML-powered preference elicitation

algorithm for CAs. Beyeler et al. (2021) extended their approach by allowing bidders to only

report upper and lower bounds on bundle values instead of value queries.

Using demand queries, Brero and Lahaie (2018) and Brero et al. (2019) introduced a Bayesian

iterative combinatorial auction using probabilistic item-price updates. In contrast to the mech-

anisms I consider in my thesis, their approach does not maximize the per-instance efficiency but

rather tries to clear (i.e., to find an efficient allocation) as many instances as possible. However,

since in general item-prices are not expressive enough to support an efficient allocation, their

current approach is rather limited in practice, i.e., even in relatively small synthetic settings

(Combinatorial Auction Test Suite (CATS), 12 items and 10 bidders) their approach could only

find market clearing prices, in around 60% of the cases.

In active learning, Chu and Ghahramani (2005) and Guo et al. (2010) use Gaussian processes

(GPs) for preference elicitation. Specifically, Chu and Ghahramani (2005) use GPs for pairwise

preference elicitation over instances as well as for the more general framework of label ranking

(i.e, learning preference relations over the instances’ set of labels instead over the instances) and

Guo et al. (2010) use GPs and pairwise comparison queries that maximize the expected value of

information (EVOI). However, in the settings considered in this thesis, GPs are less well suited to

design a combinatorial assignment algorithm (due to the high dimensionality of the input space,

the combinatorial, i.e., integrality and feasibility, constraints, and the computational challenge

of quickly solving the ML-based WDP several hundreds of times.
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While in my thesis I focus on the use of ML algorithms for preference elicitation, there has

been also a considerable amount of research on using ML to learn whole mechanisms from data

following the automated mechanism design paradigm. For auctions, Dütting et al. (2019), Shen

et al. (2019), Rahme et al. (2020), and Peri et al. (2021) used NNs to find revenue optimal

incentive compatible auction mechanisms, i.e., they use ML algorithms to learn the mapping

from input bids to an allocation and payment rule. Moreover, ML-based automated mechanism

design has also been studied in domains without money: Narasimhan et al. (2016) used support

vector machines to design strategyproof mechanisms for social choice and stable mechanisms

for two-sided matching problems. Golowich et al. (2018) used NNs to design strategyproof,

multi-facility mechanisms that minimize expected social cost.

1.2.3 Encoding Neural Networks as Mixed Integer Linear Programs

In my thesis, I formulated the (MV)NN-based winner determination problem in combinatorial

auctions and the NN-based utility maximization problem for a single student in course allocation

as a mixed integer linear program (MILP). These MILP formulations are related to a recent line

of research that uses MILP encodings of trained NNs for various tasks. For example, Cheng

et al. (2017) studied resilience properties of trained NNs using a MILP, Fischetti and Jo (2018)

used a MILP for finding adversarial examples of trained NNs in image recognition, Mladenov

et al. (2017) considered linearized NNs as response models in logistic MDPs for user modeling

in advertising and recommendation, and Say et al. (2017) used MILP formulations of NN-based

transition models for planning problems. Finally, Anderson et al. (2020) provide a generic

framework and overview of strong mixed integer programming formulations for trained NNs.

1.2.4 Quantifying Model Uncertainty for Neural Networks

Over the last decade, researchers have developed various methods to quantify posterior model

uncertainty for NNs.3 One strand of research considers Bayesian neural networks (BNNs),

where distributions are placed over the NN’s parameters (Graves, 2011; Blundell et al., 2015;

Hernández-Lobato and Adams, 2015). However, variational methods approximating BNNs are

usually computationally prohibitive and require careful hyperparameter tuning. Thus, BNNs

are rarely used in practice (Wenzel et al., 2020a).

In practice, ensemble methods are more established. Gal and Ghahramani (2016) proposed

Monte Carlo dropout (MCDO) to estimate posterior model uncertainty via stochastic forward

passes. Interestingly, they could show that training an NN with dropout can also be interpreted

as variational inference approximating a BNN. Lakshminarayanan et al. (2017) experimentally

evaluated ensembles of NNs and showed that they perform as well as or even better than BNNs.

They proposed using deep ensembles (DE), which use NNs with two outputs for model predic-

tion and data noise, and they estimate posterior model uncertainty via the empirical standard

deviation of the ensemble. DE is the most established state-of-the art ensemble method in terms

of robustness and uncertainty quantification, shown to consistently outperform other ensemble

methods (Ovadia et al., 2019; Fort et al., 2019; Gustafsson et al., 2020; Ashukha et al., 2020).

Recently, Wenzel et al. (2020b) proposed hyper deep ensembles (HDE), an extension of DE

3Please, see Remark 1 for a brief review on model uncertainty and data noise in the classical Bayesian framework.
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where additional diversity is created via different hyperparameters and experimentally showed

that HDE outperforms DE in the experiments they considered.

Further lines of work have contributed to modeling uncertainties for NN-based estimates.

Nix and Weigend (1994) were among the first to introduce NNs with two outputs: one for

model prediction and one for data noise (aleatoric uncertainty), using the Gaussian negative

log-likelihood as loss function. However, such a data noise output cannot be used as an estimator

for model (i.e., epistemic) uncertainty (see (Heiss et al., 2022, Appendix G) for a discussion).

To additionally capture posterior model uncertainty, Kendall and Gal (2017) combined the idea

of Nix and Weigend (1994) with MCDO.

Similarly, NNs with two outputs for lower and upper UBs, trained on specifically-designed

loss functions, were previously considered by Khosravi et al. (2010) and Pearce et al. (2018).

However, the method by Khosravi et al. (2010) again only accounts for data noise and does not

consider posterior model uncertainty. The method by Pearce et al. (2018) also does not take

posterior model uncertainty into account in the design of their loss function and only incorporates

it via ensembles (as in DE).

Besides the state-of-the art ensemble methods HDE and DE, there exist many other papers

on ensemble methods that, for example, promote the ensemble’s diversity on the function space

(Wang et al., 2019; Tiulpin and Blaschko, 2022) or reduce computational cost (Wen et al., 2020;

Havasi et al., 2021).

For classification, Malinin and Gales (2018) introduced prior networks, which explicitly model

in-sample and out-of-distribution uncertainty, where the latter is realized by minimizing the

reverse KL-distance to a selected flat point-wise defined prior. In a recent working paper,

Malinin et al. (2020) report on progress extending their idea to regression. While the idea of

introducing a separate loss for learning posterior model uncertainty is related to NOMU, there

are several important differences (loss, architecture, behavior of the model prediction, theoretical

motivation) that are discussed in detail in (Heiss et al., 2022, Appendix E). Furthermore, their

experiments suggest that DE still performs weakly better than their proposed method.

In contrast to BNNs, which perform approximate inference over the entire set of weights,

neural linear models (NLMs) perform exact inference on only the last layer. NLMs have been

extensively benchmarked in (Ober and Rasmussen, 2019) against MCDO and the method from

(Blundell et al., 2015). Their results suggest that MCDO and (Blundell et al., 2015) perform

competitively, even to carefully-tuned NLMs.

Neural processes, introduced by Garnelo et al. (2018a,b), have been used to express posterior

model uncertainty for image completion tasks, where one has access to thousands of different

images interpreted as functions fi instead of input points xi. See (Heiss et al., 2022, Appendix

F) for a detailed comparison to NOMU.

Furthermore, it is important to distinguish the following two (almost) orthogonal problems

regarding uncertainty quantification: First, the fundamental concept of how to estimate relative

posterior model uncertainty, i.e., how much more posterior model uncertainty does one have at

one point x compared to any other point x′? (methods such as MCDO, DE, HDE or NOMU are

concerned with this question) and second, the calibration of the resulting uncertainty bounds,

i.e., an α% credible interval should contain the true outcome α% of the time. For calibration,

Kuleshov et al. (2018) and Kuleshov and Deshpande (2022) show that BNNs are in general badly
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calibrated and propose effective calibration methods for any given uncertainty quantification

method in regression (including NOMU) and classification.

1.2.5 Monotone Neural Networks

Several other approaches for incorporating monotonicity into NNs have previously been pro-

posed. However, for these architectures, it is either not known how the NN-based winner de-

termination problem (WDP) could be solved quickly, or they have other limitations: Sill (1997)

proposes only a shallow architecture which violates the normalization property (i.e., 0 7→ 0).

You et al. (2017) propose a complicated non-standard architecture, where no computationally

feasible MILP formulation of the corresponding WDP is known. Wehenkel and Louppe (2019)

implement monotonicity by representing the target function as an integral of an NN and thus

the WDP would result in a computationally infeasible MILP. Liu et al. (2020) train NNs with

successively higher regularization until a MILP based verification procedure guarantees mono-

tonicity. The repeated retraining and verification leads to high computational cost. In contrast,

my proposed monotone-value neural networks (MVNNs) are particularly well suited for combi-

natorial assignment, because (i) the MVNN-based WDP can be formulated as a succinct MILP

and thus solved quickly4 and (ii) I propose a generic fully-connected feed-forward architecture

with an arbitrary number of hidden layers which can be trained efficiently.

1.3 Publications Contained in this Thesis

This thesis consists of six papers that answer the four research questions presented in Section 1.1.

In what follows, I restate the research questions and provide the corresponding list of papers

that address each research question.

Research Question 1 How can we enhance ML-based preference elicitation in CAs and address

the limitations of prior work?

Publications

1. Deep Learning-powered Iterative Combinatorial Auctions.

Jakob Weissteiner and Sven Seuken.

In Proceedings of the Thirty-fourth AAAI Conference on Artificial Intelligence (AAAI’20),

New York, USA, February 2020.

2. Fourier Analysis-based Iterative Combinatorial Auctions.

Jakob Weissteiner∗, Chris Wendler∗, Sven Seuken, Ben Lubin, and Markus Püschel.

4Specifically, note that the particular selection of bReLU as the activation function for MVNNs is in a certain
sense even the optimal choice with respect to expressivity of the network and computational complexity of the
corresponding MILP. This can be seen as follows: (i) The constraints on the weights and biases enforce mono-
tonicity of MVNNs (in fact for any monotone activation). (ii) For universality, one needs however a bounded
monotone non-constant activation, e.g., with ReLUs and our constraints one cannot express substitutabilities.
(iii) for the MILP, one needs a piecewise linear activation, e.g., with sigmoids one could not formulate a MILP.
Taking all together, bReLU is the simplest bounded, monotone, non-constant, piecewise-linear activation
function.

∗These authors contributed equally.
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In Proceedings of the Thirty-first International joint Conference on Artificial Intelligence

(IJCAI’22), Vienna, AUT, July 2022.

Research Question 2 How can we capture model uncertainty for NNs for scarce regression

settings with small data noise and ensure that the resulting model uncertainty estimates can be

encoded as a MILP?

Publications

3. NOMU: Neural Optimization-based Model Uncertainty.

Jakob Heiss∗, Jakob Weissteiner∗, Hanna Wutte∗, Sven Seuken, and Josef Teichmann.

In Proceedings of the Thirty-ninth International Conference on Machine Learning (ICML’22),

Baltimore, USA, July 2022.

Research Question 3 How can we perform Bayesian optimization in combinatorial assignment

via domain-specific NNs as prior?

Publications

4. Monotone-Value Neural Networks: Exploiting Preference Monotonicity in Combinatorial

Assignment.

Jakob Weissteiner∗, Jakob Heiss∗, Julien Siems∗ and Sven Seuken.

In Proceedings of the Thirty-first International joint Conference on Artificial Intelligence

(IJCAI’22), Vienna, AUT, July 2022.

5. Bayesian Optimization-based Combinatorial Assignment.

Jakob Weissteiner∗, Jakob Heiss∗, Julien Siems∗ and Sven Seuken.

In Proceedings of the Thirty-seventh AAAI Conference on Artificial Intelligence (AAAI’23),

Washington, D.C., USA, February 2023.

Research Question 4 How can we design an ML-based preference elicitation mechanism for

course allocation, that enables students to express in a simple way more complex preferences and

is more robust to errors, ultimately leading to better allocations?

Publications

6. Machine Learning-powered Course Allocation.

Ermis Soumalias∗, Behnoosh Zamanlooy∗, Jakob Weissteiner and Sven Seuken.

ArXiv preprint, March 2023, [pdf].

1.4 Summary of Contributions

In this section, I provide a summary of all six research papers and explain how they answer the

four corresponding research questions.

∗These authors contributed equally.
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1.4 Summary of Contributions

1.4.1 Deep Learning-powered Iterative Combinatorial Auctions

This paper provides the first answer to Research Question 1 by introducing a deep learning-

powered iterative combinatorial auction (ICA), which outperforms state-of-the-art prior ICA

designs with respect to allocative efficiency.

We build on prior work by Brero et al. (2018, 2021), who proposed a value query-based ML-

powered iterative combinatorial auction mechanism (MLCA)5. At the core of their mechanism

is an ML-powered preference elicitation algorithm, which consists of the following two steps:

(1) an estimation step, where given some already elicited bundle-value pairs (i.e., bids) MLCA

uses a distinct ML algorithm to learn each bidder’s true value function and (2) an optimization

step, where MLCA solves an ML-based winner determination problem (WDP) to determine

the allocation with the highest predicted social welfare (i.e., using the trained ML-models as

representations of bidders’ true value functions), and MLCA then uses this allocation to generate

the next set of value queries to all bidders. This process repeats in an iterative fashion until a

fixed number of queries has been asked. As their ML algorithm, they used kernelized support

vector regressions (SVRs) to learn the nonlinear value functions of bidders. Recently, Brero et al.

(2021) experimentally showed on synthetic data generated via the spectrum auction test suite

(SATS) (Weiss et al., 2017) that MLCA achieves even higher efficiency than the widely-used

combinatorial clock auction.

However, because of runtime complexity issues of the optimization step, Brero et al. (2018,

2021) focused on SVRs with linear and quadratic kernels. This leaves room for improvement,

since bidders’ valuations can have more complex structures than can be captured by linear or

quadratic kernels. Concretely, a quadratic kernel, while more expressive than a linear kernel,

can still at most model two-way (i.e., pairwise) interactions between the items.

In this paper, we show how these shortcomings can be addressed by using fully-connected

feed-forward neural networks (NNs) instead of SVRs in the estimation step and the optimization

step of MLCA. In each round of the auction, we approximate bidders’ value functions by NNs

(estimation step) and subsequently solve an NN-based WDP (optimization step) to determine

which queries to ask each bidder in the next round of the auction. NNs have the advantage

that in contrast to SVRs, they do not use predefined feature transformations. While with

SVRs, the choice of a good kernel usually relies on prior domain knowledge, NNs automatically

learn features in the process of training. Moreover, they are more expressive than quadratic

kernels, i.e., can model preferences that are more complex than two-way interactions. Since our

design involves solving the NN-based WDP in each round of the auction, a key requirement for

the practical implementation of our auction mechanism is to efficiently solve these NN-based

WDPs. Therefore, we present a theorem, which shows how the NN-based WDP in the case

of ReLU activation functions can be reformulated into a mixed integer linear program (MILP)

(Weissteiner and Seuken, 2020, Theorem 1). Moreover, in contrast to SVRs with nonlinear

kernels, one always obtains a MILP for the NN-based WDP whose size grows linearly in the

number of bidders and items, for any number of layers and nodes.

To experimentally evaluate the performance of our NN-ICA, we follow prior work (Brero

5To be more specific, Section 1.4.1 builds on a predecessor version of MLCA, which was introduced by Brero
et al. (2018) and which they called pseudo VCG mechanism (PVM). However, for ease of exposition and since
the main conceptual ideas of MLCA and PVM are the same, I only discuss MLCA at this point.
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GSVM 6 Regional (R), 1 National (N) Bidders LSVM 5 Regional (R), 1 National (N) Bidders

Auction NN Efficiency Revenue t-test:Efficiency NN Efficiency Revenue t-test:Efficiency

Mechanism Hidden Layers in % in % H0 : µSVR = µNN Hidden Layers in % in % H0 : µNN ≤ µSVR

NN-ICA R:[32,32], N:[10,10] 98.63± 0.35 67.81
pvalue = 0.3

R:[32,32], N:[10,10,10] 97.74± 0.47 62.45
pvalue = 2e−5

SVR-ICA - 98.85± 0.25 77.80 - 96.03± 0.65 65.60

Table 1.1: NN-ICA vs. SVR-ICA. All results are averaged on a test set of 100 auction instances.
For efficiency, a 95%-confidence interval is shown. The winner based on a pairwise
t-test with a significance level 0.05 is marked in grey. Additionally, we present the
NN architectures (hidden layers) for the regional (R) and national (N) bidders.

et al., 2021) and use SATS to generate synthetic auction instances in two domains: the Global

Synergy Value Model (GSVM), and the Local Synergy Value Model (LSVM). First, we compared

the prediction (i.e., generalization) performance of NNs against SVRs, where we already observed

that NNs better capture bidders’ value functions (particularly in the more complex LSVM).

Next, we compared the allocative efficiency of our NN-ICA against the SVR-ICA. The results

are shown in Table 1.1. In GSVM (a domain perfectly suited for the quadratic kernel), NN-ICA

matches the efficiency of the SVR-ICA, while in the more complex LSVM, NN-ICA outperforms

SVR-ICA by 1.74% points. Finally, we also demonstrated that the NN-ICA scales well to a very

large domain, by evaluating it in the Multi Region Value Model (MRVM) (with m = 98 items,

298 bundles and n = 10 bidders).

This paper introduces a deep learning-powered ICA and provides the first answer to Research

Question 1. Overall, our results show that, perhaps surprisingly, even small-sized NNs can be

advantageous for the design of ICAs and thus we can conclude that using more expressive

(deep) NNs for the design of preference elicitation mechanisms in CA leads to higher allocative

efficiency.

1.4.2 Fourier Analysis-based Iterative Combinatorial Auctions

This paper completes the answer to Research Question 1 by introducing a Fourier analysis-based

iterative combinatorial auction (ICA), which uses Fourier transforms (FTs) for set functions to

leverage different notions of sparsity of value functions in preference elicitation.

Recent advances in Fourier analysis have brought new tools to efficiently represent and

learn set functions (Stobbe and Krause, 2012; Amrollahi et al., 2019; Wendler et al., 2021).

In this paper, we build on our own prior work (Weissteiner and Seuken, 2020) and bring the

power of Fourier analysis to the design of combinatorial auctions (CAs). The goal of preference

elicitation in CAs is to learn bidders’ value functions using a small number of informative queries.

Mathematically, value functions are set functions, i.e., they map a set of items represented as

an indicator vector to a non-negative real number.

However, those set functions are in general exponentially large objects that are notoriously

hard to represent or learn. To control for this complexity, we leverage Fourier analysis for set

functions. In particular, we consider Fourier-sparse approximations, which are represented by a

small number of parameters. These parameters are the non-zero Fourier coefficients (FCs) ob-

tained by a base change with the Fourier transform (FT). The motivation behind this approach

is that we expect bidders’ value functions to be sparse, meaning that their preferences can be
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Figure 1.1: Spectral energy distribution in LSVM for three different FTs: FT3 (i.e., polynomial
representation), FT4, and WHT. For each cardinality (x-axis), we collect the spectral
energy (y-axis) of all FCs of that cardinality and normalize by the total spectral
energy.

described with much less data than is contained in the (exponentially-sized) full value function.

While this sparsity may be difficult to uncover when looking at bidders’ value reports, it may

reveal itself in the Fourier domain (where then most FCs are zero).

We considered three different FTs: the classicWalsh-Hadamard transform (WHT) (Bernasconi

et al., 1996), FT3 (Püschel and Wendler, 2020) and FT4 (Püschel and Wendler, 2020). The

benefit of considering multiple FTs is that they offer different, non-equivalent notions of sparsity.

This implies that each FT provides us with a new lens on the bidder’s value function, potentially

revealing structure and thus reducing dimensionality.

In Figure 1.1, we present this key advantage of representing bidders’ value functions in

different Fourier domains. First, we compute the FTs of all bidders and then calculate their

corresponding spectral energy distribution, i.e., the (normalized) distribution of the squared FCs

corresponding to a fixed cardinality (i.e., number of items) of the input set. In Figure 1.1, we

present the mean over 30 CA instances and bidder types in the complex Local Synergy Value

Model (LSVM), a synthetic spectrum auction domain (Weiss et al., 2017). We see that while

the spectral energy is spread among FCs of various degrees in FT3 and FT4, in WHT the low

degree (≤ 3) FCs contain most of the energy, i.e., the WHT has much fewer important FCs that

accurately describe each bidder’s value function, and thus can be learned more easily. Moreover,

in our paper we show that the FT3 is identical to the widely-used polynomial value function

representation (Lahaie, 2010). Therefore, we conclude that solely converting the polynomial

representation into another FT basis (here WHT), without changing the value function at all,

can significantly reduce dimensionality and thus be very helpful for the design of ML-based

ICAs.

In our paper, we then leverage this key observation to design a new ICA mechanism based

on neural networks (NNs) and FTs, which we call Hybrid ICA (Weissteiner et al., 2022b, Al-

gorithm 3). On a high level, Hybrid ICA first learns a good support (i.e., the most dominant

FCs) of each bidder via NNs and second builds a Fourier-sparse approximation based on those

supports. Finally, we use this Fourier-sparse approximation to create value queries similar to the

original MLCA (Brero et al., 2021). In (Weissteiner et al., 2022b, Table 3), we show that Hybrid

ICA achieves higher efficiency than the NN-powered ICA mechanism proposed in (Weissteiner

and Seuken, 2020).
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Figure 1.2: UBs resulting from NOMU, GP, MCDO, DE, and HDE for the Levy function (solid
black line). For NOMU, we also show σ̂f as a dotted blue line. Training points are
shown as black dots.

This paper completes the answer to Research Question 1. We have brought together the two

fields of Fourier analysis for set functions and CA design. We have proposed a new state-of-

the-art Hybrid ICA mechanism based on both NNs and Fourier analysis that leverages different

notions of sparsity resulting in higher allocative efficiency than prior ML-based ICAs. We

can conclude that using sparser representations of value functions can significantly reduce the

dimensionality and facilitate the learning task.

1.4.3 NOMU: Neural Optimization-based Model Uncertainty

This paper provides a complete answer to Research Question 2. In this paper, we present a

new approach for estimating posterior model uncertainty for NNs in regression settings with

scarce training data observations and small data noise, which we call neural optimization-based

model uncertainty (NOMU). In contrast to a fully Bayesian approach for NNs, where defining

a realistic prior and subsequently approximating the posterior (e.g., by variational inference or

Markov chain Monte Carlo techniques) is in general a very challenging task, we take a different

approach and directly estimate posterior model uncertainty (i.e., without explicitly defining a

prior) by enforcing five desiderata of posterior model uncertainty that any method should satisfy.

Specifically, we first introduce five desiderata that we argue posterior model uncertainty

bounds (UBs) should satisfy (Heiss et al., 2022, Section 3.1). We then introduce NOMU, whose

main idea is to design a network architecture consisting of two connected sub-NNs (Heiss et al.,

2022, Section 3.2), one for the model (i.e., mean) prediction and one for the posterior model

uncertainty prediction, and to train it using a carefully-designed loss function (Heiss et al., 2022,

Section 3.3), such that the estimated posterior model UBs fulfill our five desiderata. NOMU is

easy to implement, scales well to large NNs and its posterior model uncertainty estimate can be

represented as a single NN (in contrast to ensemble methods). This is particularly important,

since we can then use the NN-MILP encoding proposed by Weissteiner and Seuken (2020) to

encode the posterior model upper UB as a MILP and use it to define an acquisition function in

iterative combinatorial assignment mechanisms (e.g., MLCA) to better control the exploration-

exploitation trade-off (see Section 1.4.5). Moreover, because of its modular architecture, NOMU

can easily be used to obtain posterior model UBs for already trained NNs.

Figure 1.2 exemplifies our findings, showing typical model UBs, i.e., [f̂± σ̂f ], where f̂ and σ̂f
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represent the estimated mean prediction and the estimated standard deviation of the posterior

model uncertainty, for all considered algorithms for the Levy test function. We find that Monte

Carlo dropout (MCDO) (Gal and Ghahramani, 2016) consistently yields tube-like UBs; in par-

ticular, its UBs do not narrow at training points, i.e., failing an in-sample desideratum that is

required by Bayesian theory (Heiss et al., 2022, Desideratum D2). Moreover, it only fulfills our

out-of-sample desideratum, i.e., (Heiss et al., 2022, Desideratum D3), to a limited degree. We

frequently observe that deep ensembles (DE) (Lakshminarayanan et al., 2017) leads to UBs of

somewhat arbitrary shapes. This can be seen most prominently in Figure 1.2 around x ≈ −0.75
and at the edges of its input range, where DE’s UBs are very different in width with no clear

justification. Thus, also DE is limited in our out-of-sample desideratum, i.e., (Heiss et al., 2022,

Desideratum D3). In addition, we sometimes see that also DE’s UBs do not narrow sufficiently

at training points, i.e., they do not fulfil our in-sample desideratum, i.e., (Heiss et al., 2022,

Desideratum D2). Hyper deep ensemble’s (HDE) (Wenzel et al., 2020b) UBs are even more

random, i.e., predicting large posterior model uncertainty at training points and sometimes zero

posterior model uncertainty in gaps between them (e.g., x ≈ −0.75).6 In contrast, NOMU dis-

plays the behaviour it is designed to show. Its UBs nicely tighten at training points and expand

in-between (fulfilling desiderata D1–D3 formulated in (Heiss et al., 2022), for desideratum D4

see (Heiss et al., 2022, Appendix D.4)). Like NOMU, the GP fulfills desiderata D1–D3 from

(Heiss et al., 2022) well, but cannot account for desideratum D4 (Metric Learning) formulated

in (Heiss et al., 2022), since a fixed kernel does not depend on the model prediction.

To benchmark NOMU’s posterior model uncertainty estimates also from a quantitative point

of view, we experimentally evaluate NOMU in various different regression settings: in scarce

and noiseless settings to isolate posterior model uncertainty (Heiss et al., 2022, Sections 4.1.1

and 4.1.2) and on real-world data sets (Heiss et al., 2022, Sections 4.1.3 and 4.1.4). We show

that NOMU performs well across all these settings while state-of-the-art methods (MCDO, DE,

and HDE) exhibit several deficiencies.7 Specifically, in (Heiss et al., 2022, Section 4.1.4), we

test NOMU’s performance on the UCI data sets proposed in (Hernández-Lobato and Adams,

2015), a common benchmark for uncertainty quantification in noisy, real-world regression. Our

results show, that even the current version of NOMU, which does not explicitly model data noise,

already performs on par with existing benchmarks on these real-world regression tasks with data

noise. Incorporating data noise estimation in the current version of NOMU might further boost

its performance. Finally, we evaluate the performance of NOMU in high-dimensional noiseless

Bayesian optimization with costly evaluations where good posterior model uncertainty estimates

are key and show that NOMU performs as well or better than all considered benchmarks (Heiss

et al., 2022, Section 4.2).

6Possible reasons for HDE’s particularly bad performance in our setting are: (i) the scarcity of training/validation
data. HDE trains its NNs based on 80% of the training points and uses the remaining 20% to build an ensemble
based on a score, whilst the other methods can use 100% of the training points for training. In a scarce data
setting this implies that first, the mean prediction of HDE does not fit through all the training points, and
second, the scoring rule is less reliable and (ii) in a noiseless setting one already knows that the L2-regularization
should be small, and thus optimizing this parameter is less useful here.

7We also conducted experiments using the method proposed by Blundell et al. (2015). However, we found
that this method did not perform as well as the other considered benchmarks. Moreover, it was shown in
(Gal and Ghahramani, 2016; Lakshminarayanan et al., 2017) that DE and MCDO outperform the methods
by Hernández-Lobato and Adams (2015) and Graves (2011), respectively. Therefore, we do not include the
methods by Graves (2011), Blundell et al. (2015), and Hernández-Lobato and Adams (2015) in our experiments.
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This paper completes the answer to Research Question 2 by introducing a novel method

to capture posterior model uncertainty of NNs specifically suited to settings with small data

noise and scarce training data. Furthermore, NOMU’s posterior model uncertainty estimate can

be represented by a single NN and thus can be encoded as a succinct MILP making NOMU

particularly well suited for combinatorial assignment problems.

1.4.4 Monotone-Value Neural Networks: Exploiting Preference Monotonicity in

Combinatorial Assignment

This paper provides the first answer to Research Question 3 by introducing a novel class of neural

networks: monotone-value neural networks (MVNNs). MVNNs by their design incorporate

important domain-specific prior knowledge (i.e., a monotonicity and normalization property)

about agents’ preferences in combinatorial assignment settings. This hard-coded prior knowledge

helps to improve the generalization performance, especially in settings with few training data

points (e.g., bids) and makes MVNNs the state-of-the-art algorithm to learn monotone and

normalized preferences in combinatorial assignment.

Recall that in Section 1.4.1, we enhanced the MLCA mechanism by integrating NNs instead

of SVRs with quadratic kernel, which are more expressive and ultimately led to allocations with

higher efficiency. However, from a Bayesian optimization point of view, there still remain two

main deficiencies of the NN-based MLCA: First, MLCA uses plain feed-forward fully-connected

NNs as prior to learn the bidders value functions, which are “too generic” and do not account for

the important monotonicity property of bidders’ value functions. Second, the query generation

in MLCA only exploits (i.e., it maximizes the mean prediction without any notion of uncertainty)

and does not properly explore the bundle space. In this paper, we address the first deficiency.

Two common assumptions of agents’ value functions in combinatorial assignment are: nor-

malization (i.e., “zero value for the empty bundle of items”) and monotonicity (i.e., “additional

items increase value”). These properties are satisfied in many economic market domains. For

example, in many combinatorial auctions (where this property is often called free disposal),

bidders can freely dispose of unwanted items; in combinatorial course allocation, students can

just drop courses they have been assigned.

To account for this, we introduce MVNNs, which are specifically suited to model monotone

combinatorial value functions. Concretely, we implement the normalization and monotonicity

property of MVNNs via constraints on the weights (i.e., non-negative weights) and biases (i.e.,

non-positive biases) and use as activation function the bounded ReLU (bReLU). Furthermore,

we show in (Weissteiner et al., 2022a, Theorem 1) that with this design one can represent any

value function with arbitrarily complex substitutabilities and complementarities that satisfies the

normalization and monotonicity property exactly as a finite-width MVNN. Finally, to efficiently

solve MVNN-based winner determination problems (WDPs), we provide for MVNNs a succinct

MILP formulation. Finding tight bounds on the neurons for NN-based MILPs is an active area

of research and critical to scale NN-based MILPs to larger architectures. For a plain ReLU

NN, bounds based on interval arithmetic (a.k.a. box constraints) are not tight. However, for

MVNNs, it turns out that these bounds are always perfectly tight, because of their encoded

monotonicity. The upper bound of an arbitrary neuron is the value the neuron would output

for the full bundle and the lower bound is the corresponding value for the empty bundle.
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We experimentally evaluated the learning performance of MVNNs vs. plain NNs in four

different synthetic spectrum auction domains from the spectrum auction test suite (SATS)

(Weiss et al., 2017) and showed that MVNNs are significantly better at modelling bidders’

combinatorial value functions. Furthermore, we experimentally investigated the performance

of MVNNs vs. plain NNs when integrated into an existing ML-based iterative combinatorial

auction mechanism (i.e., MLCA proposed by Brero et al. (2021)) and compared them also

to the recently introduced Fourier transform-based method by Weissteiner et al. (2022b). We

showed that using MVNNs in MLCA leads to significantly smaller efficiency losses than all other

considered auction mechanisms.

This paper introduces MVNNs as a domain-specific prior in combinatorial assignment where

agents are assumed to have monotone combinatorial value functions and provides the first an-

swer to Research Question 3. Overall, our results show that MVNNs improve the prediction

performance, they yield state-of-the-art allocative efficiency in the auction, and they also reduce

the runtime of the ML-based WDPs. We conclude that incorporating domain-specific prior

knowledge in combinatorial assignment into the ML algorithm can indeed be advantageous,

especially in settings with scarce data points.

1.4.5 Bayesian Optimization-based Combinatorial Assignment

This paper provides a complete answer to Research Question 3. Based on MVNNs as domain-

specific prior ML algorithm, we propose in this paper a Bayesian optimization-based combinato-

rial assignment (BOCA) mechanism which includes a notion of posterior model uncertainty to

properly explore and not just exploit the bundle space during its preference elicitation phase.

The main idea of previously introduced ML-powered preference elicitation algorithms (Brero

et al., 2018, 2021; Weissteiner and Seuken, 2020; Weissteiner et al., 2022b,a) is two-fold: first,

they train a separate ML model to learn each bidder’s full value function from a small set of

bids; second, they solve an ML-based winner determination problem (WDP) to determine the

allocation with the highest predicted social welfare, and they use this allocation to generate the

next set of queries to all bidders. This process repeats in an iterative fashion until a fixed number

of queries has been asked. Thus, their ML-powered ICA can be interpreted as combinatorial

Bayesian optimization (BO) algorithm, with the goal of maximizing the (true) social welfare

function.

However, in light of BO, the main shortcoming of this prior work is that all of these ap-

proaches are myopic in the sense that these mechanisms simply query the allocation with the

highest predicted welfare. In particular, these mechanisms do not have an explicit model of

uncertainty over an agent’s values for not yet elicited bundles, although handling uncertainty in

a principled manner is one of the key requirements in BO and when designing a smart preference

elicitation algorithm (Guo et al., 2010). Thus, prior mechanisms cannot properly control the

exploration-exploitation trade-off inherent to BO. For ML-based iterative combinatorial assign-

ment mechanisms, this means that these mechanisms may get stuck in local minima, repeatedly

querying one part of the allocation space while not exploring other, potentially more efficient

allocations.

In this paper, we address this shortcoming and show how to integrate a notion of posterior

model uncertainty (i.e., epistemic uncertainty) over agents’ preferences into iterative combinato-
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rial assignment. Concretely, we design a Bayesian optimization-based combinatorial assignment

(BOCA) mechanism that makes use of posterior model uncertainty in its query generation mod-

ule. The main technical challenge is to design a new method for estimating an upper uncertainty

bound (uUB) that can be used to define an acquisition function to determine the next query.8

To this end, we combine MVNNs (Weissteiner et al., 2022a) with NOMU (Heiss et al., 2022).

Specifically, we make the following contributions.

First, we present a modified NOMU algorithm, tailored to combinatorial assignment, exploit-

ing monotonicity of agents’ preferences and the discrete (finite) nature of this setting. Concretely,

our new NOMU algorithm is based on the following two key characteristics of combinatorial as-

signment: (i) since agents’ value functions are monotonically increasing, the uUBs need to be

monotonically increasing too (Weissteiner et al., 2023, Propositions 1 and 2), and (ii) due to

the (finite) discrete input space, one can derive a closed-form expression of the 100%-uUB as

an MVNN. We then use this closed form MVNN expression of the 100%-uUB together with the

MVNN mean prediction in the design of a new NOMU loss function to enforce that our uUB

lies between the mean and the 100%-uUB, i.e, approximating an α%-uUB with α ∈ [50, 100].

Second, we show that generic parameter initialization for monotone NNs (including MVNNs)

can fail and propose a new initialization method for MVNNs based on uniform mixture distribu-

tions. Concretely, the non-negativity constraints of the weights in an MVNN imply that when

using a generic parameter initialization of standard (non-constrained) NNs that the conditional

mean of the output of each neuron in the MVNN either explodes or its conditional variance

vanishes (depending on the scaling of the distribution). To overcome this issue, we propose an

i.i.d. mixture distribution of two different uniform distributions such that the conditional mean

and the conditional variance neither explode nor vanish with increasing width of the network

but rather stay constant.

Third, we present a more succinct mixed integer linear program (MILP) for MVNNs to solve

the ML-based WDP using our proposed MVNN-based uUB as ML algorithm. Our new MILP

only contains half the linear constraints compared to the MILP proposed in (Weissteiner et al.,

2022a).

Finally, we experimentally compared BOCA in the spectrum auction test suite (SATS)

(Weiss et al., 2017) against state-of-art-approaches and showed that BOCA outperforms these

approaches in terms of allocative efficiency.

This paper completes the answer to Research Question 3. With this paper, we have proposed

a practical fully Bayesian optimization-based combinatorial assignment (BOCA) mechanism. On

a conceptual level, our main contribution is the integration of posterior model uncertainty over

agents’ preferences into ML-based preference elicitation. On a technical level, we have designed

a new method for estimating an uUB that exploits the monotonicity of agents’ preferences in the

combinatorial assignment domain and the finite nature of this setting. From our experimental

results, we conclude that using a notion of posterior model uncertainty that enables the mecha-

nism to properly explore and not just exploit the bundle space during its preference elicitation

phase, can significantly boost its performance.

8In the literature, upper uncertainty bound (uUB) is also sometimes called upper confidence bound (UCB) and
BO algorithms using the UCB as acquisition function are referred to as UCB-algorithms.
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1.4.6 Machine Learning-powered Course Allocation

This paper provides a complete answer to Research Question 4. In this paper, we introduce a ma-

chine learning-powered course allocation mechanism. Concretely, we extend the state-of-the-art

Course Match (CM) mechanism (Budish et al., 2017) with a machine learning-based preference

elicitation module. We call our proposed mechanism machine learning-powered course match

(MLCM). MLCM generates in an iterative, asynchronous manner, carefully selected pairwise

comparison queries that are tailored to each individual student.

With this approach, we build on the ideas developed in a recent stream of papers on ML-

powered combinatorial auctions. Brero et al. (2018) were the first to integrate an ML-powered

preference elicitation component into a practical combinatorial auction mechanism. They used

support vector regression to learn bidders’ value functions and to iteratively generate new in-

formative queries in each auction round. In (Brero et al., 2021), the authors proposed the

MLCA mechanism and showed that it achieves higher allocative efficiency than the widely-used

combinatorial clock auction (Ausubel et al., 2006).

While these works are important precursors to this paper, there are several noteworthy

differences. First, these papers used value queries as the interaction paradigm, which would

be unnatural in course allocation. Instead, we use pairwise comparison queries (i.e., asking

students “Do you prefer course schedule A or B?”). Importantly, a pairwise comparison query

is a simpler type of query, known to have low cognitive load (Conitzer, 2007; Chajewska et al.,

2000). Second, our goal is to build on top of the CM’s simple reporting language (recall that

CM offers students a graphical user interface (GUI) to enter a base value between 0 and 100 for

each course, and an adjustment value between −200 and 200 for each pair of courses). Thus, we

must be able to handle the cardinal input that students provide via the CM reporting language

as well as the ordinal feedback from answering pairwise comparison queries. Finally, while an

auctioneer can require bidders in an auction to participate in a synchronous way (i.e., submitting

a bid in every round), we must allow students to interact with the mechanism in an asynchronous

manner.

The high-level idea of MLCM is as follows. First, students use the CM reporting language

(i.e., the same GUI as in CM). As in CM, this input is required from all students. Second,

MLCM uses these initial reports to train a distinct ML model for each student so that it can

predict each student’s value for any possible course schedule. Third, MLCM uses an ML-powered

preference elicitation algorithm to generate comparison queries that are tailored to each student,

and students simply answer which schedule they prefer. Based on this feedback, the ML model

is retrained and the next query is generated. Importantly, this phase is optional – each student

can answer as many of such queries as she wants (including none). However, the more queries

she answers, the better the ML model will typically approximate her true preferences, which will

benefit her in the last phase, where MLCM computes the final allocation based on all trained

ML models.9

To evaluate the welfare achieved by MLCM, we introduce a new course allocation simulation

9Note that in MLCM, the final allocation is determined based on the trained ML models. This is different to our
prior work on ML-based iterative combinatorial auctions where the final allocation is calculated only based on
reported/elicited bundle-value pairs. The main reason for only using reported/elicited bundle-value pairs in
the combinatorial auction setting is, that, when allocating based on predicted bundle-value pairs (i.e., based
on trained ML models), one would lose individual rationality of the auction mechanism.
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framework. The first component is a realistic student preference generator, which is designed

such that each student’s complete preferences can be encoded as a succinct mixed integer linear

program (MILP). This allows us to compute a benchmark allocation given students’ true pref-

erences. The second component models students’ reporting mistakes when interacting with the

CM language. We calibrate the framework’s parameters based on real-world data from the field

experiment in (Budish and Kessler, 2022).

Regarding the ML algorithm used for MLCM, we show experimentally that the recently

introduced monotone-value neural networks (MVNNs) (Weissteiner et al., 2022a) exhibit the

best generalization performance in our domain, while also being MILP-formalizable, such that

the corresponding individual student utility maximization problem can be solved fast enough in

practice. Furthermore, we show how the cardinal input from the CM language and the ordinal

feedback from the pairwise comparison queries can be combined when training MVNNs.

Finally, we empirically compare the performance of MLCM and CM. We find that MLCM

significantly outperforms CM in terms of average student utility as well as minimum student

utility, even with only ten additional pairwise comparison queries. Furthermore, we show that

these results are robust to changes in students’ reporting mistakes and across various different

settings of our proposed student preference generator.

This paper completes the answer to Research Question 4 by proposing MLCM, a new prac-

tical ML-powered course allocation mechanism. Specifically, MLCM addresses the main short-

comings of CM’s reporting language, revealed in the field experiment by Budish and Kessler

(2022). We thus conclude that using ML to carefully select good pairwise comparison queries

that better elicit students’ preferences by correcting their reporting mistakes can significantly

increase students’ welfare whilst at the same time not creating too much cognitive burden to

students.

1.5 Conclusion and Future Work

Integrating machine learning methods into market mechanisms such as combinatorial assignment

is an intricate task, but one of critical importance in today’s large-scale, complex environments.

In particular, properly eliciting all agents’ preferences plays an integral part in the design of well

functioning market mechanisms.

Since agents’ preferences are exponentially-sized objects, full elicitation is rarely possible in

real-world settings. Therefore, a key challenge in combinatorial assignment is the design of a

preference elicitation algorithm that is (i) practically feasible with respect to elicitation costs and

(ii) smart, i.e., it should elicit the information that is “most useful” for achieving high efficiency.

Integrating ML into the design of a preference elicitation algorithm first involves learning agents’

preferences via ML algorithms and then use those trained ML algorithms to select the “most

useful” queries to achieve allocations with high efficiency.

In this thesis, I have studied how to leverage a variety of machine learning algorithms to

design such smart and practically feasible ML-powered preference elicitation algorithms in com-

binatorial assignment. Specifically, I have both proposed some tailor-made ML-based algorithms

specifically designed for combinatorial assignment (i.e., NOMU in Section 1.4.3 and MVNNs in

Section 1.4.4) as well as integrated existing ML algorithms into combinatorial assignment mech-
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anisms (e.g., NNs in Section 1.4.1, Fourier transforms for set functions in Section 1.4.2). These

ML models help to guide the elicitation process by eliciting the “most useful” information from

the agents and thereby trying to overcome the curse of dimensionality inherent to combinatorial

assignment.

However, even though learning agents’ preferences via ML algorithms can be seen as a

standard supervised learning task, it is particularly challenging in combinatorial assignment,

because the underlying setting is typically extremely scarce, i.e., practical feasibility of the

preference elicitation algorithm implies that only few training data points can be collected.

Moreover, the main computational bottleneck of the considered preference elicitation algo-

rithms lies in the next-query generation method where one has to solve a hard combinatorial

optimization problem using as inputs the trained ML models (i.e., the ML-based winner deter-

mination problem). This implies that highly overparameterized ML models cannot be used in

practice and thus carefully controlling the trade-off between the ML models’ expressivity and the

computational feasibility of the resulting ML-based winner determination problem is of utmost

importance.

I have shown that in this specific scarce setting, it is even more important to use as much

prior knowledge as possible (Weissteiner et al., 2022a) and to reduce the dimensionality of the

learning task (Weissteiner et al., 2022b) to get the best possible generalization performance,

which, when combined with a smart next-query generation procedure, then leads to allocations

with higher efficiency.

Additionally, I have shown that integrating uncertainty over not yet elicited bundles in pref-

erence elicitation (i.e., following more closely the Bayesian optimization paradigm) can prevent

from getting “stuck” in local optima and helps to properly explore bundle space (Weissteiner

et al., 2023).

Furthermore, when designing a practical combinatorial assignment mechanism, it is also

important to consider the communication/interaction paradigm with the central agency, i.e., one

should reflect which query type is the most practical in the considered domain. For example,

in course allocation, to avoid creating too much cognitive burden for students, I have proposed

the use of simpler pairwise comparison queries (Soumalias et al., 2023) instead of value queries.

Overall, all these subtle details in the choice of the ML model used for preference elicitation

and how they interact with each other ultimately play a key role for the success of the resulting

combinatorial assignment mechanism.

Future Work I have evaluated all my proposed ML-based preference elicitation algorithms in

synthetic settings, i.e., in the spectrum auction test suite (SATS) by Weiss et al. (2017) or via

the student preference generator by Soumalias et al. (2023), assuming that all agents report

truthfully. Therefore, I see the following two important directions for future work.

First, future work could analyze the mechanisms when agents do strategically misreport.

Even though we argue that all considered mechanisms provide good incentives in practice, none

of these guarantees hold in a formal, provable way. Therefore, it would be particularly interesting

to find approximately optimal unilateral misreporting strategies and analyze the characteristics

of them in more detail, e.g., how do these strategies differ from truthful reports, how does the

final allocation compare to the one obtained when all agents report truthfully, which agents
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are worse/better of. I could envision analyzing this by framing the iterative combinatorial

assignment problem I studied as a reinforcement learning task and then finding approximately

optimal strategies by assuming that all other agents report truthfully. Once this reasonably

succeeds, one can then experimentally analyze which of the proposed ML algorithms provide

the best robustness with respect to strategic behaviour.

Second, another interesting direction for future work is to evaluate the proposed mechanisms

not only in synthetic settings but also when put into practice. Specifically, it would be of great

interest to define suitable laboratory experiments to evaluate the proposed ML-powered mech-

anisms. Given that in practice, agents are often limited by their cognitive abilities (Scheffel

et al., 2012) and thus (even unintentionally) make mistakes when interacting with the mecha-

nism, such laboratory experiments would provide valuable insights on the real-world performance

of the proposed ML-powered mechanisms.

Furthermore, in the design of new preference elicitation algorithms in the combinatorial

auction domain, I have focused on integrating/designing new ML components and did not change

the interaction paradigm, i.e., value queries, proposed by prior work. An interesting direction for

future work would be to additionally also consider new or combine existing interaction paradigms

in my proposed mechanisms, e.g., to alternate between value queries and demand queries in the

preference elicitation phase.

Finally, another interesting avenue to be explored in future work is to test the key conceptual

idea of BOCA, i.e, using the upper uncertainty bound based on NOMU and NNs as acquisition

function, not only in the context of combinatorial assignment but also in other combinatorial

Bayesian optimization tasks (e.g., see (Baptista and Poloczek, 2018, Section 4) for other different

combinatorial BO tasks). Similarly, one could test the performance of MVNNs in other monotone

regression tasks than the spectrum auction setting.
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Abstract

In this paper, we study the design of deep learning-powered
iterative combinatorial auctions (ICAs). We build on prior
work where preference elicitation was done via kernelized
support vector regressions (SVRs). However, the SVR-based
approach has limitations because it requires solving a ma-
chine learning (ML)-based winner determination problem
(WDP). With expressive kernels (like gaussians), the ML-
based WDP cannot be solved for large domains. While lin-
ear or quadratic kernels have better computational scalabil-
ity, these kernels have limited expressiveness. In this work,
we address these shortcomings by using deep neural net-
works (DNNs) instead of SVRs. We first show how the DNN-
based WDP can be reformulated into a mixed integer program
(MIP). Second, we experimentally compare the prediction
performance of DNNs against SVRs. Third, we present ex-
perimental evaluations in two medium-sized domains which
show that even ICAs based on relatively small-sized DNNs
lead to higher economic efficiency than ICAs based on ker-
nelized SVRs. Finally, we show that our DNN-powered ICA
also scales well to very large CA domains.

1 Introduction
Combinatorial auctions (CAs) are used to allocate multi-
ple heterogeneous items to bidders in domains where these
items may be substitutes or complements. Specifically, in a
CA, bidders are allowed to submit bids on bundles of items
rather than on individual items. CAs are widely used in prac-
tice, including for the sale of airport landing and take-off
slots (Rassenti, Smith, and Bulfin 1982), in industrial pro-
curement (Bichler et al. 2006), and for the sale of spectrum
licenses (Cramton 2013).

One of the main challenges in large CAs is that the bun-
dle space grows exponentially in the number of items. This
typically makes it impossible for the bidders to report their
full value function, even for medium-sized domains. Thus,
careful preference elicitation is needed in CAs.

Nisan and Segal (2006) have shown that to achieve full
efficiency and support general value functions, exponential
communication in the number of items is needed in the
worst case. Thus, practical auction designs cannot provide

*This paper is the slightly updated version of Weissteiner and
Seuken (2020) published at AAAI’20 including the appendix.

efficiency guarantees in large CA domains. Instead, many
recent proposals for CAs have focused on iterative combi-
natorial auctions (ICAs) where the auctioneer interacts with
bidders over multiple rounds, eliciting a limited amount of
information, aiming to find a highly efficient allocation.

ICAs have found widespread application in practice.
For example, just between 2008 and 2014, the combina-
torial clock auction (CCA) (Ausubel, Cramton, and Mil-
grom 2006) has been used to conduct more than 15 spec-
trum auctions and has generated more than $20 Billion in
total revenue (Ausubel and Baranov 2017). Another impor-
tant application of ICAs are auctions for building offshore
wind farms (Ausubel and Cramton 2011). Given the value
of the resources allocated in these real-world ICAs, increas-
ing their efficiency by 1-2% points already translates into
welfare gains of millions of dollars. Therefore, improving
the efficiency of ICAs is an important research challenge.

1.1 Machine Learning and Mechanism Design
Researchers have proposed various ways to further increase
the efficiency of CAs by integrating machine learning (ML)
methods into the mechanism. This research goes back to
Blum et al. (2004) and Lahaie and Parkes (2004), who stud-
ied the relationship between computational learning theory
and preference elicitation in CAs. More recently, Brero and
Lahaie (2018) and Brero, Lahaie, and Seuken (2019) intro-
duced a Bayesian CA where they integrated ML into a CA
to achieve faster convergence. In a different strand of re-
search, Dütting et al. (2015; 2019), Narasimhan, Agarwal,
and Parkes (2016) and Golowich, Narasimhan, and Parkes
(2018) used ML to directly learn a new mechanism (follow-
ing the automated mechanism design paradigm).

Most related to the present paper is the work by Brero, Lu-
bin, and Seuken (2017; 2018; 2019), who proposed an ML-
powered ICA. The core of their auction is an ML-powered
preference elicitation algorithm. As part of their algorithm,
they used kernelized support vector regressions (SVRs) to
learn the nonlinear value functions of bidders. Recently,
Brero, Lubin, and Seuken (2019) showed that their ML-
based ICA achieves even higher efficiency than the CCA.
However, because of runtime complexity issues, Brero, Lu-
bin, and Seuken (2018; 2019) focused on SVRs with linear
and quadratic kernels. This leaves room for improvement,
since bidders’ valuations can have more complex structures

1



than can be captured by linear or quadratic kernels.

1.2 Our Approach Using Deep Neural Networks
In this paper, we propose using DNNs instead of SVRs in
ML-powered ICAs. In each round of the auction, we approx-
imate bidders’ value functions by DNNs and subsequently
solve an optimization problem, a DNN-based winner deter-
mination problem (WDP) , to determine which query to ask
every bidder in the next round. Since our design involves do-
ing this in each round of the auction, a central requirement
for the practical implementation of the auction mechanism
is to efficiently solve these DNN-based WDPs. Therefore,
we show how to reformulate the WDP based on DNNs with
rectified linear units (ReLUs) as activation functions into a
(linear) mixed integer program (MIP) (Section 4).

Our approach is related to a recent line of research that
uses MIP formulations to study specific properties of DNNs.
For example, Cheng, Nührenberg, and Ruess (2017) studied
resilience properties of DNNs. Similarly, Fischetti and Jo
(2018) used a MIP formulation for finding adversarial ex-
amples in image recognition.

To experimentally evaluate the performance of our DNN-
based approach, we use the Spectrum Auction Test Suite
(SATS) (Weiss, Lubin, and Seuken 2017) to generate syn-
thetic CA instances (Section 5). We first compare the pre-
diction performance of DNNs against SVRs in the two
medium-sized domains GSVM and LSVM. Then we com-
pare the economic efficiency of our DNN-powered ICA
against the SVR-powered ICA. In GSVM (a domain per-
fectly suited for the quadratic kernel), our DNN-powered
ICA matches the efficiency of the SVR-powered ICA, while
in the more complex LSVM domain, our DNN-powered
ICA outperforms the SVR-powered ICA by 1.74% points.
Finally, we also demonstrate that our DNN-based approach
scales well to a very large domain, by evaluating it in the
MRVM domain (with 98 items and 10 bidders). Overall,
our results show that, perhaps surprisingly, even small-sized
neural networks can be advantageous for the design of ICAs.

2 Preliminaries
We now present our formal model and review the ML-
powered ICA by Brero, Lubin, and Seuken (2018).1

2.1 Iterative Combinatorial Auction
We consider a CA setting with n bidders and m indivisible
items. Let N := {1, . . . , n} and M := {1, . . . ,m} denote
the set of bidders and items, respectively. We denote by x ∈
X := {0, 1}m a bundle of items represented as an indicator
vector, where xj = 1 iff item j ∈ M is contained in x.
Bidders’ true preferences over bundles are represented by
their (private) value functions vi : {0, 1}m → R+, i ∈
N , i.e., vi(x) represents bidder i’s true value for bundle x.
Let v := (v1, . . . , vn) denote the vector of bidders’ value

1We compare our DNN-powered ICA against the mechanism
described in (Brero, Lubin, and Seuken 2018) because, when we
wrote this paper, (Brero, Lubin, and Seuken 2019) was not avail-
able yet. We slightly adopt the notation and use Bi instead of ϑ̂i.

functions. The (possibly untruthful) reported valuations are
denoted by v̂i and v̂, respectively.

By a := (a1, . . . , an) ∈ Xn we denote an alloca-
tion of bundles to bidders, where ai ∈ X is the bun-
dle bidder i obtains. An allocation a is feasible if each
item is allocated to at most one bidder, i.e., ∀j ∈ M :∑

i∈N aij ≤ 1. We denote the set of feasible allocations
by F :=

{
a ∈ Xn :

∑
i∈N aij ≤ 1, ∀j ∈M

}
. Payments

are denoted by p = (p1, . . . , pn) ∈ Rn, where pi is bid-
der i’s payment. Furthermore, we assume that bidders have
quasilinear utility functions ui(a) := vi(ai)− pi. The (true)
social welfare of an allocation a is defined as V (a) :=∑

i∈N vi(ai). Let a∗ ∈ arg maxa∈F V (a) be a feasible,
social-welfare maximizing, i.e., efficient, allocation given
true value functions v. Then the efficiency of any feasible
allocation a ∈ F is measured in terms of a∗ by V (a)

V (a∗) .

An ICA mechanism defines how the bidders inter-
act with the auctioneer, how the final allocation is de-
termined, and how payments are computed. In this pa-
per, we only consider ICAs that ask bidders to itera-
tively report their valuations v̂i(x) for particular bun-
dles x selected by the mechanism. A finite set of
such reported bundle-value pairs of bidder i is denoted
as Bi :=

{(
x(k), v̂i(x

(k))
)}

k∈{1,...,ni} , ni ∈ N, x(k) ∈ X ,
where ni is the total number of bundle-value pairs reported
by bidder i. We let B := (B1, . . . , Bn) denote the tuple of
reported bundle-value pairs obtained from all bidders. We
define the reported social welfare of an allocation a given B
as

V̂ (a|B) :=
∑

i∈N : (ai,v̂i(ai))∈Bi

v̂i(ai), (1)

where the condition (ai, v̂i(ai)) ∈ Bi ensures that only val-
ues for reported bundles contribute to the sum. Finally, the
optimal feasible allocation a∗B given B is defined as

a∗B ∈ arg max
a∈F

V̂ (a|B). (2)

In the ICA mechanisms we consider in this paper, the final
outcome is only computed based on the reported values B at
termination. Specifically, the mechanism determines a feasi-
ble allocation a∗B ∈ F and charges payments p.

As the auctioneer can generally only ask each bidder i for
a limited number of bundle-value pairs Bi, the ICA mecha-
nism needs a sophisticated preference elicitation algorithm.
This leads to the following preference elicitation problem,
where the goal is to find an (approximately) efficient alloca-
tion with a limited number of value queries. More formally:
Problem 1 (PREFERENCE ELICITATION IN ICA). Given a
cap ce on the number of value queries in an ICA, elicit from
each bidder i ∈ N a set of reported bundle-value pairs Bi

with |Bi| ≤ ce such that the resulting efficiency of a∗B is
maximized, i.e.,

B ∈ arg max
B:|Bi|≤ce

V (a∗B)
V (a∗)

. (3)

In practice, a small domain-dependent cap on the number
of queries is chosen, e.g., ce ≤ 500.
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2.2 SVR-powered ICA
We now present a brief review of the ML-based ICA in-
troduced by Brero, Lubin, and Seuken (2018). At the core
of their auction is an ML-based preference elicitation algo-
rithm which we reprint here as Algorithm 1.

Algorithm 1: ML-BASED ELICITATION (Brero et al. 2018)

Parameter : Machine learning algorithm A
1 B0 = initial tuple of reported bundle-value pairs at t = 0
2 do
3 t← t+ 1

4 Estimation step: Ṽ t := A(Bt−1)

5 Optimization step: a(t) ∈ arg max
a∈F

Ṽ t(a)

6 for each bidder i do
7 if a(t)

i /∈ Bt−1
i then

8 Query value v̂i(a
(t)
i )

9 Bt
i = Bt−1

i ∪
{(

a
(t)
i , v̂i(a

(t)
i )
)}

10 else
11 Bt

i = Bt−1
i

12 end
13 end
14 while ∃i ∈ N : a

(t)
i /∈ Bt−1

i

15 Output tuple of reported bundle-value pairs Bt

This algorithm is a procedure to determine B, i.e., for
each bidder i a set of reported bundle-value pairs Bi. Note
that the algorithm is described in terms of a generic ML al-
gorithm A which is used in the estimation step (Line 4) to
obtain the estimated social welfare function Ṽ t in iteration
t. In the optimization step (Line 5), an ML-based winner de-
termination problem is then solved to find an allocation a(t)

that maximizes Ṽ t. Finally, given the allocation a(t) from
iteration t, each bidder i is asked to report his value for the
bundle a

(t)
i . The algorithm stops when it reaches an alloca-

tion a(t) for which all bidders have already reported their
values for the corresponding bundles a(t)i .

As the ML-algorithmA, Brero, Lubin, and Seuken (2018)
used a sum of kernelized SVRs, i.e,

A(Bt−1) :=
∑

i∈N

SVRi. (4)

Given a bundle x, each SVRi computes the predicted value
as SVRi(x) = wi · ϕ(x), where the weights wi are deter-
mined through training on the reported bundle-value pairs
Bt−1

i . Kernelized SVRs are a popular non-linear regression
technique, where a linear model is fitted on transformed
data. The transformation of bundles x is implicitly con-
ducted by setting a kernel k(x, x′) := ϕ(x)Tϕ(x′) in the
dual optimization problem (Smola and Schölkopf 2004).

Brero, Lubin, and Seuken (2018) called their entire auc-
tion mechanism the Pseudo Vickrey-Clarke-Groves mecha-
nism (PVM). We reprint it here as Algorithm 2. PVM calls
the preference elicitation algorithm (Algorithm 1) n + 1
times: once including all bidders (called the main economy)
and n times excluding a different bidder in each run (called

Algorithm 2: PVM (Brero et al. 2018)

1 Run Algorithm 1 n+ 1 times: B(−∅), B(−1), . . . , B(−n).
2 Determine allocations: a(−∅), a(−1), . . . , a(−n), where

a(−i) ∈ arg maxa∈F V̂ (a|B(−i)).

3 Pick apvm ∈ {a(−∅), a(−1), . . . , a(−n)} with maximal V̂ .
4 Charge each bidder i according to:

ppvmi :=
∑

j ̸=i

v̂j
(
a
(−i)
j

)
−
∑

j ̸=i

v̂j
(
apvm
j

)
. (5)

the marginal economies). The motivation for this design,
which is inspired by the VCG mechanism, is to obtain pay-
ments such that the auction aligns bidders’ incentives with
allocative efficiency. Here, B(−i) denotes the output of Al-
gorithm 1 by excluding bidder i from the set of bidders. For
each of the reported bundle-value pairs B(−i) obtained from
the n + 1 runs, PVM calculates a corresponding allocation
that maximizes the reported social welfare (Line 2). The fi-
nal allocation apvm is determined as the allocation of the
n+ 1 runs with the largest reported social welfare (Line 3).
Finally, VCG-style payments are calculated (Line 4).

3 Deep Neural Network-powered ICA
In this section, we present the high level design of our DNN-
powered ICA and discuss its advantages compared to the
SVR-based design by Brero, Lubin, and Seuken (2018).

Observe that the choice of the ML algorithm A affects
Algorithm 1 in two ways: first, in the estimation step (Line
4), A determines how well we can predict bidders’ valua-
tions; second, in the optimization step (Line 5), it determines
the complexity of the ML-based WDP. Thus, our situation is
different from standard supervised learning because of the
added optimization step. In particular, when choosingA, we
must also ensure that we obtain a practically feasible ML-
based WDP. Given that we have to solve the optimization
step hundreds of times throughout an auction, in practice,
we must impose a time limit on this step. In our experiments
(Section 5), we follow Brero, Lubin, and Seuken (2018) and
impose a 1 hour time limit on this step.

To make the optimization step feasible, Brero, Lubin, and
Seuken (2018) used SVRs with quadratic kernels, for which
the ML-based WDP is a quadratic integer program (QIP)
and still practically solvable within a 1 hour time limit for
most settings. However, note that a quadratic kernel, while
more expressive than a linear kernel, can still at most model
two-way interactions between the items. To this end, Brero,
Lubin, and Seuken (2017; 2019) also evaluated more expres-
sive kernels (gaussian and exponential). Even though these
kernels had good prediction performance, the corresponding
ML-based WDPs were too complex such that they always
timed out and had a large optimization gap, thus leading to
worse economic efficiency than the quadratic kernel. How-
ever, using SVRs with quadratic kernels leaves room for im-
provement, since bidders’ valuations can be more complex
than can be captured by quadratic kernels.
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In this work, we show how these shortcomings can be
addressed by using DNNs instead of SVRs in the estima-
tion and optimization steps of Algorithm 1. DNNs are a
concatenation of affine and non-linear mappings (see Fig-
ure 1). They consist of several layers, which are themselves
composed of multiple nodes. Between each of the layers an
affine transformation is applied, which is followed by a non-
linear mapping called the activation function.

One advantage of DNNs compared to (nonlinear) kernel-
ized SVRs is that, for any number of layers and nodes, we al-
ways obtain a (linear) MIP for the DNN-based WDP whose
size only grows linearly in the number of bidders and items
(as we will show in Section 4). The key insight for this is
to use rectified linear units (ReLUs) as activation functions.
Furthermore, in contrast to SVRs, DNNs do not use prede-
fined feature transformations. While with SVRs, the choice
of a good kernel usually relies on prior domain knowledge,
DNNs automatically learn features in the process of training.

Following Brero, Lubin, and Seuken (2018), we decom-
pose the estimated social welfare function in Line 4 of Al-
gorithm 1, Ṽ t = A(Bt−1), as follows:

Ṽ t =
∑

i∈N

ṽti , (6)

where ṽti is an estimate of bidder i’s true value func-
tion vi and is trained on the data set Bt−1

i , i.e., the val-
ues queried up to round t − 1. In this work, for every
i ∈ N , we model ṽti using a fully connected feed-forward
DNN Ni : {0, 1}m → R+. Consequently, the estimated so-
cial welfare function Ṽ t is given as a sum of DNNs, i.e.,

Ṽ t :=
∑

i∈N

Ni. (7)

Note that each bidder’s value function is modeled as a dis-
tinct DNN (with different architectures and parameters) be-
cause bidders’ preferences are usually highly idiosyncratic.2

4 MIP Formulation of the DNN-based
Winner Determination Problem

We now present the parameterization of each DNN and show
how to reformulate the DNN-based WDP into a MIP. Thus,
we focus on the optimization step (Line 5) of Algorithm 1.

4.1 Setting up the DNN-based WDP
Figure 1 shows a schematic representation of a DNN Ni.
We now define the parameters of the DNNs. To simplify the
exposition, we consider a fixed iteration step t and no longer
highlight the dependency of all variables on t.

Each DNN Ni consists of Ki − 1 hidden layers for
Ki ∈ N, with the kth hidden layer containing dik hidden
nodes, where k ∈ {1, . . . ,Ki − 1}. As Ni maps bundles
x ∈ {0, 1}m to values, the dimension of the input layer di0
is equal to the number of items m (i.e., di0 := m) and the

2A second reason for this construction is that this prevents bid-
ders from influencing each others’ ML-models. Please see (Brero,
Lubin, and Seuken 2019) for a detailed incentive analysis of PVM.
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Figure 1: Schematic representation of a DNN Ni.

dimension of the output layer is equal to 1 (i.e., diKi
:= 1).

Hence, in total, a single DNN consists of Ki+1 layers. Fur-
thermore, let φ : R → R+, φ(s) := max(0, s) denote the
ReLU activation function.3 The affine mappings between the
kth and the k+1st layer are parameterized by a matrix W i,k ∈
Rdi

k+1×di
k and a bias bi,k ∈ Rdi

k+1 , k ∈ {0, . . . ,Ki − 1}.
To estimate the parameters W i,k and bi,k from data (i.e.,

from the bundle-value pairs Bi) we use the ADAM algo-
rithm, which is a popular gradient-based optimization tech-
nique (Kingma and Ba 2015).4 This is done in the estima-
tion step in Line 4 of Algorithm 1. Thus, after the estima-
tion step, W i,k and bi,k are constants. In summary, given
estimated parameters W i := {W i,k}0≤k≤Ki−1 and bi :=
{bi,k}0≤k≤Ki−1, each DNN Ni(W

i, bi) : {0, 1}m → R+

represents the following nested function:

Ni(W
i, bi)(x) = (8)

= φ
(
W i,Ki−1φ

(
. . . φ(W i,0x+ bi,0) . . .

)
+ bi,Ki−1

)
.

The DNN-based WDP in the optimization step in Line 5 of
Algorithm 1 can now be formulated as follows:

max
a∈Xn

{∑

i∈N

Ni

(
W i, bi

)
(ai)

}
(OP1)

s.t.
∑

i∈N

aij ≤ 1, ∀j ∈M

aij ∈ {0, 1}, ∀j ∈M,∀i ∈ N.

4.2 The MIP Formulation
In its general form, (OP1) is a nonlinear, non-convex opti-
mization problem and there do not exist practically feasible
algorithms that are guaranteed to find a globally optimal so-
lution. Therefore, we now reformulate (OP1) into a MIP.

Consider bidder i ∈ N . For every layer k ∈ {1, . . . ,Ki}
let oi,k ∈ Rdi

k
+ denote the output of the kth layer, which can

3φ acts on vectors componentwise, i.e., for s ∈ Rk let
φ(s) := (φ(s1), . . . , φ(sk)).

4For fitting the DNNs in all of our experiments we use PYTHON
3.5.3, KERAS 2.2.4 and TENSORFLOW 1.13.1.
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be recursively calculated as

oi,k = φ(W i,k−1oi,k−1 + bi,k−1) =

= max(0,W i,k−1oi,k−1 + bi,k−1). (9)

For k ∈ {1, . . . ,Ki}, we introduce dik binary decision
variables that determine which node in the corresponding
layer is active, represented as a vector yi,k ∈ {0, 1}di

k . We
also introduce 2dik continuous variables, represented as vec-
tors zi,k, si,k ∈ Rdi

k . Each zi,k corresponds to the posi-
tive components of the output value oi,k of each layer and
each si,k is used as a slack variable representing the abso-
lute value of the negative components of oi,k.

In our final MIP formulation, we will make use of “big-
M” constraints. For our theoretical results to hold, we need
to make the following standard assumption.

Assumption 1. (BIG-M CONSTRAINT) For all i ∈ N and k ∈
{1, ...,Ki} there exists a large enough constant L ∈ R+,
such that

∣∣(W i,k−1oi,k−1 + bi,k−1)j
∣∣ ≤ L for 1 ≤ j ≤ dik.

In the following lemma, we show how to recursively en-
code a layer of Ni given the output value of the previous
layer as multiple linear constraints.5

Lemma 1. Let W i,k−1oi,k−1 + bi,k−1 ∈ Rdi
k be fixed

for a k ∈ {1, . . . ,Ki}. Furthermore, let zi,k, si,k ∈ Rdi
k ,

yi,k ∈ {0, 1}di
k . Consider the following linear constraints:

zi,k − si,k = W i,k−1oi,k−1 + bi,k−1 (10)

0 ≤ zi,k ≤ yi,k · L (11)

0 ≤ si,k ≤ (1− yi,k) · L. (12)

The polytope defined by (10)-(12) is not empty and every el-
ement

(
zi,k, si,k, yi,k

)
of this polytope satisfies zi,k = oi,k.

Proof. For notational convenience, let c := W i,k−1oi,k−1+
bi,k−1. Non-emptiness follows since |cj | ≤ L, 1 ≤ j ≤ dik,
by Assumption 1. From Constraints (11) and (12) it follows,
for 1 ≤ j ≤ dik, that if zi,kj > 0 then si,kj = 0, and if
si,kj > 0 then zi,kj = 0. We now have to distinguish the
following three cases for each component of c:

cj < 0 =⇒ yi,kj = 0, si,kj = −cj , zi,kj = 0 = φ(cj)

cj > 0 =⇒ yi,kj = 1, si,kj = 0, zi,kj = cj = φ(cj)

cj = 0 =⇒
(
zi,kj , si,kj , yi,kj

)
∈ {(0, 0, 0), (0, 0, 1)}

Combining all cases yields that zi,k = φ(cj) = oi,k.

Given Lemma 1, we can now reformulate the DNN-based
WDP as a MIP. For this, we let W i, bi denote the es-
timated parameters corresponding to Ni(W

i, bi). Further-
more, let a ∈ Xn, yi,k ∈ {0, 1}di

k and zi,k, si,k ∈ Rdi
k , for

1 ≤ k ≤ Ki and L be a constant satisfying Assumption 1.

5In the following, all constraints containing vectors are defined
componentwise.

max
a∈Xn,zi,k,si,k,yi,k

{∑

i∈N

zi,Ki

}
(OP2)

s.t.

zi,0 = ai

zi,k − si,k = W i,k−1zi,k−1 + bi,k−1

0 ≤ zi,k ≤ yi,k · L
0 ≤ si,k ≤ (1− yi,k) · L
yi,k ∈ {0, 1}di

k





∀i ∈ N

∀k ∈ {1, . . . ,Ki}

aij ∈ {0, 1}, ∀j ∈M, ∀i ∈ N
∑

i∈N

aij ≤ 1, ∀j ∈M

We are now ready to state our main theorem.

Theorem 1. (MIP FORMULATION) The DNN-based WDP
as defined in (OP1) is equivalent to the MIP defined in (OP2).

Proof. Consider (OP1). For each bidder i ∈ N , we first set
zi,0 equal to the input bundle ai. Then we proceed by using
Lemma 1 for k = 1, i.e., we reformulate the output of the 1st

layer as the linear constraints (10), (11) and (12). We iterate
this procedure until we have reformulated the final layer, i.e,
k = Ki. Doing so for each bidder i ∈ N and adding the
feasibility constraints yields (OP2).

Using the MIP formulation (OP2), we can solve the
DNN-based WDP using standard optimization packages like
CPLEX.6

We now provide a simple worked example for how to re-
formulate (OP1) into (OP2) which illustrates Theorem 1.

Example 1. Consider a setting with one bidder (n = 1),
m items (d10 = m) and one hidden layer (K1 = 2). Given
W 1,0 ∈ Rd1

1×m, W 1,1 ∈ R1×d1
1 ,b1,0 ∈ Rd1

1 , and b1,1 ∈ R,
(OP1) can be written as

max
a1∈X 1

{
max

(
0,W 1,1 max

(
0,W 1,0a1 + b1,0

)
+ b1,1

)}

s.t. a1j ∈ {0, 1}, ∀j ∈M,

where the constraint
∑

i∈N aij ≤ 1, ∀j ∈ M is redundant
in this case, since we only consider one bidder. First, we re-
place the inner maximum using y1,1 ∈ {0, 1}d1

1 , z1,1, s1,1 ∈
Rd1

1 and arrive at the equivalent optimization problem

max
a1∈X 1

z1,1, s1,1, y1,1

{
max

(
0,W 1,1z1,1 + b1,1

)}

s.t. z1,1 − s1,1 = W 1,0a1 + b1,0

0 ≤ z1,1 ≤ y1,1 · L
0 ≤ s1,1 ≤ (1− y1,1) · L
a1j ∈ {0, 1}, ∀j ∈M.

6For solving MIPs of the form (OP2) in our experiments we use
CPLEX 12.8.0.0 with the python library DOCPLEX 2.4.61.
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Applying Lemma 1 again by using y1,2 ∈ {0, 1} and
z1,2, s1,2 ∈ R yields the final MIP formulation

max
a1∈X 1, z1,k

y1,k, s1,k, k∈{1,2}

{
z1,2

}

s.t. z1,1 − s1,1 = W 1,0a1 + b1,0

0 ≤ z1,1 ≤ y1,1 · L
0 ≤ s1,1 ≤ (1− y1,1) · L
z1,2 − s1,2 = W 1,1z1,1 + b1,1

0 ≤ z1,2 ≤ y1,2 · L
0 ≤ s1,2 ≤ (1− y1,2) · L
a1j ∈ {0, 1}, ∀j ∈M.

Remark 1. The number of decision variables in the MIP
defined in (OP2) is given by

∑

i∈N︸︷︷︸
#bidders




m︸︷︷︸
#items

+ 3︸︷︷︸
yi,k, si,k,zi,k

·




#hidden layers︷ ︸︸ ︷
Ki − 1∑

k=1

dik︸︷︷︸
#nodes per layer

+

output︷︸︸︷
1







5 Experimental Evaluation
In this section, we evaluate the performance of our deep
learning-powered ICA and compare it against the SVR-
based approach using quadratic kernels by Brero, Lubin, and
Seuken (2018). We release our code under an open-source li-
cense at: https://github.com/marketdesignresearch/DL-ICA.

5.1 Experiment setup
Spectrum auctions are one of the most prominent applica-
tions of CAs, which is why we choose them for our experi-
ments. Specifically, we use the spectrum auction test suite
(SATS) version 0.6.4 (Weiss, Lubin, and Seuken 2017).7
SATS enables us to generate 1000s of CA instances in differ-
ent domains. Furthermore, we have access to each bidder’s
true value vi(x) for all 2m possible bundles x ∈ X as well
as the efficient allocation a∗ ∈ F , which we can use to mea-
sure the efficiency of any other allocation a by V (a)/V (a∗).
We evaluate our approach in the following three domains:

The Global Synergy Value Model (GSVM) (Goeree and
Holt 2010) consists of 6 regional bidders, 1 national bidder,
and 18 items. In GSVM the value of a package increases by
a certain percentage with every additional item of interest.
Thus, the value of a bundle only depends on the total number
of items contained in a bundle which makes it one of the
simplest models in SATS. In fact, bidders’ valuations can
be exactly learned by SVRs with quadratic kernels (Brero,
Lubin, and Seuken (2019)) which implies that the valuations
exhibit at most two-way interactions between items.

The Local Synergy Value Model (LSVM) (Scheffel,
Ziegler, and Bichler 2012) consists of 5 regional bidders,
1 national bidder and 18 items. The items are arranged on a
rectangle of size 3×6. The national bidder is interested in all

7Experiments were conducted on machines with Intel Xeon E5-
2650 v4 2.20GHz processors with 20 cores.

items, while the regional bidders are only interested in cer-
tain subsets of items. Complementarities arise from spatial
proximity of items and are modeled via a logistic function,
which makes it more complex than GSVM.

The Multi-Region Value Model (MRVM) (Weiss, Lubin,
and Seuken 2017) consists of 98 items and 10 bidders. It
models large US and Canadian spectrum auctions and cap-
tures both geography (different regions) as well as frequency
dimensions (different bands). A bidder is categorized as na-
tional, regional or local, depending on the magnitude of the
synergies between different regions.

In Sections 5.2 and 5.3, we first evaluate our approach
in detail using the two medium-sized domains GSVM and
LSVM. Then, in Section 5.4, we use MRVM to evaluate how
well our approach scales to very large domains.

5.2 Prediction Performance
We first compare the prediction performance of DNNs to
SVRs. Using SATS, we generate a data set of bundle-value
pairs {(x(k), vi(x

(k)))} for all bidders i ∈ N . For each auc-
tion domain, we draw 100 auction instances uniformly at
random. For each such instance, we sample, for each bidder
type, a training set T of equal size and a disjoint test set V
consisting of all remaining bundles, i.e., |V | := 2|M | − |T |.
For each bidder type, we train the ML algorithm on T and
test it on V . We report the mean absolute error (MAE) for
both bidder types averaged over the 100 instances.8

We denote by [d1, d2, d3] a 3-hidden-layer DNN with
d1, d2 and d3 hidden nodes, respectively. For both, SVRs
and DNNs, we performed a hyperparameter optimization
for each bidder type. For the DNNs, we optimized the ar-
chitecture9, the L2-regularization parameter for the affine
mappings, the dropout rate per layer, and the learning rate
of ADAM. For SVRs with a quadratic kernel k(x, y) :=
xT y + γ(xT y)2, we optimized γ (i.e., the influence of the
quadratic term), the regularization parameter C, and the loss
function parameter ϵ. In what follows, we present the winner
models resulting from this hyperparameter optimization.

In Table 1, we present prediction performance results for
the GSVM domain. Consider the last column of the ta-
ble, which shows the MAE on the test set. We observe the
very good prediction performance of the SVRs and in par-
ticular that the test error converges to 0 when increasing
|T |. This is due to the fact that in GSVM, bidders’ value
functions can be perfectly captured by quadratic kernels.
In this sense, GSVM represents a “worst case” auction do-
main w.r.t. our comparison of DNNs against quadratically-
kernelized SVRs. Looking at the performance of the DNNs,
we observe that the test error also decreases with |T |, but,
not surprisingly, is always larger than for the SVRs with
quadratic kernels. Furthermore, we observe that the optimal
architectures are always a 1-hidden layer network.

In Table 2, we present the results for the more complex
LSVM domain. We observe that for |T | = 50, the DNNs and

8For training the DNNs, we use the MAE as the loss function.
9We considered the following architectures: for the national

bidders: [10], [100], [10,10], . . ., [100,100,100,100], and for the
regional bidders: [32], [100], [32,32], . . ., [100,100,100,100].

6



Bidder DNN
ML Algorithm |T | Type Architecture MAEtrain MAEtest

50 National [100] 1.99 5.25 (0.11)
Regional [100] 2.06 6.20 (0.19)

DNNs 100 National [100] 2.10 3.66 (0.07)
Regional [100] 2.71 4.64 (0.13)

200 National [100] 1.61 2.22 (0.05)
Regional [100] 2.11 2.89 (0.09)

Kernel

50 National quadratic 0.03 4.38 (0.11)
Regional quadratic 0.03 4.98 (0.20)

SVRs 100 National quadratic 0.03 1.71 (0.04)
Regional quadratic 0.03 2.07 (0.07)

200 National quadratic 0.03 0.12 (0.00)
Regional quadratic 0.03 0.13 (0.00)

Table 1: Prediction performance in GSVM. All results are
averaged over 100 auction instances. For MAEtest, standard
errors are shown in parentheses.

Bidder DNN
ML Algorithm |T | Type Architecture MAEtrain MAEtest

50 National [10] 24.68 29.90 (0.23)
Regional [100] 4.22 16.58 (0.39)

DNNs 100 National [10, 10, 10] 9.01 25.62 (0.36)
Regional [100] 5.01 13.74 (0.26)

200 National [10, 10] 10.52 20.58 (0.21)
Regional [100, 100, 100] 3.64 11.27 (0.23)

Kernel

50 National quadratic 18.51 32.61 (0.59)
Regional quadratic 3.11 15.30 (0.34)

SVRs 100 National quadratic 20.03 27.86 (0.28)
Regional quadratic 3.21 14.21 (0.28)

200 National quadratic 20.03 25.44 (0.16)
Regional quadratic 8.23 12.67 (0.26)

Table 2: Prediction performance in LSVM. All results are
averaged over 100 auction instances. For MAEtest, standard
errors are shown in parentheses.

SVRs with quadratic kernels have similar test error. But for
|T | = 100 and |T | = 200, the DNNs significantly outper-
form the SVRs with quadratic kernels. Specifically, DNNs
better capture the national bidder in LSVM, which is impor-
tant, since this bidder is interested in all items and usually
gets a large portion of the items in the final allocation, which
matters a lot for efficiency. In contrast to GSVM, we observe
that for |T | ≥ 100, multi-hidden-layer networks were found
to be best. This suggests that DNNs may indeed be advanta-
geous for capturing more complex preference structures.10

5.3 Efficiency Results
Finally, we compare the economic efficiency of our DNN-
powered ICA against the SVR-powered ICA. When con-
ducting the efficiency experiments, we follow Brero, Lubin,
and Seuken (2018) and assume that bidders answer all value
queries truthfully (i.e., v̂i = vi). Furthermore, we also use

10We also evaluated the prediction performance of other kernels
(linear, gaussian and exponential) and observed that DNNs were as
good or better for almost all combinations of bidder types and |T |.

DNN Architectures11 c0 Efficiency % Revenue %12

R:[16, 16] |N:[10, 10] 40 98.53% 69.26%
R:[16, 16] |N:[10, 10] 30 98.41% 68.29%
R:[16, 16] |N:[10, 10, 10] 40 98.51% 68.91%
R:[16, 16] |N:[10, 10, 10] 30 98.32% 68.59%
R:[32, 32] |N:[10, 10] 40 98.75% 71.14%
R:[32,32] | N:[10,10] 30 98.94% 68.47%
R:[32, 32] |N:[10, 10, 10] 40 98.69% 71.63%
R:[32, 32] |N:[10, 10, 10] 30 98.92% 68.88%
R:[100] |N:[100] 30 98.27% 66.73%

Table 3: Efficiency results for 9 configurations of a DNN-
powered ICA on a training set of 100 GSVM auction in-
stances. The selected winner model is marked in bold. All
results are averaged over the 100 auction instances.

Auction Max % % t-test on
Mechanism #Queries #Queries Efficiency Revenue Efficiency13

VCG 218 218 100.00 (0.00) 80.4 -

SVR-ICA 41.9 42.8 98.85 (0.13) 77.80 0.337
DNN-ICA 53 78 98.63 (0.18) 67.81

Table 4: A comparison of the DNN-powered ICA against the
SVR-powered ICA and VCG (as reported in Brero, Lubin,
and Seuken (2018)) on a test set of 100 GSVM instances. All
results are averaged over the 100 instances. For efficiency,
standard errors are shown in parentheses.

their experiment setup and define a cap ce on the total num-
ber of value queries in Algorithm 1 and set ce := 50. The
initial set of reported bundle-value pairs B0

i per bidder i is
drawn uniformly at random. We denote the number of initial
reports by c0 := |B0

i |, ∀i ∈ N , resulting in a maximum of
c0 + n · (ce − c0) queries per bidder.

GSVM. In Table 3, we first present the results from com-
paring nine different network architectures on a training
set of 100 GSVM instances. As we can see, the win-
ning model is among the largest multi-layer networks we
tested. It is noteworthy that the one-hidden-layer network
(R:[100]|N:[100]), which performed best in terms of predic-
tion performance, did not perform best in terms of efficiency.

In Table 4, we compare the performance of the win-
ner model from Table 3 (see Appendix A for configura-
tion details) against the SVR-based approach on a test set of
100 GSVM instances. Even though GSVM can be perfectly
captured by quadratic kernels, our DNN-based approach
achieves a similar result w.r.t. efficiency, where the differ-
ence in means is not statistically significant (p = 0.337).

11We denote by R and N the architectures used for the regional-
and national bidders, respectively.

12Revenue is calculated as (
∑

i∈N ppvmi )/V (a∗).
13We performed a two-sided unpaired Welch Two Sample t-test

with H0 : µ1 = µ2 against HA : µ1 ̸= µ2. We thank Brero,
Lubin, and Seuken (2018) for providing us with the detailed results
of their experiments to enable all t-tests reported in this paper.
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DNN Architectures c0 Efficiency % Revenue %
R:[16, 16] |N:[10, 10] 40 97.40 60.51
R:[16, 16] |N:[10, 10] 30 96.87 56.85
R:[16, 16] |N:[10, 10, 10] 40 97.45 61.15
R:[16, 16] |N:[10, 10, 10] 30 97.12 59.31
R:[32, 32] |N:[10, 10] 40 97.40 62.01
R:[32, 32] |N:[10, 10] 30 96.83 59.07
R:[32,32] | N:[10,10,10] 40 97.74 61.95
R:[32, 32] |N:[10, 10, 10] 30 97.12 59.56
R:[100] |N:[10] 40 96.78 58.71

Table 5: Efficiency results for 9 configurations of a DNN-
powered ICA on a training set of 100 LSVM auction in-
stances. The selected winner model is marked in bold. All
results are averaged over the 100 auction instances.

Auction Max % % t-test on
Mechanism #Queries #Queries Efficiency Revenue Efficiency

VCG 218 218 100.00 (0.00) 83.4 -

SVR-ICA 48.2 52.8 96.03 (0.33) 65.60
4e−5

DNN-ICA 65 77 97.74 (0.24) 62.45

Table 6: A comparison of the DNN-powered ICA against the
SVR-powered ICA and VCG (as reported in Brero, Lubin,
and Seuken (2018)) on a test set of 100 LSVM auction in-
stances. All results are averaged over the 100 instances. For
efficiency, standard errors are shown in parentheses.

LSVM. We now turn to the more complex LSVM domain.
We first select a winner model based on a training set of 100
LSVM instances (Table 5). As in GSVM, the best model
is among the largest architectures and the best model w.r.t.
prediction performance does not yield the highest efficiency.

In Table 6, we compare the performance of the selected
winner model from Table 5 (see Appendix A for configura-
tion details) against the SVR-based approach on a test set
of 100 new auction instances. Here, we see that our DNN-
powered ICA substantially outperforms the SVR-powered
ICA by 1.71% points, and that the difference in means is
highly statistically significant (p = 4e−5). This demon-
strates the advantage of DNNs over SVRs with quadratic
kernels in complex domains like LSVM.

In Figure 2, we present a histogram of the efficiency ob-
tained by the selected winner model on the test set. We
see that for 29 auction instances, our approach (impres-
sively) obtains an economic efficiency of 100%. However,
for two instances, the efficiency is less than 90%. Thus, it
is a promising avenue for future work to investigate these
outliers to further increase the average efficiency.

Remark 2. In Tables 4 and 6, we see that our DNN-based
approach achieves lower revenue than the SVR-based ap-
proach. This may be explained as follows. A bidder’s pay-
ment in PVM, depends on the difference between the social
welfare in the marginal and the main economy. However,
PVM has one oddity: a bidder’s payment may be negative.
This happens more frequently with DNNs than with SVRs:
consider an auction where bidder i is not allocated in the

mean std min 25% 50% 75% max
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Figure 2: Histogram of efficiency results in LSVM of the
selected DNN winner model on the test set.

main economy. Then, ideally, the allocation (and thus the
welfare) should be exactly the same in the marginal econ-
omy where bidder i is excluded, resulting in a zero pay-
ment. When using SVRs, this is guaranteed if the same set of
bundle-value pairs is used in the main and marginal econ-
omy, because SVRs use a deterministic algorithm for estima-
tion. In contrast, DNNs use a non-deterministic algorithm,
sometimes resulting in different allocations in the main and
marginal economies. However, this is more a limitation of
PVM itself. In practice, one should lower bound the pay-
ments as also suggested by Brero, Lubin, and Seuken (2019).
Lower-bounding all payments by zero increases the revenue
in GSVM by 7.9% points and in LSVM by 8.3% points.

5.4 Scaling to Larger Domains
We now present results for the MRVM domain (with 98
items and 10 bidders) to show that our DNN-powered ICA
also scales well to larger domains (we present detailed run-
time results in Section 5.5). We use the experiment setup of
Brero, Lubin, and Seuken (2018) and set ce := 100.

In Table 7, we present the results for different DNN archi-
tectures and different values of c0, evaluated on a training set
of MRVM instances. First, we observe that the efficiency in-
creases as we decrease c0. This can be explained by the fact
that a smaller c0 tends to lead to more iterations of the pref-
erence elicitation algorithm, resulting in a larger number of
elicited bundle-value pairs. In terms of which DNN architec-
tures performed better or worse, no clear pattern emerged.

In Table 8, we compare the performance of the selected
winner model from Table 7 (see Appendix A for config-

DNN Architectures c0 Efficiency % Revenue %
L:[10, 10] |R:[32, 32] |N:[32, 32] 70 93.54 31.02
L:[10, 10] |R:[32, 32] |N:[32, 32] 50 94.07 33.51
L:[16, 16] |R:[16, 16] |N:[16, 16] 30 94.46 31.39
L:[10, 10] |R:[32, 32] |N:[32, 32] 30 94.73 31.88
L:[16, 16] |R:[16, 16] |N:[16, 16] 20 94.88 30.31
L:[10, 10] |R:[32, 32] |N:[32, 32] 20 94.42 34.23
L:[16,16]| R:[16,16] | N:[16,16] 10 95.00 31.97
L:[10, 10] |R:[32, 32] |N:[32, 32] 10 94.54 34.78
L:[10, 10] |R:[16, 16, 16] |N:[16, 16, 16] 10 94.74 31.12

Table 7: Efficiency results for 9 configurations of a DNN-
powered ICA on a training set of 19 MRVM auction in-
stances. The selected winner model is marked in bold. All
results are averaged over the 19 auction instances.
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Auction Max % % t-test on
Mechanism #Queries #Queries Efficiency Revenue Efficiency

VCG 298 298 100.00 (0.00) 44.3 -

SVR-ICA 265 630 94.58 (0.14) 35.20 0.0268
DNN-ICA 334 908 95.04 (0.14) 30.59

Table 8: A comparison of the DNN-powered ICA against the
SVR-powered ICA and VCG (as reported in Brero, Lubin,
and Seuken (2018)) on a test set of 50 MRVM auction in-
stances. All results are averaged over the 50 instances. For
efficiency, standard errors are shown in parentheses.

uration details) against the SVR-based approach on a test
set of 50 MRVM instances. We see that our DNN-powered
ICA outperforms the SVR-powered ICA by 0.46% points.
While this is a relatively modest increase in efficiency, a t-
test shows that the difference in means is statistically signif-
icant (p = 0.0268). We also observe that our DNN-based
approach (while obeying all caps) asks a larger number of
queries than the SVR-based approach. It is unclear how
much of the efficiency increase is driven by the DNN or by
the larger number of queries. Future work should compare
the two approaches by holding the total number of queries
constant.

5.5 Runtime Analysis
In Table 9, we present runtime results for our DNN-powered
ICA for the winner models from Tables 4, 6 and 8. Specifi-
cally, we show average runtime results of the MIP (OP2), of
an iteration of Algorithm 1, and of a whole auction (PVM).
We observe that the average runtime of a whole auction takes
approximately 1 hour in GSVM and LSVM and 8 hours in
the larger MRVM domain. The increase in total runtime in
MRVM can be explained by the fact that we use a smaller
number of initial queries (c0 := 10) and a larger total query
cap (ce := 100) compared to LSVM and GSVM. This re-
sults in a larger number of iterations of Algorithm 1. Addi-
tionally, MRVM consists of 10 bidders resulting in 11 calls
of Algorithm 1 in contrast to 7 calls in LSVM and 8 in
GSVM. Even though in MRVM the average MIP runtime is
smaller, the larger number of iterations and bidders lead to
this increase in total runtime. Overall, these results show that
our DNN-based approach is practically feasible and scales
well to the larger MRVM domain. Brero, Lubin, and Seuken
(2018) do not provide runtime information such that we can-
not provide a runtime comparison with SVRs.14

In Figure 3, we present additional MIP runtime results for
selected DNN architectures in LSVM (results in GSVM and
MRVM are qualitatively similar). We observe two effects:
First, increasing the number of nodes per layer slightly in-
creases the average runtime. Second, adding an additional

14In conversations with the authors, they told us that for gaus-
sian and exponential kernels, their MIPs always timed out (1h
cap) in GSVM, LSVM and MRVM. The average MIP runtime for
the quadratic kernel was a few seconds in GSVM and LSVM. In
MRVM, the quadratic kernel also regularly timed out resulting in
an average MIP runtime of 30 min and of 36 h for a whole auction.

Domain ∅ MIP Runtime ∅ Iteration Runtime ∅ Auction Runtime

GSVM 15.90 sec 30.51 sec 44 min
LSVM 39.75 sec 51.69 sec 65 min
MRVM 3.67 sec 26.75 sec 457 min

Table 9: Average runtime results of the selected DNN winner
models in different domains. All values are averaged over
100 (GSVM and LSVM) and 50 (MRVM) auction instances.
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Figure 3: MIP runtimes defined in (OP2) based on 50 dif-
ferent LSVM instances. Results are shown for a selection of
various DNN architectures and for c0 := 40, ce := 50.

layer (for the national bidder) significantly increases the av-
erage runtime. Not surprisingly, the largest DNN architec-
tures lead to the highest runtime.

The runtime of our MIPs heavily depends on the size of
the “big-M” variable L. In practice, L should be chosen as
small as possible to obtain a MIP formulation that is as tight
as possible. We initialized L := 3000 and tightened this
bound further by using interval arithmetic (see, e.g., Tjeng,
Xiao, and Tedrake (2019)). Recently, Singh et al. (2018) pro-
posed a novel technique for tightening such MIP formula-
tions. Evaluating this in more detail is subject to future work.

6 Conclusion

In this paper, we have designed a deep learning-powered
ICA. We have compared our approach against prior work
using SVRs with quadratic kernels. Our experimental results
have shown that our DNN-based approach leads to signifi-
cantly higher economic efficiency in complex auction do-
mains and scales well to large domains.

On a technical level, our main contribution was to refor-
mulate the DNN-based WDP into a MIP. The main insight
to achieve this was to use ReLU activation functions, which
can be re-written as multiple linear constraints. From an ex-
perimental point of view, we were pleasantly surprised to
see that even DNNs with a small number of layers and nodes
and with a small number of training samples (i.e., bids) were
able to achieve high prediction performance and ultimately
high economic efficiency in the overall auction mechanism.

Future work should investigate the trade-off between
larger DNN architectures and the resulting MIP runtime, to
further increase efficiency.
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7 Follow-Up Work After Publication
After the publication of the present paper, there has been a
stream of follow-up papers, which have (a) further improved
the ML capability of the mechanism, and (b) applied DNN-
based preference elicitation to other combinatorial assign-
ment domains.

Weissteiner et al. (2022b) designed a Fourier analysis-
based ICA that leverages different notions of Fourier spar-
sity. This facilitates the intricate learning task in ICAs where
only a few bids (i.e., training samples) can be elicited.

Weissteiner et al. (2022a) designed monotone-value neu-
ral networks (MVNNs), a novel class of DNNs, which by de-
sign incorporate free disposal. They experimentally showed
that MVNNs lead to better generalization performance (es-
pecially in settings with only a few bids) and also to higher
efficiency (when integrated into an ICA).

Weissteiner et al. (2023) implemented uncertainty-based
exploration for ICAs using a novel uncertainty quan-
tification method for DNNs (Heiss et al. 2022). With
their Bayesian optimization-based combinatorial assign-
ment (BOCA) mechanism they could even further increase
efficiency.

Soumalias et al. (2023) applied DNN-based preference
elicitation in a combinatorial assignment domain different
from that of combinatorial auctions. Concretely, Soumalias
et al. (2023) designed an MVNN-based preference elicita-
tion mechanism for course allocation.
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Appendix
A Detailed Winner Configurations

In Table 10, we provide the detailed configurations (i.e.,
DNN, MIP, and PVM parameters) of the DNN winner mod-
els (i.e., DNN-ICA) from Table 4, Table 6 and Table 8. Other
parameters not listed in Table 10 were set to their default val-
ues.

15We use SCIKIT LEARN’S MinMaxScaler to simultaneously
scale bidders’ value reports (i.e., vi(x(k))) in the generated (ini-
tial) training sets ∪n

i=1B
0
i to an interval [0, u] with u > 0.
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Abstract
Recent advances in Fourier analysis have brought
new tools to efficiently represent and learn set func-
tions. In this paper, we bring the power of Fourier
analysis to the design of combinatorial auctions
(CAs). The key idea is to approximate bidders’
value functions using Fourier-sparse set functions,
which can be computed using a relatively small
number of queries. Since this number is still too
large for practical CAs, we propose a new hybrid
design: we first use neural networks (NNs) to learn
bidders’ values and then apply Fourier analysis to
the learned representations. On a technical level,
we formulate a Fourier transform-based winner de-
termination problem and derive its mixed integer
program formulation. Based on this, we devise an
iterative CA that asks Fourier-based queries. We
experimentally show that our hybrid ICA achieves
higher efficiency than prior auction designs, leads
to a fairer distribution of social welfare, and signif-
icantly reduces runtime. With this paper, we are the
first to leverage Fourier analysis in CA design and
lay the foundation for future work in this area. Our
code is available on GitHub: https://github.com/
marketdesignresearch/FA-based-ICAs.

1 Introduction
Combinatorial auctions (CAs) are used to allocate multiple
heterogeneous items to bidders. CAs are particularly useful
in domains where bidders’ preferences exhibit complemen-
tarities and substitutabilities as they allow bidders to submit
bids on bundles of items rather than on individual items.

Since the bundle space grows exponentially in the number
of items, it is impossible for bidders to report values for all
bundles in settings with more than a modest number of items.
Thus, parsimonious preference elicitation is key for the prac-
tical design of CAs. For general value functions, Nisan and
Segal [2006] have shown that to guarantee full efficiency, ex-
ponential communication in the number of items is needed.

*This paper is the slightly updated version of Weissteiner et al.
[2022b] published at IJCAI’22 including the appendix.

†These authors contributed equally to this paper.

Thus, practical CAs cannot provide efficiency guarantees in
large domains. Instead, recent proposals have focused on it-
erative combinatorial auctions (ICAs), where the auctioneer
interacts with bidders over rounds, eliciting a limited amount
of information, aiming to find a highly efficient allocation.

ICAs have found widespread application; most recently,
for the sale of licenses to build offshore wind farms [Ausubel
and Cramton, 2011]. For the sale of spectrum licenses, the
combinatorial clock auction (CCA) [Ausubel et al., 2006] has
generated more than $20 billion in total revenue [Ausubel and
Baranov, 2017]. Thus, increasing the efficiency by only 1–2%
points translates into monetary gains of millions of dollars.

1.1 Machine Learning-based Auction Design
Recently, researchers have used machine learning (ML) to
improve the performance of CAs. Early work by Blum et
al. [2004] and Lahaie and Parkes [2004] first studied the re-
lationship between learning theory and preference elicitation
in CAs. Dütting et al. [2019], Shen et al. [2019] and Rahme
et al. [2021] used neural networks (NNs) to learn whole auc-
tion mechanisms from data. Brero et al. [2019] introduced
a Bayesian ICA using probabilistic price updates to achieve
faster convergence. Shen et al. [2020] use reinforcement
learning for dynamic pricing in sponsored search auctions.
Most related to the present paper is the work by Brero et
al. [2018; 2021], who developed a value-query-based ML-
powered ICA using support vector regressions (SVRs) that
achieves even higher efficiency than the CCA. In follow-up
work, Weissteiner and Seuken [2020] extended their ICA to
NNs, further increasing the efficiency. In work subsequent to
the first version of this paper, Weissteiner et al. [2022a] pro-
posed Monotone-Value Neural Networks (MVNNs), which
are particularly well suited to learning value functions in
combinatorial assignment domains.1

However, especially in large domains, it remains a chal-
lenge to find the efficient allocation while keeping the elici-
tation cost low. Thus, even state-of-the-art approaches suffer
from significant efficiency losses and often result in unfair
allocations, highlighting the need for better preference elici-
tation algorithms.

1After the publication of the present paper, Weissteiner et al.
[2023] integrated a notion of uncertainty [Heiss et al., 2022] into
an ML-powered ICA to balance the explore-exploit dilemma.
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1.2 Combining Fourier Analysis and CAs
The goal of preference elicitation in CAs is to learn bidders’
value functions using a small number of queries. Mathemat-
ically, value functions are set functions, which are in general
exponentially large and notoriously hard to represent or learn.
To address this complexity, we leverage Fourier analysis for
set functions [Bernasconi et al., 1996; O’Donnell, 2014;
Püschel and Wendler, 2020]. In particular, we consider
Fourier-sparse approximations, which are represented by few
parameters. These parameters are the non-zero Fourier coeffi-
cients (FCs) obtained by a base change with the Fourier trans-
form (FT). We use the framework by Püschel and Wendler
[2020], which contains new FTs beyond the classical Walsh-
Hadamard transform (WHT) [Bernasconi et al., 1996], pro-
viding more flexibility. Until recently, methods for learning
Fourier-sparse set functions focused on the WHT, and they
placed assumptions on bidders’ value functions that are too
restrictive for CAs [Stobbe and Krause, 2012]. However, re-
cently, Amrollahi et al. [2019] proposed a new algorithm that
can approximate general set functions by WHT-sparse ones,
which is suitable for large CAs and we use it in this work.

1.3 Our Contribution
Our main contribution in this paper is to bring the power of
Fourier analysis to CA design (Section 3). In particular, we
formulate FT-based winner determination problems (WDPs)
and derive corresponding mixed integer programs (MIPs) for
several FTs (Section 4). Our MIPs allow for the efficient so-
lution of the FT-based WDP and provide the foundation for
using Fourier-sparse approximations in auction design.

We first experimentally show that the WHT performs best
among the FTs in terms of induced level of sparsity (Sec-
tion 5.1) and reconstruction error (Section 5.2). As an ini-
tial approach, we develop a WHT-based allocation rule (Sec-
tion 5.3). However, this requires too many queries for direct
use in CAs. To overcome this, we propose a practical hybrid
ICA based on NNs and Fourier analysis (Section 6.1). The
key idea is to compute Fourier-sparse approximations of NN-
based bidder representations, enabling us to keep the number
of queries small. The advantage of the NN-based represen-
tations is that they capture key aspects of the bidders’ value
functions and can be queried arbitrarily often (Section 6.2).

Our efficiency experiments show that our hybrid ICA
achieves higher efficiency than state-of-the-art mechanisms,
leads to a significant computational speedup, and yields fairer
allocations (Section 6.3). This shows that leveraging Fourier
analysis in CA design is a promising new research direction.

2 Preliminaries
In this section, we present our formal model and review the
MLCA mechanism, which our hybrid ICA builds upon.

2.1 Formal Model for ICAs
We consider a CA with n bidders and m indivisible items.
Let N = {1, . . . , n} and M = {1, . . . ,m} denote the set of
bidders and items, respectively. We denote with x ∈ X =
{0, 1}m a bundle of items represented as an indicator vector,
where xj = 1 iff item j ∈M is contained in x. Bidders’ true

preferences over bundles are represented by their (private)
value functions vi : X → R+, i ∈ N , i.e., vi(x) represents
bidder i’s true value for bundle x. By a = (a1, . . . , an) ∈ Xn

we denote an allocation of bundles to bidders, where ai is
the bundle bidder i obtains. We denote the set of feasible
allocations by F =

{
a ∈ Xn :

∑
i∈N aij ≤ 1, ∀j ∈M

}
.

The (true) social welfare of an allocation a is defined as
V (a) =

∑
i∈N vi(ai). We let a∗ ∈ argmaxa∈F V (a) be

a social-welfare maximizing, i.e., efficient, allocation. The
efficiency of any a ∈ F is measured by V (a)/V (a∗). We
assume that bidders’ have quasilinear utilities ui, i.e, for a
payments p ∈ Rn

+ it holds that ui(a, p) = vi(ai)− pi.
An ICA mechanism defines how the bidders interact with

the auctioneer and how the final allocation and payments are
determined. We denote a bidder’s (possibly untruthful) re-
ported value function by v̂i : X → R+. In this paper,
we consider ICAs that ask bidders iteratively to report their
value v̂i(x) for particular bundles x selected by the mecha-
nism (for early work on value queries see [Hudson and Sand-
holm, 2003]). A finite set of such reported bundle-value pairs
of bidder i is denoted as Ri =

{(
x(l), v̂i(x

(l))
)}

, x(l) ∈ X .
Let R = (R1, . . . , Rn) denote the tuple of reported bundle-
value pairs obtained from all bidders. We define the re-
ported social welfare of an allocation a given R as V̂ (a|R) =∑

i∈N : (ai,v̂i(ai))∈Ri
v̂i(ai), where (ai, v̂i(ai)) ∈ Ri ensures

that only values for reported bundles contribute. Finally, the
optimal allocation a∗R ∈ F given the reports R is defined as

a∗R ∈ argmax
a∈F

V̂ (a|R). (1)

The final allocation a∗R ∈ F and payments p(R) ∈ Rn
+ are

computed based on the elicited reports R only.
As the auctioneer can only ask each bidder i a limited num-

ber of queries |Ri| ≤ Qmax, the ICA needs a smart preference
elicitation algorithm, with the goal of finding a highly effi-
cient a∗R with a limited number of value queries.

2.2 A Machine Learning-powered ICA
We now review the machine learning-powered combinatorial
auction (MLCA) by Brero et al. [2021]. Interested readers are
referred to Appendix A.1, where we present MLCA in detail.

MLCA starts by asking each bidder value queries for Qinit

randomly sampled initial bundles. Next, MLCA proceeds in
rounds until a maximum number of value queries per bid-
der Qmax is reached. In each round, for each bidder i ∈ N ,
it trains an ML algorithm Ai on the bidder’s reports Ri.
Next, MLCA generates new value queries qnew = (qnew

i )ni=1
with qnew

i ∈ X \ Ri by solving a ML-based WDP qnew ∈
argmax

a∈F

∑
i∈N

Ai(ai). The idea is the following: ifAi are good

surrogate models of the bidders’ true value functions then qnew

should be a good proxy of the efficient allocation a∗ and thus
provide valuable information.

At the end of each round, MLCA receives reports Rnew

from all bidders for the newly generated qnew and updates
R. When Qmax is reached, MLCA computes an allocation
a∗R maximizing the reported social welfare (eq. (1)) and de-
termines VCG payments p(R) (see Appendix A.2).
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2.3 Incentives of MLCA and Hybrid ICA
A key concern in the design of ICAs are bidders’ incentives.
However, the seminal result by Nisan and Segal [2006] dis-
cussed above implies that practical ICAs cannot simply use
VCG to achieve strategyproofness. And in fact, no ICA de-
ployed in practice is strategyproof – including the famous
SMRA and CCA auctions used to conduct spectrum auctions.
Instead, auction designers have designed mechanisms that,
while being manipulable, have “good incentives in practice”
(see [Cramton, 2013; Milgrom, 2007]).

Naturally, the MLCA mechanism is also not strategyproof,
and Brero et al. [2021] provide a simple example of a possi-
ble manipulation. The idea behind the example is straightfor-
ward: if the ML algorithm does not learn a bidder’s prefer-
ences perfectly, a sub-optimal allocation may result. Thus, a
bidder may (in theory) benefit from misreporting their pref-
erences with the goal of “correcting” the ML algorithm, so
that, with the misreported preferences, the mechanism actu-
ally finds a preferable allocation.

However, MLCA has two features that mitigate manipula-
tions. First, MLCA explicitly queries each bidder’s marginal
economy, which implies that the marginal economy term of
the final VCG payment is practically independent of bidder
i’s bid (for experimental support see [Brero et al., 2021]).
Second, MLCA enables bidders to “push” information to the
auction which they deem useful. This mitigates certain ma-
nipulations of the main economy term in the VCG payment
rule, as it allows bidders to increase the social welfare directly
by pushing (useful) truthful information, rather than attempt-
ing to manipulate the ML algorithm. Brero et al. [2021] ar-
gued that with these two design features, MLCA exhibits very
good incentives in practice. They performed a computational
experiment, testing whether an individual bidder (equipped
with more information than he would have in a real auction)
can benefit from deviating from truthful bidding, while all
other bidders are truthful. In their experiments, they could not
identify a beneficial manipulation strategy. While this does
not rule out that some (potentially more sophisticated) bene-
ficial manipulations do exist, it provides evidence to support
the claim that MLCA has good incentives in practice.

With two additional assumptions, one also obtains a theo-
retical incentive guarantee for MLCA. Assumption 1 requires
that, if all bidders bid truthfully, then MLCA finds an efficient
allocation (we show in Appendix D.3 that in two of our do-
mains, we indeed find the efficient allocation in the majority
of cases). Assumption 2 requires that, for all bidders i, if all
other bidders report truthfully, then the social welfare of bid-
der i’s marginal economy is independent of his value reports.
If both assumptions hold, then bidding truthfully is an ex-post
Nash equilibrium in MLCA.

Our hybrid ICA (Algorithm 1 in Section 6.1) is built
upon MLCA, leaving the general framework in place, and
only changing the algorithm that generates new queries each
round. Given this design, the incentive properties of MLCA
extend to the hybrid ICA. Specifically, our hybrid ICA is also
not strategyproof, but it also has the same design features (in-
cluding push-bids) to mitigate manipulations.

In future work, it would be interesting to evaluate exper-
imentally whether the improved performance of the hybrid

ICA translates into better manipulation mitigation compared
to MLCA. However, such an analysis is beyond the scope of
the present paper, which focuses on the ML algorithm that is
integrated into the auction mechanism.

3 Fourier Analysis of Value Functions
We now show how to apply Fourier analysis to value func-
tions providing the theoretical foundation of FT-based WDPs.

Classic Fourier analysis decomposes an audio signal or im-
age into an orthogonal set of sinusoids of different frequen-
cies. Similarly, the classical Fourier analysis for set functions
(i.e., functions mapping subsets of a discrete set to a scalar)
decomposes a set function into an orthogonal set of Walsh
functions [Bernasconi et al., 1996], which are piecewise con-
stant with values 1 and−1 only. Recent work by Püschel and
Wendler [2020] extends the Fourier analysis for set functions
with several novel forms of set Fourier transforms (FTs). Im-
portantly, because bidders’ value functions are set functions,
they are amenable to this type of Fourier analysis, and it is
this connection that we will leverage in our auction design.

Sparsity. The motivation behind our approach is that we
expect bidders’ value functions to be sparse, i.e., they can
be described with much less data than is contained in the
exponentially-sized full value function. While this sparsity
may be difficult to uncover when looking at bidders’ value
reports directly, it may reveal itself in the Fourier domain
(where then most FCs are zero). As all FTs are changes of
basis, each FT provides us with a new lens on the bidder’s
value function, revealing structure and thus potentially reduc-
ing dimensionality.

Set function Fourier transform. We now provide a for-
mal description of FTs for reported value functions v̂i. To do
so, we represent v̂i as a vector (v̂i(x))x∈X . Each known FT
is a change of basis and thus can be represented by a certain
matrix F ∈ {−1, 0, 1}2m×2m with the form:

ϕv̂i(y) = (F v̂i)(y) =
∑

x∈X
Fy,xv̂i(x). (2)

There is exactly one Fourier coefficient per bundle, this fol-
lows from the theory presented by Püschel and Wendler
[2020]. The corresponding inverse transform F−1 is thus:

v̂i(x) = (F−1ϕv̂i)(x) =
∑

y∈X
F−1
x,yϕv̂i(y). (3)

ϕv̂i is again a set function and we call ϕv̂i(y) the Fourier co-
efficient at frequency y. A value function is Fourier-sparse if
| supp(ϕv̂i)| = |{y : ϕv̂i(y) ̸= 0}| ≪ 2m. We call supp(ϕv̂i)
the Fourier support of v̂i.

Classically, the WHT is used as F [Bernasconi et al., 1996;
O’Donnell, 2014], but we also consider two recently intro-
duced FTs (FT3, FT4) due to their information-theoretic in-
terpretation given in [Püschel and Wendler, 2020]:

FT3: Fy,x = (−1)|y|−|x|Imin(x,y)=x, (4)

FT4: Fy,x = (−1)|min(x,y)|Imax(x,y)=1m , (5)

WHT: Fy,x =
1

2m
(−1)|min(x,y)|. (6)
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Here, min is the elementwise minimum (intersection of sets),
max analogously, | · | is the set size, 1m denotes the m-
dimensional vector of 1s, and the indicator function IP is
equal to 1 if the predicate P is true and 0 otherwise.

Notions of Fourier-sparsity. In recent years, the notion
of Fourier-sparsity has gained considerable attention, leading
to highly efficient algorithms to compute FTs [Stobbe and
Krause, 2012; Amrollahi et al., 2019; Wendler et al., 2021].
Many classes of set functions are Fourier-sparse (e.g., graph
cuts, hypergraph valuations and decision trees [Abraham et
al., 2012]) and can thus be learned efficiently. The benefit
of considering multiple FTs is that they offer different, non-
equivalent notions of sparsity as illustrated by the following
example.

Example 1. Consider the set of items M = {1, 2, 3} and
the associated reported value function v̂i shown in Table 1
(where we use 001 as a shorthand notation for (0, 0, 1)),
together with the corresponding FCs ϕv̂i : This bidder ex-

000 100 010 001 110 101 011 111

v̂i 0 1 1 1 3 3 3 5
FT3 0 1 1 1 1 1 1 -1
FT4 5 -2 -2 -2 0 0 0 1

WHT 17/8 -7/8 -7/8 -7/8 1/8 1/8 1/8 1/8

Table 1: Example with different induced notions of sparsity of all
considered FTs.

hibits complementary effects for each bundle containing more
than one item, as can be seen, e.g., from 3 = v̂i(110) >
v̂i(100) + v̂i(010) = 2 and 5 = v̂i(111) > v̂i(100) +
v̂i(010)+v̂i(001) = 3. Observe that while this value function
is sparse in FT4, i.e., ϕv̂i(110) = ϕv̂i(101) = ϕv̂i(011) = 0,
it is neither sparse in FT3 nor WHT. Note that the coefficients
ϕv̂i(100), ϕv̂i(010), and ϕv̂i(001) capture the value of single
items and thus cannot be zero.

The induced spectral energy distributions for each FT, i.e.,
for each cardinality (i.e., number of items) d from 0 to m = 3,
we compute

∑
y∈X :|y|=d ϕv̂i(y)

2/
∑

y∈X ϕv̂i(y)
2, are shown

in Table 2.

d = 0 d = 1 d = 2 d = 3

FT3 0.00 42.86 42.86 14.28
FT4 65.79 31.58 0.00 2.63

WHT 65.69 33.41 0.68 0.22

Table 2: Spectral energy in % for each cardinality (i.e., number of
items) d from 0 to m = 3 of all considered FTs.

Fourier-sparse approximations. In practice, v̂i may only
be approximately sparse. Meaning that while not being
sparse, it can be approximated well by a Fourier-sparse func-
tion ṽi. Formally, let Si = supp(ϕṽi) with |Si| = k, we
call

ṽi(x) =
∑

y∈Si

F−1
x,yϕṽi(y) for all x ∈ X (7)

such that ∥ṽi − v̂i∥2 is small a k-Fourier-sparse ap-
proximation of v̂i. We denote the vector of FCs by
ϕṽi|Si

= (ϕṽi(y))y∈Si
.

4 Fourier Transform-based WDPs
To leverage Fourier analysis for CA design, we represent bid-
ders’ value functions using Fourier-sparse approximations. A
key step in most auction designs is to find the social welfare-
maximizing allocation given bidder’s reports, which is known
as the Winner Determination Problem (WDP). To apply FTs,
we need to be able to solve the WDP efficiently. Accordingly,
we next derive MIPs for each of the FTs.

For each bidder i ∈ N , let ṽi : X → R+ be a Fourier-
sparse approximation of the bidders’ reported value function
v̂i. Next, we define the Fourier transform-based WDP.

Definition 1. (FOURIER TRANSFORM-BASED WDP)

argmax
a∈F

∑

i∈N

ṽi(ai). (FT-WDP)

For x, y ∈ Rd, let x ≤ y, max(x, y) and (−1)x be defined
component-wise, and let ⟨·, ·⟩ denote the Euclidean scalar
product. First, we formulate succinct representations of ṽi.

Lemma 1. For i ∈ N let Si = {y(1), . . . , y(k)} be the
support of a k-Fourier-sparse approximation ṽi and Wi ∈
{0, 1}k×m be defined as (Wi)l,j = I

y
(l)
j =1

. Then it holds that

FT3: ṽi(x) =
〈
ϕṽi|Si

,max (0k, 1k−Wi(1m−x))
〉

(8)

FT4: ṽi(x) =
〈
ϕṽi|Si

,max (0k, 1k −Wix)
〉

(9)

WHT: ṽi(x) =
〈
ϕṽi|Si

, (−1)Wix
〉
. (10)

See Appendix B.1 for the proof. With Lemma 1 and rewrit-
ing max(·, ·) and (−1)· as linear constraints, we next encode
(FT-WDP) as a MIP (see Appendix B.2 for the proof).

Theorem 1. (FT-BASED MIPS) Let ṽi : X → R be a k-
Fourier-sparse approximation from (8), (9), or (10). Then
there exists a C > 0 s.t. the MIP defined by the objective

argmax
a∈F,βi∈{0,1}k

∑

i∈N

⟨ϕṽi|Si
, αi⟩, (11)

and for i ∈ N one set of transform specific constraints (12)–
(14), or (15)–(17), or (18)–(20), is equivalent to (FT-WDP).

FT3: s.t. αi ≥ 1k −Wi(1m − ai) (12)
αi ≤ 1k −Wi(1m − ai) + Cβi (13)
0k ≤ αi ≤ C(1k − βi) (14)

FT4: s.t. αi ≥ 1k −Wiai (15)
αi ≤ 1k −Wiai + Cβi (16)
0k ≤ αi ≤ C(1k − βi) (17)

WHT: s.t. αi = −2βi + 1k (18)
βi = Wiai − 2γi (19)

γi ∈ Zk (20)

5 Analyzing the Potential of a FT-based CA
In this section, we experimentally evaluate the FTs and pro-
pose an FT-based allocation rule that motivates our practical
hybrid ICA mechanism presented later in Section 6.

4



0 3 6 9 12 15 180.0

0.2

0.4

0.6

0.8

1.0 FT3
National Bidder
Regional Bidder

0 3 6 9 12 15 18

FT4

0 3 6 9 12 15 18

WHT

Figure 1: Spectral energy distribution in LSVM for all FTs. For each
cardinality (x-axis), we plot the spectral energy of all frequencies of
that cardinality normalized by the total spectral energy (y-axis).

For our experiments, we use the spectrum auction test suite
(SATS) [Weiss et al., 2017].2 SATS enables us to generate
synthetic CA instances in different domains. We have access
to each bidder’s true full value function vi and the efficient
allocation a∗. When simulating bidders, we assume truthful
bidding (i.e., v̂i = vi). We consider three domains:

The Global Synergy Value Model (GSVM) [Goeree and
Holt, 2010] has 18 items, 6 regional and 1 national bidder.

The Local Synergy Value Model (LSVM) [Scheffel et al.,
2012] consists of 18 items, 5 regional and 1 national bidder.
Complementarities arise from spatial proximity of items.

The Multi-Region Value Model (MRVM) [Weiss et al.,
2017] has 98 items and 10 bidders (categorized as local, re-
gional, or national) and models large US spectrum auctions.

5.1 Notions of Fourier Sparsity
We first experimentally show that different notions of FT lead
to different types of sparsity in LSVM (for other domains
see Appendix C.1). For this we first compute the FTs of all
bidders and then calculate their spectral energy distribution.
That is, for each cardinality d (#items) from 0 to m, we com-
pute

∑
y∈X :|y|=d ϕv̂i(y)

2/
∑

y∈X ϕv̂i(y)
2. In Figure 1, we

present the mean over 30 LSVM instances and bidder types.
Figure 1 shows that while the energy is spread among FCs

of various degrees in FT3 and FT4, in WHT the low degree
(≤ 2) FCs contain most of the energy, i.e., the WHT has much
fewer dominant FCs that accurately describe each value func-
tion. As the WHT is orthogonal, learning low degree WHT-
sparse approximations leads to low reconstruction error. Low
degree WHT-sparse approximations can be learnt efficiently
and accurately from a small number of queries using com-
pressive sensing [Stobbe and Krause, 2012].

Note that the FT3 is identical to the classical polynomial
value function representation [Lahaie, 2010] defined as

v̂poly
i (x) =

m∑

l=1

∑

j={j1,...,jl}⊆M

xj1 · ... · xjl · c
(i)
j . (21)

where the coefficient c(i)j is equal to the FT3 FC at frequency
y with yi = 1 for i ∈ {j1, . . . , jl} and yi = 0 else.3 E.g.

2We used SATS version 0.6.4 for our experiments. The imple-
mentations of GSVM and LSVM have changed slightly in newer
SATS versions. This must be considered when comparing the per-
formance of different mechanisms in those domains.

3This can be seen by calculating the inverse in (4), i.e., F−1
y,x =

Imin(x,y)=x, and plugin F−1
y,x into (3).

DOMAIN K BIDDER FT3 FT4 WHT NN

GSVM
100 NAT. 11.3± 0.7 14.2± 0.8 1.8± 0.1 9.0± 1.8

REG. 0.0 1.4± 0.2 0.4± 0.1 7.2± 0.9

200 NAT. 0.0 0.0 0.0 5.7± 0.4
REG. 0.0 0.0 0.0 5.2± 0.8

LSVM
100 NAT. 78.4± 1.0 580.2± 7.9 31.2± 0.4 48.7± 1.2

REG. 28.2± 2.3 48.5± 2.7 6.8± 0.3 17.8± 0.7

200 NAT. 95.8± 1.2 639.0± 10.0 26.2± 0.3 40.6± 0.7
REG. 25.8± 2.0 43.1± 2.4 5.3± 0.3 15.3± 0.9

Table 3: Reconstruction error with a 95%-CI of k-Fourier-sparse
approximations ṽi and NNs trained on k randomly selected bundles.
Winners are marked in grey.

for M = {1, 2}, v̂poly
i (x) = x1c

(i)
{1} + x2c

(i)
{2} + x1x2c

(i)
{1,2}.

Thus, converting v̂poly
i into another FT basis (here WHT) can

indeed be very helpful for the design of ML-based CAs.

5.2 Reconstruction Error of Fourier Transforms
Next we validate the FT approach by comparing the recon-
struction error of the FTs in the medium-sized GSVM and
LSVM, where we can still compute the full FT (in contrast
to MRVM). For now, we assume that we have access to bid-
ders’ full v̂i. In Procedure 1, we determine the best k-Fourier-
sparse approximation ṽi (see Appendix C.2 for details).

Procedure 1. (BEST FCS GIVEN FULL ACCESS TO v̂i)
Compute ṽi using the k absolutely largest FCs ϕv̂i|Si

from the
full FT for each bidders’ reported value function ϕv̂i = F v̂i.

Remark 1. Since the WHT is orthogonal and the simulated
auction data is noise-free, its approximation error is exactly
equal to the residual of the FCs. Thus, Procedure 1 is optimal
for the WHT. This is not the case for FT3 and FT4 because
they are not orthogonal.

We then calculate the RMSE ( 1
2m

∑
x∈X (v̂i(x)− ṽi(x))2)1/2

averaged over 100 instances and bidder types. In Table 3, we
present the RMSEs for the three FTs and for NNs, where we
used the architectures from Weissteiner and Seuken [2020].

For GSVM, we observe that we can perfectly reconstruct
v̂i with the 200 best FCs, which shows that GSVM is 200-
sparse. In contrast, LSVM is non-sparse, and we do not
achieve perfect reconstruction with 200 FCs. Overall, we ob-
serve that the WHT outperforms FT3 and FT4. Moreover, we
see that, if we could compute the k best FCs of the WHT from
k training points, the WHT would outperform the NNs.

However, in practice, we do not have access to full value
functions. Instead, we must use an algorithm that computes
the best FCs using a reasonable number of value queries.

Remark 2. Thanks to its orthogonality the WHT has strong
theoretical guarantees for sparse recovery from few samples
using compressive sensing (see [Stobbe and Krause, 2012]).
Thus, we focus on the WHT in the remainder of this paper.

5.3 A Fourier Transform-based Allocation Rule
We now present an FT-based allocation rule using the robust
sparse WHT algorithm (RWHT) by Amrollahi et al. [2019].
RWHT learns a Fourier-sparse approximation ṽi of v̂i from
value queries. Procedure 2 finds the allocation ã.
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Procedure 2. (WHT-BASED ALLOCATION RULE)
i. Use RWHT to compute k-sparse approximations ṽi , i ∈ N .
ii. Solve ã∈ argmax

a∈F

∑
i∈N

ṽi(ai) using Theorem 1.

In Figure 2, we present the efficiency of ã on 50 GSVM in-
stances for various values of k. We see that RWHT achieves a
median efficiency of 100% for 90 or more FCs. Nevertheless,
the main practical issue with this approach is the number of
value queries required. As we can see, RWHT needs 102, 000
value queries (39% of all bundles) to find the 90 best FCs. For
a practical ICA mechanism this is far too many.
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Figure 2: Efficiency of Procedure 2 in GSVM.

6 A Practical Hybrid ICA Mechanism
In this section, we introduce and experimentally evaluate a
practical hybrid ICA mechanism, based on FTs and NNs.

6.1 The Hybrid ICA Mechanism
The main issue of the FT-based allocation rule in Section 5.3
is the large number of queries, which we now address. The
idea is the following: instead of directly applying a sparse FT
algorithm (like RWHT) to bidders, we apply it to a NN-based
representation. In this way, we query NNs instead of bidders.
Based on the FCs of the NNs, we determine a Fourier-sparse
approximation ṽi with only few value queries, where the idea
is that the FCs of each NN concentrate on the most dominant
FCs of its respective value function. Indeed, recent evidence
suggests that a NN trained by SGD can learn the Fourier-
support [Rahaman et al., 2019]. We analyze our NN support
discovery rule in Section 6.2. We now present HYBRID ICA,
leaving details of the sub-procedures to Appendix D.1.

HYBRID ICA (Algorithm 1) consists of 3 phases: the
MLCA, the Fourier reconstruction, and the Fourier alloca-
tion phase. It is parameterized by an FT F and the numbers
ℓ1, ℓ2, ℓ3, ℓ4 of different query types. In total, it asks each bid-
der

∑4
i=1 ℓi queries: ℓ1 random initial, ℓ2 MLCA, ℓ3 Fourier

reconstruction, and ℓ4 Fourier allocation queries.
1. MLCA Phase. We first run MLCA such that the NNs

can then be trained on “meaningfully” elicited reports. In
MLCA, we request reports for ℓ1 random initial bundles and
for ℓ2 MLCA queries (Lines 1-2).

2. Fourier Reconstruction Phase. Next, we compute a
Fourier-sparse approximation ṽi. For this, we first fit a NN
Ni on the reports Ri (Line 4). Then we compute the best FCs
of the fitted NNs (Line 5, Procedure 3) in order to discover

Algorithm 1: HYBRID ICA

Params: F Fourier transform; ℓ1, ℓ2, ℓ3, ℓ4 query split
1 Set Qinit = ℓ1 and Qmax = ℓ1 + ℓ2 ▷ MLCA phase

2 Run MLCA(Qinit, Qmax); get ℓ1 + ℓ2 reports R
3 foreach bidder i ∈ N do ▷ Fourier reconstr. phase

4 Fit NNNi to Ri

5 Determine the best FCs ofNi ▷ Proc. 3

6 Compute ℓ3 reconstruction queries S̃i ⊆ X ▷ Proc. 4

7 Ask S̃i, add reports to Ri, and fit ṽi to Ri ▷ Proc. 5

8 for l = 1, . . . , ℓ4 do ▷ Fourier alloc. phase

9 Solve q ∈ argmaxa∈F
∑

i∈N ṽi(ai) (FT-WDP)
10 foreach bidder i ∈ N do
11 if qi ∈ Ri then ▷ Bundle already queried

12 Define F ′ = {a ∈ F : ai ̸= x,∀x ∈ Ri}
13 Resolve q′ ∈ argmaxa∈F′

∑
i∈N ṽi(ai)

14 Update qi = q′i
15 Query bidder i’s value for qi and add report to Ri

16 Fit ṽi to Ri ▷ Proc. 5

17 From R compute: a∗
R as in eq. (1), VCG payments p(R)

18 return Final allocation a∗
R and VCG payments p(R)

which FCs are important to represent the bidders. Based on
these FCs, we determine ℓ3 Fourier reconstruction queries S̃i
(Line 6, Procedure 4), send them to the bidders and fit ṽi to
the reports Ri received so far (Line 7, Procedure 5).

3. Fourier Allocation Phase. We use the fitted ṽi to gen-
erate ℓ4 Fourier allocation queries. Here, we solve the FT-
based WDP (Line 9) to get candidate queries q, ensure that all
queries are new (Lines 11–14), add the received reports to Ri

(Line 15) and refit ṽi (Line 16). Finally in Line 17, HYBRID
ICA computes based on all reports R a welfare-maximizing
allocation a∗R and VCG payments p(R) (see Appendix A.2).

Experiment Setup. For HYBRID ICA and MLCA, we use
the NN architectures from Weissteiner and Seuken [2020]
and set a total query budget of 100 (GSVM, LSVM) and 500
(MRVM). For HYBRID ICA, we optimized the FTs and query
parameters ℓi on a training set of CA instances. Table 4 shows
the best configurations.

NN ARCHITECTURES FT ℓ1 ℓ2 ℓ3 ℓ4

GSVM R:[32, 32] | N:[10, 10] WHT 30 21 20 29
LSVM R:[32, 32] | N:[10, 10, 10] WHT 30 30 10 30
MRVM L,R,N:[16, 16] WHT 30 220 0 250

Table 4: Best configuration of HYBRID ICA. R:[d1, d2] denotes a
3-hidden-layer NN for the regional bidder with d1, and d2 nodes.

6.2 NNs Support Discovery Experiments
In HYBRID ICA we use the NNs for support discovery where
it is key that the FCs of these NNs concentrate on the domi-
nant FCs of its value function, i.e. supp(ϕNi) ≈ supp(ϕv̂i).

To evaluate the NN-based support discovery (Line 5),
we consider the spectral energy ratio obtained by dividing
the spectral energies of the k frequencies selected from the
NN and the k best frequencies (for the WHT the best FCs
are the ones with the largest absolute value). Formally,
for each bidder i, let the k frequencies selected from the
NN be S̃i = {ỹ(1), . . . , ỹ(k)} and the best ones be S∗i =
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GSVM LSVM MRVM

EFFICIENCY REGIONAL NATIONAL REV HRS/ EFFICIENCY REGIONAL NATIONAL REV HRS/ EFFICIENCY LOCAL REGIONAL NATIONAL REV HRS/
MECHANISM IN % IN % IN % IN % INST. IN % IN % IN % IN % INST. IN % IN % IN % IN % IN % INST.

HYBRID ICA 99.97± 0.03 94.72 5.25 81 0.81 98.74± 0.43 89.09 9.65 78 1.95 96.63± 0.31 0.00 1.19 95.44 36 23.88

MLCA 99.17± 0.37 98.11 1.06 79 4.65 99.14± 0.42 93.40 5.75 77 6.09 95.32± 0.32 0.00 0.53 94.79 41 43.26

HYBRID ICA (NO FR) 98.30± 0.49 97.94 0.36 75 0.93 98.16± 0.60 93.83 4.33 72 2.03 96.63± 0.31 0.00 1.19 95.44 36 23.88

HYBRID ICA (NO FR/FA) 98.16± 0.50 97.47 0.69 75 0.71 97.75± 0.63 92.78 5.27 72 1.86 93.91± 0.36 0.01 0.42 93.48 42 14.68

Efficient Allocation 94.75 5.25 84.03 15.97 0.00 2.11 97.89

Table 5: HYBRID ICA vs. MLCA, HYBRID ICA (NO FR), and HYBRID ICA (NO FR/FA). All results are averages over a test set of 100
(GSVM and LSVM) and 30 (MRVM) CA instances. For efficiency we give a 95% confidence interval and mark the best mechanisms in grey.

{∗y(1), . . . , ∗y(k)}. Then, bidder i’s energy ratio is given by∑
ỹ∈S̃i

ϕv̂i(ỹ)
2/

∑
∗
y∈S∗

i

ϕv̂i(
∗
y)2 ∈ [0, 1] (see Appendix D.2

for details). This ratio is equal to one if S̃i = S∗i . Figure 3
shows that the NN-based supports are almost on par with the
best supports given a fixed budget of k frequencies.
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Figure 3: Average energy ratio (y-axis) with 97.5% and 2.5% em-
pirical quantiles for a number of selected frequencies k (x-axis) over
30 instances in GSVM and LSVM and over 5 instances in MRVM.

6.3 Efficiency Experiments
We now evaluate the efficiency of HYBRID ICA vs MLCA.

Results. Table 5 contains our main results in all do-
mains.4 We show efficiency, distribution of efficiency to bid-
der types, revenue (

∑
i∈N p(R)i)/V (a∗), and runtime. First,

we see that HYBRID ICA statistically significantly outper-
forms MLCA w.r.t. efficiency in GSVM and MRVM and per-
forms on par in LSVM. Second, it also leads to a compu-
tational speedup (×6 GSVM, ×3 LSVM, ×2 MRVM). The
reason for this computational speedup is that the generation
of the ℓ3 + ℓ4 Fourier queries (estimating the superset of the
support using RWHT on the NNs, fitting the FT models us-
ing compressive sensing and solving our new FT-based MIPs)
is faster than the generation of the NN-based MLCA alloca-
tion queries (training NNs and solving the NN-based MIP).
Third, it distributes the welfare more evenly (= fairer) to bid-
der types.5 This also leads to a distribution that more closely
resembles that of the efficient allocation (see Efficient Allo-
cation). We present full efficiency path plots for the different
phases of HYBRID ICA in Appendix D.3.

Fourier queries. To verify the importance of the ℓ3
Fourier reconstruction and ℓ4 Fourier allocation queries, we
also present HYBRID ICA (NO FR) and HYBRID ICA (NO
FR/FA), which use random queries in place of the ℓ3 Fourier
reconstruction and the ℓ3 + ℓ4 Fourier-based queries. As we

4All experiments were conducted on machines with Intel Xeon
E5 v4 2.20GHz processors with 24 cores and 128GB RAM or with
Intel E5 v2 2.80GHz processors with 20 cores and 128GB RAM.

5We consider an allocation to be “fairer” if its social welfare is
more evenly distributed among bidder types. This is similar (but not
identical) to the standard notion of egalitarian social welfare.

see in Table 5, using the Fourier queries leads to significantly
better efficiency and HYBRID ICA (NO FR/FA) does not
achieve a fairer efficiency distribution. A comparison of HY-
BRID ICA to HYBRID ICA (NO FR) reveals that, in GSVM
and LSVM, the Fourier reconstruction queries cause the fairer
distribution. We empirically verified that these queries are
composed of larger bundles (on avg. 17 items vs. 4 in MLCA
queries) and thus allocate large bundles to bidders that would
have been overlooked. In MRVM, the optimal query split for
HYBRID ICA uses ℓ3 = 0 Fourier reconstruction queries such
that HYBRID ICA is equal to HYBRID ICA (NO FR). Thus, in
MRVM, HYBRID ICA’s increased efficiency and fairer distri-
bution results from the Fourier allocation queries.

Overall, we see that our Fourier-based auction is especially
powerful in sparse domains. In practice, bidders are often
limited by their cognitive abilities [Scheffel et al., 2012] or
use a low-dimensional computational model to represent their
value function. Thus, their reported preferences typically ex-
hibit only a limited degree of substitutability and complemen-
tarity, which is captured well by Fourier-sparsity.

7 Conclusion

We have introduced Fourier analysis for the design of CAs.
The main idea was to represent value functions using Fourier-
sparse approximations, providing us with a new lens on bid-
der’s values in the Fourier domain.

On a technical level, we have derived succinct MIPs for
the Fourier transform-based WDPs, which makes computing
Fourier-based allocation queries practically feasible. We have
leveraged this to design a new hybrid ICA that uses NN and
Fourier-queries. Our experiments have shown that our ap-
proach leads to higher efficiency, a computational speedup
and a fairer distribution of social welfare than state-of-the-art.

With this paper, we have laid the foundations for future
work leveraging Fourier analysis for representing and elicit-
ing preferences in combinatorial settings.
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Appendix

A Preliminaries

A.1 A Machine Learning powered ICA
In this section, we provide a detailed review of the machine
learning-powered combinatorial auction (MLCA) introduced
by Brero et al. [2021]. We describe MLCA using NNs Ni as
the generic ML algorithm Ai (see [Weissteiner and Seuken,
2020]).

At the core of MLCA is a query module (Algorithm 2),
which, for each bidder i ∈ I , determines a new value query
qi. First, in the estimation step (Line 1), NNs are used to learn
bidders’ valuations from reports Ri. Next, in the optimization
step (Line 2), a NN-based WDP is solved to find a candidate q
of value queries (see [Weissteiner and Seuken, 2020] for de-
tails on the NN-based estimation and optimization step). Fi-
nally, if qi has already been queried before (Line 4), another,
more restricted NN-based WDP (Line 6) is solved and qi is
updated correspondingly. This ensures that all final queries q
are new.

Algorithm 2: NN-QUERY MODULE (Brero et al. 2021)

Function : NextQueries(I, R)
Inputs : Index set of bidders I and reported values R
Parameters: Neural networksNi : X → R+, i ∈ N

1 foreach i ∈ I do FitNi on Ri: Ni[Ri] ▷ Estimation step

2 Solve q ∈ argmax
a∈F

∑
i∈I

Ni[Ri](ai) ▷ Optimization step

3 foreach i ∈ I do
4 if qi ∈ Ri then ▷ Bundle already queried

5 Define F ′ = {a ∈ F : ai ̸= x, ∀x ∈ Ri}
6 Re-solve q′ ∈ argmaxa∈F′

∑
l∈I Nl[Rl](al)

7 Update qi = q′i
8 return profile of new queries q = (q1, . . . , qn)

In Algorithm 3, we present MLCA in a slightly abbreviated
form. Let R−i = (R1, . . . , Ri−1, Ri+1, . . . , Rn). MLCA
proceeds in rounds until a maximum number of queries per
bidder Qmax is reached. In each round, it calls Algorithm 2
n + 1 times: once including all bidders (Line 4, main econ-
omy) and n times excluding one bidder (Lines 5–6, marginal
economies). At the end of each round, the mechanism re-
ceives reports Rnew from all bidders for the newly generated
queries qnew, and updates the overall elicited reports R (Lines
7–8). In Lines 10–11, MLCA computes an allocation a∗R that
maximizes the reported social welfare and determines VCG
payments p(R) (see Appendix A.2).

A.2 VCG Payments from Reports
In this section, we provide a recap on how to com-
pute VCG payments from bidder’s reports. Let R =
(R1, . . . , Rn) denote an elicited set of reported bundle-
value pairs from each bidder obtained from MLCA (Algo-
rithm 3) or HYBRID ICA (Algorithm 1) and let R−i :=
(R1, . . . , Ri−1, Ri+1, . . . , Rn). We then calculate the VCG
payments p(R) = (p(R)1 . . . , p(R)n) ∈ Rn

+ as follows:

Algorithm 3: MLCA (Brero et al. 2021)

Params: t = 1, Qinit, Qmax init. and max #queries per bidder
1 foreach i ∈ N do
2 Receive reports Ri for Qinit randomly drawn bundles
3 while t ≤ ⌊(Qmax −Qinit)/n⌋ do ▷ Round iterator

4 qnew = NextQueries(N,R) ▷ Main economy queries

5 foreach bidder i ∈ N do ▷ Marginal economy queries

6 qnew = qnew∪ NextQueries(N \ {i}, R−i)
7 foreach bidder i ∈ N do
8 Receive reports Rnew

i for qnew
i , set Ri = Ri ∪Rnew

i

9 t = t+ 1
10 From elicited reports R compute a∗

R as in Equation (1)
11 From elicited reports R compute VCG-payments p(R)
12 return Final allocation a∗

R and payments p(R)

Definition 2. (VCG PAYMENTS FROM REPORTS)

p(R)i :=
∑

j∈N\{i}
v̂j

((
a∗R−i

)
j

)
−

∑

j∈N\{i}
v̂j

(
(a∗R)j

)
.

(22)
where a∗R−i

maximizes the reported social welfare when ex-
cluding bidder i, i.e.,

a∗R−i
∈ argmax

a∈F
V̂ (a|R−i) = argmax

a∈F

∑

j∈N\{i}:
(aj ,v̂j(aj))∈Rj

v̂j(aj),

(23)
and a∗R is a reported-social-welfare-maximizing allocation
(including all bidders), i.e,

a∗R ∈ argmax
a∈F

V̂ (a|R) = argmax
a∈F

∑

i∈N : (ai,v̂i(ai))∈Ri

v̂i(ai). (24)

As argued by Brero et al. [2021], using such payments are
key for MLCA to induce “good” incentives for bidders to re-
port truthfully. As their incentive analysis also applies to HY-
BRID ICA, we use them in our design too.

B Fourier Transform-based WDPs
In this section, we present the proofs of Lemma 1 and Theo-
rem 1.

Let 1d and 0d for d ∈ N denote the d-dimensional vector
of ones and zeros, respectively. For all x, y ∈ Rd, let x ≤
y, max(x, y), min(x, y) and (−1)x be defined component-
wise, and let ⟨·, ·⟩ denote the Euclidean scalar product.

We consider the matrix representation F and F−1 of the
considered FTs from Püschel and Wendler [2020] given by:

FT3: Fy,x = (−1)|y|−|x|Imin(x,y)=x, (25)

F−1
x,y = Imin(x,y)=y, (26)

FT4: Fy,x = (−1)|min(x,y)|Imax(x,y)=1m , (27)

F−1
x,y = Imin(x,y)=0m , (28)

WHT: Fy,x =
1

2m
(−1)|min(x,y)|, (29)

F−1
x,y = (−1)|min(x,y)|. (30)

The Fourier-sparse approximations used in the WDPs are
defined in terms of F−1.
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B.1 Proof of Lemma 1
Lemma 1. (SUCCINCT REPRESENTATIONS) For i ∈ N
let Si = {y(1), . . . , y(k)} be the support of a k-Fourier-
sparse approximation ṽi and Wi ∈ {0, 1}k×m be defined as
(Wi)l,j = I

y
(l)
j =1

. Then ṽi can be rewritten as:

FT3: ṽi(x) =
〈
ϕṽi|Si

,max (0k, 1k−Wi(1m−x))
〉

(31)

FT4: ṽi(x) =
〈
ϕṽi|Si

,max (0k, 1k −Wix)
〉

(32)

WHT: ṽi(x) =
〈
ϕṽi|Si

, (−1)Wix
〉
. (33)

Proof. In this proof we are going to make use of the equiva-
lence between bundles (= indicator vectors) and sets. Recall
that x, y ∈ X = {0, 1}m are bundles and bundles correspond
to subsets of items. We can translate set operations such as
intersection, union and complement to indicator vectors as
follows:

x ∩ y = min(x, y), (34)
x ∪ y = max(x, y), (35)
(x)c = 1m − x, (36)

where we slightly abused notation by identifying the indicator
vectors with their corresponding subsets on the left hand sides
of (34)–(36). Furthermore, it holds that:

|min(x, y)| = yTx =
m∑

i=1

xiyi (37)

FT3. Let F denote the matrix representation of FT3 in
(25). By definition, we have

ṽi(x) =
∑

y∈Si

F−1
x,yϕṽi(y) (38)

=
∑

y∈Si

Imin(x,y)=yϕṽi(y) (39)

=
∑

y∈Si

Imin(1m−x,y)=0mϕṽi(y) (40)

=⟨(Imin(1m−x,y)=0m)y∈Si , ϕṽi|Si
⟩, (41)

where we used x ∩ y = y ⇔ xc ∩ y = ∅. Now, the claim
follows by observing that

Imin(1m−x,y)=0m = max
(
0, 1− yT (1m − x

)
), (42)

which is a direct consequence of |min(1m − x, y)| =
yT (1m − x), and recalling that for each y ∈ Si there is a
respective row yT in Wi.

FT4. Let F be the matrix representation of FT4 in (27).
By definition, we have

ṽi(x) =
∑

y∈Si

F−1
x,yϕṽi(y) (43)

=
∑

y∈Si

Imin(x,y)=0mϕṽi(y) (44)

=⟨(Imin(x,y)=0m)y∈Si
, ϕṽi|Si

⟩. (45)

Now, the claim follows by observing that

Imin(x,y)=0m = max
(
0, 1− yTx

)
, (46)

which is a direct consequence of |min(x, y)| = yTx, and re-
calling that for each y ∈ Si there is a respective row yT in Wi.

WHT. Let F be the matrix representation of WHT in (29).
By definition, we have

ṽi(x) =
∑

y∈Si

F−1
x,yϕṽi(y) (47)

=
∑

y∈Si

(−1)yT xϕṽi(y) (48)

=⟨((−1)yT x)y∈Si , ϕṽi|Si
⟩. (49)

Now, the claim follows by recalling that for each y ∈ Si there
is a respective row yT in Wi.

B.2 Proof of Theorem 1
We first state and proof two elementary lemmata.

For x ∈ Rd let x (mod 2) be defined component-wise.

Lemma 2. (MAX REPRESENTATION) Let ζ, η ∈ Rd for d ∈
N and C > 0 such that for all l ∈ {1, . . . , d} it holds that
|ζl − ηl| ≤ C. Let α := max(ζ, η) and consider the polytope
P in (α̃, β) defined by (50)–(54)

α̃ ≥ η (50)
α̃ ≤ η + Cβ (51)
α̃ ≥ ζ (52)
α̃ ≤ ζ + C(1d − β) (53)

β ∈ {0, 1}d. (54)

Then it holds that P ̸= ∅ and every element (α̃, β) ∈ P
satisfies α̃ = α.

Proof. Non-emptiness follows from the assumption that |ζl−
ηl| ≤ C for all l ∈ {1, . . . , d}. For any l ∈ {1, . . . , d} we
have to distinguish the following cases:

ζl < ηl =⇒ βl = 0, α̃l = ηl = max(ζl, ηl) = αl

ζl > ηl =⇒ βl = 1, α̃l = ζl = max(ζl, ηl) = αl

ζl = ηl =⇒ α̃l = ζl = ηl = max(ζl, ηl) = αl

This yields that α̃ = α.

Lemma 3. (ODD-EVEN REPRESENTATION) Let ζ ∈ Zd for
d ∈ N. Let β := ζ (mod 2) ∈ {0, 1}d and consider the
polytope P in (β̃, γ) defined by (55) and (56)

β̃ = ζ − 2γ (55)

β̃ ∈ {0, 1}d, γ ∈ Zd. (56)

Then it holds that P ≠ ∅ and every element (β̃, γ) ∈ P satis-
fies β̃ = β.
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Proof. Non-emptiness follows since ζ ∈ Zd per assumption.
For any l ∈ {1, . . . , d} we have to distinguish the following
cases:

ζl (mod 2) = 0 =⇒ γl =
ζ

2
, β̃l = 0 = βl

ζl (mod 2) = 1 =⇒ γl =
ζ − 1

2
, β̃l = 1 = βl

Thus β̃ = β.

For each bidder i ∈ N let ṽi : X → R+ be a Fourier-
sparse approximation of the bidder’s reported value function
v̂i. Then the Fourier transform-based WDP was defined as
follows:
Definition 3. (FOURIER TRANSFORM-BASED WDP)

argmax
a∈F

∑

i∈N

ṽi(ai). (FT-WDP)

Next, we proof Theorem 1.
Theorem 1. (FOURIER TRANSFORM-BASED MIPS) Let ṽi :
X → R be a k-Fourier-sparse approximation as defined in
(31), (32), or (33). Then there exists a constant C > 0 such
that the MIP defined by the following objective

argmax
a∈F,βi∈{0,1}k

∑

i∈N

⟨ϕṽi|Si
, αi⟩, (57)

and for i ∈ N one set of transform specific constraints (58)–
(60), or (61)–(63), or (64)–(66), is equivalent to (FT-WDP).

FT3: s.t. αi ≥ 1k −Wi(1m − ai) (58)
αi ≤ 1k −Wi(1m − ai) + Cβi (59)
0k ≤ αi ≤ C(1k − βi) (60)

FT4: s.t. αi ≥ 1k −Wiai (61)
αi ≤ 1k −Wiai + Cβi (62)
0k ≤ αi ≤ C(1k − βi) (63)

WHT: s.t. αi = −2βi + 1k (64)
βi = Wiai − 2γi (65)

γi ∈ Zk (66)

Proof. We proof the equivalence for each of the FTs and cor-
responding MIPs separately.

• FT3
Let C > 0 such that | [1k −Wi(1m − ai)]l | ≤ C for all
l ∈ {1, . . . , k}, i ∈ N , and a ∈ F . We then define

αi := max (0k, 1k −Wi(1m − ai)) for all i ∈ N,

and apply for each αi Lemma 2 to ζ := 0k and
η := 1k −Wi(1m − ai), which concludes the proof for
FT3.

• FT4:
This follows analogously as for the FT3 when
defining αi := max(0k, 1k − Wiai), ζ := 0k and
η := 1k −Wiai.
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Figure 4: Spectral energy distribution in GSVM for different notions
of FTs. For each cardinality (x-axis), we collect the spectral energy
(y-axis) of all frequencies of that cardinality and normalize by the
total spectral energy.
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Figure 5: Approximate spectral energy distribution in MRVM for
WHT computed with the robust WHT algorithm from [Amrollahi
et al., 2019]. For each cardinality (x-axis), we collect the spectral
energy (y-axis) of all frequencies of that cardinality.

• WHT:
Since for all i ∈ N and a ∈ F it holds that Wiai ∈
Zk, an immediate consequence from Lemma 3 is that
βi = Wiai (mod 2) and (−1)Wiai = −2βi+1k, which
concludes the proof for the WHT.

C Analyzing the Potential of a FT-based CA
C.1 Fourier Sparsity - GSVM and MRVM
In this section, we provide the Fourier sparsity results for
GSVM and MRVM. In Figure 4, we present the mean over
30 GSVM instances and bidder types. Figure 4 shows that
GSVM is low degree ≤ 2 in all considered FTs and thus can
be represented using less or equal to 172 =

(
18
0

)
+
(
18
1

)
+
(
18
2

)
FCs with any FT.

To the best of our knowledge it is not possible to compute
the exact FCs with respect to any of the considered FTs for
all MRVM bidders (see [Wendler et al., 2021]). In Figure 5,
we thus depict the approximate WHT-energy-distribution for
MRVM. In order to do so, we used the RWHT algorithm by
Amrollahi et al. [2019], which recovers the largest WHT-FCs
with high probability. Note that here we do not normalize by
the total energy since the total energy is an unknown quantity
in the space of 298 bundles.

Figure 5 shows the approximate WHT-energy-distribution
for MRVM. We see that while most of the energy is contained
in the low degree FCs ≤ 2, there is still some non negligible
energy in the FCs of degree 3–7.

C.2 Reconstruction Error of Fourier Transforms
Using Procedure 1, we determine the best k-Fourier-sparse
approximation ṽi for all considered FTs.
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Procedure 1. (BEST FCS GIVEN FULL ACCESS TO v̂i)
Compute all FCs by using the full FT for each bidders’ reported
value function ϕv̂i = F v̂i. Next, compute ṽi by determining the
k best FCs ϕṽi|Si

in terms of L2 error ∥v̂i − ṽi∥22 as follows:

i. WHT: use the FCs of ϕv̂i with the k largest absolute values.

ii. FT3 and FT4: use the FCs with the k largest coefficients
|ϕv̂i(y)|∥F−1

·,y ∥2, where F−1
·,y denotes the yth column.

In the following, we present the technical details for i. and ii.
in Procedure 1.

Let F denote the corresponding matrix representation of
the FT3, FT4, or the WHT. Furthermore, fix bidder i ∈ N
and for Si ⊆ supp(ϕv̂i), |Si| = k ≪ 2m let

ṽi =
∑

y∈Si

F−1
x,yϕv̂i(y) = F−1

·,Si
ϕv̂i|Si

,

be a k-Fourier-sparse approximation, where we denote by
F−1
·,Si

the sub matrix of F−1 obtained by selecting the
columns indexed by the bundles in Si.
Best Fourier Coefficients WHT
For the WHT, we consider the following optimization prob-
lem of selecting the k-best FCs with respect to the quadratic
error:

S∗i ∈ argmin
Si⊆supp(ϕv̂i

), |Si|=k

∥v̂i − F−1
·,Si

ϕv̂i|Si
∥22. (67)

Then, it follows that S∗i consists out of those bundles
{y(l)}kl=1 with the largest absolute value of the correspond-
ing FCs {ϕv̂i

(y(l))}kl=1. This can be seen as follows.

∥v̂i − F−1
·,Si

ϕv̂i|Si︸ ︷︷ ︸
ṽi

∥22 = ∥
∑

y ̸∈Si

F−1
·,y ϕv̂i(y)∥22 = (68)

=
∑

x,y ̸∈Si

⟨F−1
·,x , F−1

·,y ⟩ϕv̂i(x)ϕv̂i(y) = (69)

=
∑

y ̸∈Si

ϕv̂i(y)
2, (70)

where in the last equality we used that F−1 is an orthogonal
matrix and thus its columns fulfill ⟨F−1

·,x , F−1
·,y ⟩ = Ix=y .

For the other non-orthogonal transforms FT3 and FT4, we
use a heuristic based on the triangular inequality to select the
k “best” FCs, which we present next.

Best Fourier Coefficients FT3 and FT4
For FT3 and FT4, we use the triangular inequality

∥v̂i − F−1
·,Si

ϕv̂i|Si︸ ︷︷ ︸
ṽi

∥2 ≤
∑

y ̸∈Si

|ϕv̂i(y)|∥F−1
·,y ∥2

to get an upper bound of the quadratic error ∥v̂i − ṽi∥22 and
select the FCs with the k largest coefficients |ϕv̂i(y)|∥F−1

·,y ∥2,
where F−1

·,y denotes the yth column of F−1.

D A Practical Hybrid ICA Mechanism
D.1 Technical Details of HYBRID ICA
In this section, we provide the technical details for the imple-
mentation of HYBRID ICA. In particular, we explain in more
detail the Fourier Transform-based procedures 3–5.

Determining the best FCs of NN
Procedure 3. (BEST FCS OF NEURAL NETWORKS)

i. If m ≤ 29 : calculate the full FT of the NNs and select the
best FCs.

ii. If m > 29 : use sparse FT algorithms, i.e., RWHT for WHT
and SSFT [Wendler et al., 2021] for FT3 and FT4 to obtain
the best FCs of the NNs.

Using Procedure 3 we determine the best FCs of the NN
estimates of each bidder. We distinguish the two cases:

• Small number of items: if the number of items is small
enough, i.e., m ≤ 29, we determine the best FCs (and
associated locations Si ⊂ X ) of Ni for all FTs by com-
puting its full Fourier transform FNi = ϕNi

using the
respective algorithms from Püschel and Wendler [2020].

• Large number of items: if the number of items is too
large, i.e., m > 29, we cannot compute the full Fourier
transform and thus require sparse FT algorithms to com-
pute the locations of the best FCs. For the WHT, we
can do so by using the robust sparse WHT algorithm
(RWHT) by Amrollahi et al. [2019]. For FT3 and FT4,
we use the sparse set function Fourier transform (SSFT)
algorithm by Wendler et al. [2021]. Both algorithms
compute Fourier-sparse approximations by only using
queries from the corresponding set function (= a bidder’s
value function), and thus do not require a representation
of the exponentially large full set function.

• Best WHT FCs: for the WHT the best FCs are the
ones with the largest absolute values (see Section C.2).
We select the locations of the ℓsuperset best NN FCs, i.e.,
|Si| = ℓsuperset. We do so because we are going to use
the compressive sensing method by Stobbe and Krause
[2012], which only requires a superset of the support
supp(ϕv̂i), in Procedure 5 to fit a Fourier-sparse ap-
proximations ṽi to the bidders’ reports Ri. In our exper-
iments, we set ℓsuperset = 2, 000 for all domains. Ideally,
we would like to choose ℓsuperset as large as possible to en-
sure that the best NN FCs actually overlap with the best
FCs of v̂i, however, there is a trade-off between the num-
ber of samples (and also running time) required by the
compressive sensing method and the size of the support
superset. We did not optimize this hyperparameter.

• Best FT3 and FT4 FCs: for the FT3 and FT4 we use a
heuristic based on the triangular inequality to select the
best FCs and their locations (see Section C.2). As nei-
ther FT3 nor FT4 are orthogonal or satisfy the restricted
isometry property required by the compressive sensing
method, we only take the best ℓ3 locations of NN FCs,
i.e., |Si| = ℓ3.

Notice that the goal of Procedure 3 is solely to determine a
set of bundles Si ⊆ X that is likely to contain many of the
dominant FCs of v̂i. This set Si is then used to determine
reconstructing queries S̃i.
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Determining reconstruction queries
Procedure 4. (FOURIER RECONSTRUCTION QUERIES)

i. FT3 and FT4: use the sampling theorems by Püschel and
Wendler [2020] to determine queries for the bidders, i.e.,
bundles S̃i ⊆ X , that enable a reconstruction of ṽi.

ii. WHT: use the same queries as for FT4.

We make use of the sampling theorems for FT3 and FT4
presented by Püschel and Wendler [2020] to obtain recon-
struction queries, i.e., queries that help obtaining a small
reconstruction error ∥v̂i − ṽi∥2. Our rationale here is that
the queries given by the sampling theorem S̃i would lead to
∥v̂i − ṽi∥2 = 0 for supp(ϕv̂i) = Si. The sampling the-
orem by Püschel and Wendler [2020] selects rows S̃i such
that F−1

S̃i,Si
is of full rank, because then (iff supp(ϕv̂i) = Si)

the Fourier coefficients ϕṽi|Si
are the solution of the linear

system of equations v̂i|S̃i
= F−1

S̃i,Si
ϕṽi|Si

. In particular, the
theorem yields

• FT3: S̃i = Si,
• FT4: S̃i = {1m − y : y ∈ Si}.

For the WHT there is no sampling theorem and we use

S̃i = {1m − y : |ϕNi(y)| is in the ℓ3 largest in Si}

as a heuristic to obtain reconstruction queries. Choosing S̃i
in that way empirically often leads to a full-rank submatrix
F−1

S̃i,Z
of the inverse WHT obtained by selecting the rows in-

dexed by S̃i and the columns indexed by Z , where Z ⊆ Si
are the locations of the ℓ3 in absolute value largest FCs in
Si, i.e., Z := {y : |ϕNi

(y)| is in the ℓ3 largest in Si}. If
F−1

S̃i,Z
is full rank and supp(ϕv̂i) = Z , the Fourier coeffi-

cients ϕv̂i|Z are the solution of the linear system of equations
v̂i|S̃i

= F−1

S̃i,Z
ϕv̂i|Z .

Fitting Fourier-sparse approximations
Procedure 5. (FIT FOURIER-SPARSE ṽi TO REPORTS)

i. FT3 and FT4: solve the least squares problem defined by
the best FCs and reports Ri.

ii. WHT: use the compressive sensing method by Stobbe and
Krause [2012] defined by the best FCs and reports Ri.

Lastly, we need to fit our Fourier-sparse approximations
ṽi with supp(ϕṽi) = Si to the elicited reports Ri :={(

x(l), v̂i(x
(l))

)}
. That is, we determine values w ∈ R|Si|

for the FCs of the Fourier-sparse approximation ṽi = F−1
·,Si

w.

• WHT: as already mentioned, for the WHT this is done
using the compressive sensing method by Stobbe and
Krause [2012]. We calculate the full regularization path
for the L1-regularization parameter λ using the LARS
method from Efron et al. [2004], and select the λ that
yields ℓsupport non zero FCs. In our experiments we set
ℓsupport = 100 in GSVM and LSVM and ℓsupport = 500 in
MRVM. We did not optimize this hyperparameter.

• FT3 and FT4: for FT3 and FT4 we cannot use the com-
pressive sensing method and instead solve the following
least squares problem

min
w∈Rℓ3

∑

(x,v̂i(x))∈Ri


v̂i(x)−

(
F−1
·,Si

w
)
(x)

︸ ︷︷ ︸
=ṽi(x)




2

.

In Figure 6, we present a flow diagram of the different al-
gorithms we use in HYBRID ICA.

D.2 Details of NNs Support Discovery
Experiments

In this section, we discuss the energy ratio plot (see Figure 3
in the main paper) for the large domain MRVM with m = 98
items. Recall, that in MRVM one cannot compute the full
FT analytically and one has to use sparse FT algorithms to
obtain an approximation of the true k-best possible frequen-
cies S∗i = {∗y(1), . . . , ∗y(k)}. For this we use the recently
developed RWHT algorithm from Amrollahi et al. [2019],
which computes the largest WHT-FCs with high probability
and thus gives us an approximation S rwht

i ≈ S∗i . As in the
main paper, we then calculate for each bidder i ∈ N the en-
ergy ratio of the support found by the corresponding NNs S̃i
and S rwht

i .

D.3 Details of Efficiency Experiments
In Figures 7–9, we present detailed efficiency results of HY-
BRID ICA in all three SATS domains, where we used the best
found configuration of hyperparameters from Table 4 in the
main paper.

In the upper plot we show in each figure the efficiency of
the different phases of HYBRID ICA.6 In the lower plot, we
present a histogram of the final efficiency distribution over
100 (in GSVM and LSVM) and 30 (in MRVM) new CA in-
stances. To enable a head-to-head comparison, we use for
the test set of CA instances the seeds 1–100 in GSVM and
LSVM, and seeds 51–80 in MRVM.

All experiments were conducted on machines with Intel
Xeon E5 v4 2.20GHz processors with 24 cores and 128GB
RAM or with Intel E5 v2 2.80GHz processors with 20 cores
and 128GB RAM.

GSVM (Figure 7)
After 30 random queries, HYBRID ICA achieves an (avg.)
efficiency of 66%. Next, after three MLCA iterations, i.e.,
21 MLCA queries, 99 instances have an efficiency ≥ 90%.7
Finally, the Fourier-based queries significantly increase the
(avg.) efficiency by 1.87 percentage points from 98.1% to
99.97%. Furthermore, we present in the lower plot a his-
togram of the final efficiency distribution. We see, that for
94 out of 100 instances HYBRID ICA impressively achieves
an economic efficiency of 100% using in total only 100 value
queries per bidder.

6In MRVM we abbreviate the different query types as follows:
RI=random initial queries, 1-55=MLCA iterations, FR=Fourier re-
construction queries, FA=Fourier allocation queries.

7Recall that MLCA asks each bidder n queries per iteration.
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LSVM (Figure 8)
Starting with ℓ1 = 30 random initial queries, HYBRID ICA
achieves an average efficiency of approximately 62%. Next,
HYBRID ICA performs 5 MLCA iterations. After these 5
MLCA iterations, HYBRID ICA already found for each of
the 100 instances an allocation with an efficiency of at least
80% with an average efficiency of 97.80%. Here, in the non-
sparse LSVM domain, the Fourier reconstruction and alloca-
tion queries can increase the efficiency of some outliers arriv-
ing at an average efficiency of 98.74%. In the histogram, we
see, that for 66 instances, HYBRID ICA was able to achieve
full efficiency. Overall, we observe, that in the non-sparse
LSVM the Fourier-based approach is not as effective as in
the sparse GSVM, but still leads to results, that statistically
match the efficiency of MLCA (see Table 5 in the main pa-
per).

MRVM (Figure 9)
Starting with ℓ1 = 30 random initial queries, HYBRID ICA
achieves an average efficiency of approximately 50%. Next,
HYBRID ICA performs 55 MLCA iterations and asks in total
220 MLCA allocation queries. Here, we observe a steep in-
crease in efficiency at the beginning. In later iterations the
increase in efficiency gets smaller resulting in an average ef-
ficiency of 94.20%. In MRVM, the best query split we found
uses ℓ3 = 0 Fourier-based reconstruction queries, thus the
Fourier reconstruction queries (FR) do not change the effi-
ciency distribution in Figure 9. However, the ℓ4 = 250
Fourier-based allocation queries significantly increase the ef-
ficiency further by 2.43% resulting in a final average effi-
ciency of 96.63%.
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Domains with 𝑚 ≤ 29
(GSVM, LSVM)

Domains with 𝑚 > 29
(MRVM)

FT 
on NNs 𝒩𝑖

RWHT
on NNs 𝒩𝑖

SSFT
on NNs 𝒩𝑖

WHT
FT3 & FT4

WHT FT3 & FT4

Determine support 𝒮𝑖 with
𝒮𝑖 = ℓ3 best FCs 𝜙𝒩𝑖|𝒮𝑖

best: heuristic with △-inequality 

Determine support 𝒮𝑖 with
𝒮𝑖 = ℓ𝑠𝑢𝑝𝑒𝑟𝑠𝑒𝑡 best FCs 𝜙𝒩𝑖|𝒮𝑖

best: largest in absolute value

Use 𝒮𝑖 and heuristic based on 
factorization of WHT into FT4 

to determine ሚ𝑆𝑖 with ሚ𝑆𝑖 = ℓ3
and query values for ሚ𝑆𝑖.

Use 𝒮𝑖 and Sampling 

Theorem to determine ሚ𝑆𝑖 with
ሚ𝑆𝑖 = ℓ3

and query values for ሚ𝑆𝑖.

Use MIP( ෤𝑣𝑖) to generate ℓ4 Fourier allocation 
queries by repeatedly refitting ෤𝑣𝑖 on the newly 

received report from the MIP using * or **

Determine best FCs
of NNs (support 𝒮𝑖)

Fourier  Reconstruction  Queries

Fit ෥𝑣𝑖 on Reports 

Fourier Allocation Queries

Output: ℓ3 Fourier reconstruction queries 
and ℓ4 Fourier allocation queries

Algorithms:
FT: (Full) Fourier transform, Püschel and Wendler (2020).
RWHT: Robust sparse WHT algorithm, Amrollahi et al. (2019).
SSFT: Sparse set function Fourier transform, Wendler et al. (2020)
Sampling Theorem: Püschel and Wendler (2020).
Compressive Sensing Method: Stobbe and Krause (2012).

Determine ෤𝑣𝑖 via the
Compressive Sensing Method 

using as input (𝒮𝑖 , ℓ𝑠𝑢𝑝𝑝𝑜𝑟𝑡 , 𝑅𝑖)

*
Determine ෤𝑣𝑖 by solving a

Least Squares Problem
using as input (𝒮𝑖 , ℓ3, 𝑅𝑖)

**

Figure 6: Overview of Fourier Transform-based Procedures in HYBRID ICA.
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Figure 7: Details of HYBRID ICA in GSVM.
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Figure 8: Details of HYBRID ICA in LSVM.
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17



4 NOMU: Neural Optimization-based Model

Uncertainty

The content of this chapter has previously appeared in

NOMU: Neural Optimization-based Model Uncertainty.

Jakob Heiss∗, Jakob Weissteiner∗, Hanna Wutte∗, Sven Seuken, and Josef Teich-

mann.

In Proceedings of the Thirty-ninth International Conference on Machine Learning

(ICML’22), Baltimore, USA, July 2022.

For its full updated version including appendix, please see

NOMU: Neural Optimization-based Model Uncertainty.

Jakob Heiss∗, Jakob Weissteiner∗, Hanna Wutte∗, Sven Seuken, and Josef Teich-

mann.

Working paper, March 2023.

URL: arxiv.org/pdf/2102.13640.pdf

∗These authors contributed equally.

63

https://arxiv.org/pdf/2102.13640.pdf


NOMU: Neural Optimization-based Model Uncertainty

Jakob Heiss * 1 2 Jakob Weissteiner * 2 3 Hanna Wutte * 1 2 Sven Seuken 2 3 Josef Teichmann 1 2

Abstract
We study methods for estimating model uncer-
tainty for neural networks (NNs) in regression.
To isolate the effect of model uncertainty, we fo-
cus on a noiseless setting with scarce training data.
We introduce five important desiderata regarding
model uncertainty that any method should satisfy.
However, we find that established benchmarks of-
ten fail to reliably capture some of these desider-
ata, even those that are required by Bayesian the-
ory. To address this, we introduce a new approach
for capturing model uncertainty for NNs, which
we call Neural Optimization-based Model Un-
certainty (NOMU). The main idea of NOMU is
to design a network architecture consisting of
two connected sub-NNs, one for model predic-
tion and one for model uncertainty, and to train it
using a carefully-designed loss function. Impor-
tantly, our design enforces that NOMU satisfies
our five desiderata. Due to its modular architec-
ture, NOMU can provide model uncertainty for
any given (previously trained) NN if given access
to its training data. We evaluate NOMU in various
regressions tasks and noiseless Bayesian optimiza-
tion (BO) with costly evaluations. In regression,
NOMU performs at least as well as state-of-the-
art methods. In BO, NOMU even outperforms all
considered benchmarks.

1. Introduction
Neural networks (NNs) are becoming increasingly impor-
tant in machine learning applications (LeCun et al., 2015).
In many domains, it is essential to be able to quantify the
model uncertainty (epistemic uncertainty) of NNs (Neal,
2012; Ghahramani, 2015). Good estimates of model uncer-
tainty are indispensable in Bayesian optimization (BO) and
active learning, where exploration is steered by (functions

*Equal contribution 1ETH Zurich 2ETH AI Center 3University
of Zurich. Correspondence to: Jakob Weissteiner <weis-
steiner@ifi.uzh.ch>.

Proceedings of the 39 th International Conference on Machine
Learning, Baltimore, Maryland, USA, PMLR 162, 2022. Copy-
right 2022 by the author(s).
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NOMU:  ̂f± 2⋅σ̂f 
MCDO:  ̂f± 4⋅σ̂f 

Figure 1. Visualization of estimated model uncertainty σ̂f . The
unknown true function is depicted as a black solid line with training
points as black dots. NOMU’s model prediction f̂ is shown as
a solid blue line and its uncertainty bounds are shown as a blue
shaded area. As a benchmark, MC Dropout is shown in green.

of) these uncertainty estimates. In recent years, BO has
been successfully applied in practice to a wide range of
problems, including robotics (Martinez-Cantin et al., 2009),
sensor networks (Srinivas et al., 2012), and drug develop-
ment (Gómez-Bombarelli et al., 2018). Better model uncer-
tainty estimates for BO directly translate to improvements
in these applications.

However, estimating model uncertainty well for NNs is still
an open research problem. For settings with scarce training
data and negligible data noise, where model uncertainty is
the main source of uncertainty, we uncover deficiencies of
widely used state-of-the-art methods for estimating model
uncertainty for NNs. Prior work often only measures the
performance in data noise dominant settings, and thus does
not adequately isolate the pure model uncertainty, thereby
overlooking the algorithms’ deficiencies. However, in tasks
such as BO with costly evaluations, where accurate esti-
mates of model uncertainty are of utmost importance, these
deficiencies can drastically decrease performance.

In this paper, we study the problem of estimating model
uncertainty for NNs to obtain uncertainty bounds (UBs)
that estimate Bayesian credible bounds in a setting with
negligible data noise and scarce training data. For this, we
propose a novel algorithm (NOMU) that is specialized to
such a setting. Figure 1 shows UBs for NOMU and the
benchmark method MC Dropout.
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1.1. Prior Work on Model Uncertainty for NNs

Over the last decade, researchers have developed various
methods to quantify model uncertainty for NNs. One strand
of research considers Bayesian Neural Networks (BNNs),
where distributions are placed over the NN’s parameters
(Graves, 2011; Blundell et al., 2015; Hernández-Lobato
& Adams, 2015). However, variational methods approxi-
mating BNNs are usually computationally prohibitive and
require careful hyperparameter tuning. Thus, BNNs are
rarely used in practice (Wenzel et al., 2020a).

In practice, ensemble methods are more established:

• Gal & Ghahramani (2016) proposed Monte Carlo dropout
(MCDO) to estimate model uncertainty via stochastic for-
ward passes. Interestingly, they could show that training
a NN with dropout can also be interpreted as variational
inference approximating a BNN.

• Lakshminarayanan et al. (2017) experimentally evaluated
ensembles of NNs and showed that they perform as well
as or better than BNNs. They proposed using deep en-
sembles (DE), which use NNs with two outputs for model
prediction and data noise, and they estimate model uncer-
tainty via the empirical standard deviation of the ensem-
ble. DE is the most established state-of-the art ensemble
method and has been shown to consistently outperform
other ensemble methods (Ovadia et al., 2019; Fort et al.,
2019; Gustafsson et al., 2020; Ashukha et al., 2020).

• Recently, Wenzel et al. (2020b) proposed hyper deep en-
sembles (HDE), an extension of DE where additional
diversity is created via different hyperparameters, and
they showed that HDE outperforms DE.

Despite the popularity of MCDO, DE and HDE, our em-
pirical results suggest that none of them reliably capture
all essential features of model uncertainty: MCDO yields
tubular bounds that do not narrow at observed data points
(which can already be observed in Figure 1); DE and HDE
can produce UBs that are sometimes unreasonably narrow
in regions far from observed data or unreasonably wide at
training points (as we will show in Section 4.1).

1.2. Overview of our Contribution

We present a new approach for estimating model uncertainty
for NNs, which we call neural optimization-based model
uncertainty (NOMU). In contrast to a fully Bayesian ap-
proach (e.g., BNNs), where approximating the posterior for
a realistic prior is in general very challenging, we estimate
posterior credible bounds by directly enforcing essential
properties of model uncertainty. Specifically, we make the
following contributions:

1. We first introduce five desiderata that we argue model
UBs should satisfy (Section 3.1).

2. We then introduce NOMU, which consists of a network
architecture (Section 3.2) and a carefully-designed loss
function (Section 3.3), such that the estimated UBs fulfill
these five desiderata. NOMU is easy to implement, scales
well to large NNs, and can be represented as a single
NN without the need for further ensemble distillation
(in contrast to MCDO, DE and HDE). Because of its
modular architecture, it can easily be used to obtain UBs
for already trained NNs.

3. We experimentally evaluate NOMU in various regres-
sion settings: in scarce and noiseless settings to isolate
model uncertainty (Sections 4.1.1 and 4.1.2) and on real-
word data-sets (Sections 4.1.3 and 4.1.4). We show that
NOMU performs well across all these settings while
state-of-the-art methods (MCDO, DE, and HDE) exhibit
several deficiencies.1

4. Finally, we evaluate the performance of NOMU in high-
dimensional Bayesian optimization (BO) and show that
NOMU performs as well or better than all considered
benchmarks (Section 4.2).

Our source code is available on GitHub: https://github.com
/marketdesignresearch/NOMU.

1.3. Further Related Work

Nix & Weigend (1994) were among the first to introduce
NNs with two outputs: one for model prediction and one
for data noise (aleatoric uncertainty), using the Gaussian
negative log-likelihood as loss function. However, such a
data noise output cannot be used as an estimator for model
uncertainty (epistemic uncertainty); see Appendix G for
details. To additionally capture model uncertainty, Kendall
& Gal (2017) combined the idea of Nix & Weigend (1994)
with MCDO.

Similarly, NNs with two outputs for lower and upper UBs,
trained on specifically-designed loss functions, were pre-
viously considered by Khosravi et al. (2010) and Pearce
et al. (2018). However, the method by Khosravi et al. (2010)
again only accounts for data noise and does not consider
model uncertainty. The method by Pearce et al. (2018) also
does not take model uncertainty into account in the design
of their loss function and only incorporates it via ensembles
(as in DE).

Besides the state-of-the art ensemble methods HDE and DE,
there exist several other papers on ensemble methods that,

1We also conducted experiments with (Blundell et al., 2015).
However, we found that this method did not perform as well
as the other considered benchmarks. Moreover, it was shown
in (Gal & Ghahramani, 2016; Lakshminarayanan et al., 2017)
that deep ensembles and MC dropout outperform the methods by
(Hernández-Lobato & Adams, 2015) and (Graves, 2011), respec-
tively. Therefore, we do not include (Graves, 2011; Blundell et al.,
2015; Hernández-Lobato & Adams, 2015) in our experiments.
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for example, promote their diversity on the function space
(Wang et al., 2019) or reduce their computational cost (Wen
et al., 2020; Havasi et al., 2021).

For classification, Malinin & Gales (2018) introduced prior
networks, which explicitly model in-sample and out-of-
distribution uncertainty, where the latter is realized by mini-
mizing the reverse KL-distance to a selected flat point-wise
defined prior. In a recent working paper (and concurrent to
our work), Malinin et al. (2020a) report on progress extend-
ing their idea to regression. While the idea of introducing
a separate loss for learning model uncertainty is related to
NOMU, there are several important differences (loss, ar-
chitecture, behavior of the model prediction, theoretical
motivation; see Appendix E for details). Furthermore, their
experiments suggest that DE still performs weakly better
than their proposed method.

In contrast to BNNs, which perform approximate inference
over the entire set of weights, Neural Linear Models (NLMs)
perform exact inference on only the last layer. NLMs
have been extensively benchmarked in (Ober & Rasmussen,
2019) against MCDO and the method from (Blundell et al.,
2015). Their results suggest that MCDO and (Blundell et al.,
2015) perform competitive, even to carefully-tuned NLMs.

Neural processes, introduced by Garnelo et al. (2018a;b),
have been used to express model uncertainty for image
completion tasks, where one has access to thousands of
different images interpreted as functions fi instead of input
points xi. See Appendix F for a detailed comparison of their
setting to the setting we consider in this paper.

2. Preliminaries
In this section, we briefly review the classical Bayesian
uncertainty framework for regression.

Let X ⊂ Rd, Y ⊂ R and let f : X → Y denote the un-
known ground truth function. Let Dtrain := {(xtrain

i , ytrain
i ) ∈

X × Y, i ∈ {1, . . . , ntrain}}, with ntrain ∈ N be i.i.d samples
from the data generating process y = f(x) + ε, where
ε|x ∼ N (0, σ2

n (x)). We use σn to refer to the data noise
(aleatoric uncertainty). We refer to (xtrain

i , ytrain
i ) as a training

point and to xtrain
i as an input training point.

In the remainder of this paper, we follow the classic
Bayesian uncertainty framework by modelling the unknown
ground truth function f as a random variable. Hence, with
a slight abuse of notation, we use the symbol f to denote
both the unknown ground truth function as well as the cor-
responding random variable. In Appendix I, we provide
a mathematically rigorous formulation of the considered
Bayesian uncertainty framework.

Given a prior distribution for f and known data noise σn, the
posterior of f and y are well defined. The model uncertainty

(epistemic uncertainty) σf (x) is the posterior standard devi-
ation of f(x), i.e.,

σf (x) :=
√
V[f(x)|Dtrain, x], x ∈ X. (1)

Assuming independence between f and ε, the variance
of the predictive distribution of y can be decomposed as
V[y|Dtrain, x] = σ2

f (x) + σ2
n (x). We present our algorithm

for estimating model uncertainty σ̂f for the case of zero
or negligible data noise, i.e., σn ≈ 0 (see Appendix C for
an extension to σn � 0). For a given model prediction f̂ ,
the induced uncertainty bounds (UBs) are then given by(
UBc(x), UBc(x)

)
:=
(
f̂(x)∓ c σ̂f (x)

)
, for x ∈ X and

a calibration parameter c ≥ 0.2

3. The NOMU Algorithm
We now present NOMU. We design NOMU to yield a model
prediction f̂ and a model uncertainty prediction σ̂f , such
that the resulting UBs (UBc, UBc) fulfill five desiderata.

3.1. Desiderata

D1 (Non-Negativity) The upper/lower UB between two
training points lies above/below the model prediction
f̂ , i.e., UBc(x) ≤ f̂(x) ≤ UBc(x) for all x ∈ X and
for c ≥ 0. Thus, σ̂f ≥ 0.

By definition, for any given prior, the exact posterior model
uncertainty σf is positive, and therefore Desideratum D1
should also hold for any estimate σ̂f .

D2 (In-Sample) In the noiseless case (σn ≡ 0), there is
zero model uncertainty at each input training point xtrain,
i.e., σ̂f (xtrain) = 0. Thus, UBc(xtrain) = UBc(x

train) =

f̂(xtrain) for c ≥ 0.

In Appendix D.2, we prove that, for any prior that does
not contradict the training data, the exact σf satisfies D2.
Thus, D2 should also hold for any estimate σ̂f , and we argue
that even in the case of non-zero small data noise, model
uncertainty should be small at input training data points.

D3 (Out-of-Sample) The larger the distance of a point x ∈
X to the input training points in Dtrain, the wider the
UBs at x, i.e., model uncertainty σ̂f increases out-of-
sample.3

For D3 it is often not obvious which metric to choose to
measure distances. Some aspects of this metric can be speci-

2Note that our UBs estimate credible bounds (CBs) CB
and CB, which, for α ∈ [0, 1], fulfill that P[f(x) ∈
[CB,CB]|Dtrain, x] = α. For σn ≡ 0, CBs are equal to pre-
dictive bounds PB,PB with P[y ∈ [PB,PB]|Dtrain, x] = α. See
Appendix A for an explanation.

3Importantly, D3 also promotes model uncertainty in gaps
between input training points.
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Figure 2. NOMU’s network architecture

fied via the architecture (e.g., shift invariance for CNNs). In
many applications, it is best to learn further aspects of this
metric from training data, motivating our next desideratum.

D4 (Metric Learning) Changes in those features of x that
have high predictive power on the training set have a
large effect on the distance metric used in D3.4

D4 is not required for any application. However, specifically
in deep learning applications, where it is a priori not clear
which features are important, D4 is particularly desirable.

D5 (Vanishing) As the number ntrain of training points (with
xtrain
i

i.i.d∼ PX ) tends to infinity, model uncertainty van-
ishes for each x in the support of the input data distribu-
tion PX , i.e., limntrain→∞ σ̂f (x) = 0 for a fixed c ≥ 0.
Thus, for a fixed c, limntrain→∞ |UBc(x)−UBc(x)| = 0.

In Appendix D, we discuss all desiderata in more detail (see
Appendix D.4 for a visualization of D4).

3.2. The Network Architecture

For NOMU, we construct a networkNN θ with two outputs:
the model prediction f̂ (e.g., mean prediction) and a raw
model uncertainty prediction r̂f . Formally: NN θ : X →
Y × R≥0, with x 7→ NN θ(x) := (f̂(x), r̂f (x)). NOMU’s
architecture consists of two almost separate sub-networks:
the f̂ -network and the r̂f -network (see Figure 2). For each
sub-network, any network architecture can be used (e.g.,
feed-forward NNs, CNNs). This makes NOMU highly mod-
ular and we can plug in any previously trained NN for f̂ ,

4 Consider the task of learning facial expressions from images.
For this, eyes and mouth are important features, while background
color is not. A CNN automatically learns which features are im-
portant for model prediction. The same features are also important
for model uncertainty: Consider an image with pixel values similar
to those of an image of the training data, but where mouth and
eyes are very different. We should be substantially more uncertain
about the model prediction for such an image than for one which
is almost identical to a training image except that it has a different
background color, even if this change of background color results
in a huge Euclidean distance of the pixel vectors. D4 requires that
a more useful metric is learned instead.

or we can train f̂ simultaneously with the r̂f -network. The
r̂f -network learns the raw model uncertainty and is con-
nected with the f̂ -network through the last hidden layer
(dashed lines in Figure 2). This connection enables r̂f to
re-use features that are important for the model prediction f̂ ,
implementing Desideratum D4 (Metric Learning).5

Remark 3.1 NOMU’s network architecture can be modi-
fied to realize D4 (Metric Learning) in many different ways.
For example, if low-level features were important for pre-
dicting the model uncertainty, one could additionally add
connections from earlier hidden layers of the f̂ -network to
layers of the r̂f -network. Furthermore, one can strengthen
D4 (Metric Learning) by increasing the regularization of
the r̂f -network (see Appendix D.4).

After training NN θ, we apply the readout map ϕ(z) =

`max(1 − exp(−max(0,z)+`min
`max

)), `min ≥ 0, `max > 0 to the
raw model uncertainty output r̂f to obtain NOMU’s model
uncertainty prediction

σ̂f (x) := ϕ(r̂f (x)), ∀x ∈ X. (2)

The readout map ϕ monotonically interpolates between a
minimal≈ `min and a maximal≈ `max model uncertainty (see
Figure 28 in Appendix J for a visualization). Here, `min is
used for numerical stability, and `max defines the maximal
model uncertainty far away from input training points (sim-
ilarly to the prior variance for RBF-GPs). With NOMU’s
model prediction f̂ , its model uncertainty prediction σ̂f de-
fined in (2), and given a calibration parameter6 c ∈ R≥0,
we can now define for each x ∈ X NOMU’s UBs as

(
UBc(x), UBc(x)

)
:=
(
f̂(x)∓ c σ̂f (x)

)
. (3)

It is straightforward to construct a single NN that directly
outputs the upper/lower UB, by extending the architecture
shown in Figure 2: we monotonically transform and scale
the output r̂f (x) and then add/subtract this to/from the other
output f̂(x). It is also straightforward to compute NOMU’s
UBs for any given, previously trained NN, by attaching
the r̂f -network to the trained NN, and only training the
r̂f -network on the same training points as the original NN.

Remark 3.2 The readout map ϕ can be modified depending
on the subsequent use of the estimated UBs. For example,
for BO over discrete domains (e.g., X = {0, 1}d) (Baptista
& Poloczek, 2018), we propose the linearized readout map
ϕ(z) = `min + max(0, z − `min) − max(0, z − `max). With
this ϕ and ReLU activations, one can encode NOMU’s UBs
as a mixed integer program (MIP) (Weissteiner & Seuken,

5To prevent that r̂f impacts f̂ , the dashed lines should only
make forward passes when trained.

6Like all other methods, NOMU outputs relative UBs that
should be calibrated, e.g., via a parameter c ≥ 0. See also
Kuleshov et al. (2018) for a non-linear calibration method.
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2020). This enables optimizing the upper UB as acquisition
function without the need for further approximation via
ensemble distillations (Malinin et al., 2020b).

3.3. The Loss Function

We now introduce the loss function Lπ we use for training
NOMU’s architecture. LetX be such that 0 < λd(X) <∞,
where λd denotes the d-dimensional Lebesgue measure. We
train NN θ with loss Lπ and L2-regularization parameter
λ > 0, i.e., minimizing Lπ(NN θ) + λ ‖θ‖22 via a gradient
descent-based algorithm.

Definition 3.3 (NOMU LOSS) Let π := (πsqr, πexp, cexp) ∈
R3
≥0 denote a tuple of hyperparameters. Given a training

set Dtrain, the loss function Lπ is defined as

Lπ(NN θ) :=
ntrain∑

i=1

(f̂(xtrain
i )− ytrain

i )2

︸ ︷︷ ︸
(a)

+πsqr ·
ntrain∑

i=1

(r̂f (xtrain
i ))

2

︸ ︷︷ ︸
(b)

+ πexp ·
1

λd(X)

∫

X

e−cexp·r̂f (x) dx
︸ ︷︷ ︸

(c)

. (4)

In the following, we explain how the three terms of Lπ

promote the desiderata we introduced in Section 3.1. Note
that the behaviour of r̂f directly translates to that of σ̂f .

• Term (a) solves the regression task, i.e., learning a smooth
function f̂ given Dtrain. If f̂ is given as a pre-trained NN,
then this term can be omitted.

• Term (b) implements D2 (In-Sample) and D5 (Vanishing)
(i.e., r̂f (xtrain

i ) ≈ 0). The hyperparameter πsqr controls the
amount of uncertainty at the training points.7 The larger
πsqr, the narrower the UBs at training points.

• Term (c) has two purposes. First, it implements D1 (Non-
Negativity) (i.e., r̂f ≥ 0). Second, it pushes r̂f towards
infinity across the whole input space X . However, due
to the counteracting force of (b) as well as regularization,
r̂f increases continuously as you move away from the
training data. The interplay of (b), (c), and regularization
thus promotes D3 (Out-of-Sample). The hyperparameters
πexp and cexp control the size and shape of the UBs. Con-
cretely, the larger πexp, the wider the UBs; the larger cexp,
the narrower the UBs at points x with large σ̂f (x) and the
wider the UBs at points x with small σ̂f (x).

In Appendix H.1, we provide detailed visualizations on how
the loss hyperparameters πsqr, πexp, and cexp shape NOMU’s
model uncertainty estimate. In the implementation of Lπ,
we approximate (c) via MC-integration using additional,

7In the noiseless case, in theory πsqr
λ

=∞; we set πsqr
λ

= 107.
For small non-zero data noise, setting πsqr

λ
� ∞ captures data

noise induced model uncertainty σf (xtrain) > 0 (Appendix D.2).

artificial input points Dart := {xi}li=1
i.i.d∼ Unif(X) by 1

l ·∑
x∈Darte−cexp·σ̂f (x).

Remark 3.4 In (c), instead of the Lebesgue-
measure, one can also use a different measure ν,
i.e., 1

ν(X)

∫
X
e−cexp·r̂f (x) dν(x). This can be relevant in

high dimensions, where meaningful data points often lie
close to a lower-dimensional manifold (Cayton, 2005);
ν can then be chosen to concentrate on that region. In
practice, this can be implemented by sampling from a large
unlabeled data set Dart representing this region or learning
the measure ν using GANs (Goodfellow et al., 2014).

Theory In Appendix D, we prove that NOMU fulfills D1,
D2 and D5 (Propositions D.1.a, D.2.c and D.5.a), and dis-
cuss how NOMU fulfills D3 and D4. In Appendix A.1, we
show that, under certain assumptions, NOMU’s UBs can
be interpreted as pointwise worst-case UBs UBpw(x) :=
supf∈HDtrain

f(x) within a hypothesis class HDtrain of data-
explaining functions. In Appendix A.2, we explain how
UBpw(x) and UBpw(x) estimate posterior CBs of BNNs
(with a Gaussian prior on the weights), without performing
challenging variational inference. However, while exact pos-
terior CBs of BNNs lose D4 as their width goes to infinity,
NOMU’s UBs are capable of retaining D4 in this limit.

4. Experimental Evaluation
In this section, we experimentally evaluate NOMU’s
model uncertainty estimate in multiple synthetic and real-
world regression settings (Section 4.1) as well as in high-
dimensional Bayesian optimization (Section 4.2).

Benchmarks We compare NOMU against four bench-
marks, each of which gives a model prediction f̂ and a
model uncertainty prediction σ̂f (see Appendix B.1 for for-
mulas). We calculate model-specific UBs at x ∈ X as
(f̂(x)∓ c σ̂f (x)) with calibration parameter c ∈ R≥0 and
use them to evaluate all methods. We consider three algo-
rithms that are specialized to model uncertainty for NNs: (i)
MC dropout (MCDO) (ii) deep ensembles (DE) and (iii) hy-
per deep ensembles (HDE) and a non-NN-based benchmark:
(iv) Gaussian process (GP) with RBF kernel.

4.1. Regression

To develop intuition, we first study the model UBs of all
methods on synthetic test functions with 1D–2D scarce input
training points without data noise (Section 4.1.1). We then
propose a novel generative test-bed and evaluate NOMU
within this setting (Section 4.1.2). Next, we analyze NOMU
on a real-world time series (Section 4.1.3). Finally, we eval-
uate NOMU on the real-world UCI data sets (Section 4.1.4).
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Figure 3. 1D synthetic test functions

4.1.1. TOY REGRESSION

Setting We consider ten different 1D functions whose
graphs are shown in Figure 3. Those include the popular
Levy and Forrester function with multiple local optima.8

All functions are transformed to X := [−1, 1] =: f(X).
For each function, we conduct 500 runs. In each run, we
randomly sample eight noiseless input training points from
X , such that the only source of uncertainty is model uncer-
tainty. For each run, we also generate 100 test points in the
same fashion to assess the quality of the UBs.

Metrics We report the average negative log (Gaussian)
likelihood (NLL), minimized over the calibration parame-
ter c, which we denote as NLLmin. Following prior work
(Khosravi et al., 2010; Kuleshov et al., 2018; Pearce et al.,
2018), we further measure the quality of UBs by contrast-
ing their mean width (MW) with their coverage probability
(CP). Ideally, MW should be as small as possible, while CP
should be close to 1. Since CP is counter-acting MW, we
consider ROC-like curves, plotting MW against CP for a
range of calibration parameters c, and report the area under
the curve (AUC) (see Appendix B.2.1 for details).

Algorithm Setup For each of the two NOMU sub-
networks, we use a feed-forward NN with three fully-
connected hidden layers à 210 nodes, ReLUs, and hyperpa-
rameters πexp = 0.01, πsqr = 0.1, cexp = 30. In practice, the
values for πexp, πsqr, and cexp can be tuned on a validation set.
However, for all synthetic experiments (Section 4.1.1 and
Section 4.1.2), we use the same values, which lead to good
results across all functions. Moreover, we set λ = 10−8

accounting for zero data-noise, `min = 0.001 and `max = 2.
In Appendix H.2, we provide an extensive sensitivity analy-
sis for the hyperparameters πexp, πsqr, cexp, `min and `max. This
analysis demonstrates NOMU’s robustness within a certain
range of hyperparameter values.

Furthermore, to enable a fair comparison of all methods,
we use generic representatives and do not optimize any of

8See sfu.ca/ ssurjano/optimization.html.
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Figure 4. UBs resulting from NOMU, GP, MCDO, and DE, HDE
for the Levy function (solid black line). For NOMU, we also show
σ̂f as a dotted blue line. Training points are shown as black dots.

them for any test function. We also choose the architectures
of all NN-based methods, such that the overall number of
parameters is comparable. We provide all methods with the
same prior information (specifically, this entails knowledge
of zero data noise), and set the corresponding parameters ac-
cordingly. Finally, we set all remaining hyperparameters of
the benchmarks to the values proposed in the literature. De-
tails on all configurations are provided in Appendix B.2.2.

Results Figure 4 exemplifies our findings, showing typ-
ical UBs for the Levy function as obtained in one run. In
Appendix B.2.4 we provide further visualisations. We find
that MCDO consistently yields tube-like UBs; in particu-
lar, its UBs do not narrow at training points, i.e., failing in
D2 (In-Sample) even though MCDO’s Bayesian interpreta-
tion requires D2 to hold (see Appendix D.2). Moreover, it
only fulfills D3 (Out-of-Sample) to a limited degree. We
frequently observe that DE leads to UBs of somewhat arbi-
trary shapes. This can be seen most prominently in Figure 4
around x ≈ −0.75 and at the edges of its input range, where
DE’s UBs are very different in width with no clear justi-
fication. Thus, also DE is limited in D3 (Out-of-Sample).
In addition, we sometimes see that also DE’s UBs do not
narrow sufficiently at training points, i.e., not fulfilling D2
(In-Sample). HDE’s UBs are even more random, i.e., pre-
dicting large model uncertainty at training points and some-
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Table 1. Ranks (1=best to 5=worst) for AUC and NLLmin.

NOMU GP MCDO DE HDE
FUNCTION AUC NLLMIN AUC NLLMIN AUC NLLMIN AUC NLLMIN AUC NLLMIN

ABS 1 1 3 1 3 4 1 1 5 5
STEP 2 2 4 3 2 3 1 1 5 5
KINK 1 1 3 1 4 4 1 1 5 5
SQUARE 2 2 2 1 4 4 2 3 5 5
CUBIC 2 2 1 1 3 4 3 3 5 5
SINE 1 2 1 2 1 1 1 2 1 5 5
SINE 2 2 2 3 1 1 2 3 3 5 5
SINE 3 1 1 4 1 3 4 1 1 5 5
FORRESTER 1 2 1 1 3 4 3 3 5 5
LEVY 1 1 4 3 1 4 3 1 5 5

times zero model uncertainty in gaps between them (e.g.,
x ≈ −0.75). In contrast, NOMU displays the behaviour it
is designed to show. Its UBs nicely tighten at training points
and expand in-between (D1–D3, for D4 (Metric Learning)
see Appendix D.4). Like NOMU, the GP fulfills D2 (In-
Sample) and D3 (Out-of-Sample) well, but cannot account
for D4 (Metric Learning) (a fixed kernel does not depend on
the model prediction). Table 1 provides the ranks achieved
by each algorithm (see Appendix B.2.3 for corresponding
metrics). We calculate the ranks based on the medians and
a 95% bootstrap CI of AUC and NLLmin. An algorithm
loses one rank to each other algorithm that significantly
dominates it. Winners are marked in grey. We observe that
NOMU is the only algorithm that never comes in third place
or worse. Thus, while some algorithms do particularly well
in capturing uncertainties of functions with certain charac-
teristics (e.g., RBF-GPs for polynomials), NOMU is the
only algorithm that consistently performs well. HDE’s bad
performance can be explained by its randomness and the
fact that it sometimes predicts zero model uncertainty out-
of-sample. For 2D, we provide results and visualizations in
Appendix B.2.3 and B.2.4 highlighting similar characteris-
tics of all the algorithms as in 1D.

4.1.2. GENERATIVE TEST-BED

Setting Instead of only relying on a limited number of
data-sets, we also evaluate all algorithms on a generative test-
bed, which provides an unlimited number of test-functions.
The importance of using a test-bed (to avoid over-fitting
on specific data-sets) has also been highlighted in a recent
work by Osband et al. (2021). For our test-bed, we generate
200 different data-sets by randomly sampling 200 differ-
ent test-functions from a BNN with i.i.d centered Gaussian
weights and three fully-connected hidden layers with nodes
[210, 211, 210] and ReLU activations. From each of these
test-functions we uniformly at random sample ntrain = 8 · d
input training points and 100 · d test data points, where
d refers to the input dimension. We train all algorithms
on these training sets and determine the NLL on the corre-
sponding test sets averaged over the 200 test-functions. This
metric converges to the Kullback-Leibler divergence to the

Table 2. Average NLL (without const. ln(2π)/2) and a 95% CI over
200 BNN samples. Winners are marked in grey.

FUNCTION NOMU GP MCDO DE HDE

BNN1D -1.65±0.10 -1.08±0.22 -0.34±0.23 -0.38±0.36 8.47±1.00
BNN2D -1.16±0.05 -0.52±0.11 -0.33±0.13 -0.77±0.07 9.11±0.39
BNN5D -0.37±0.02 -0.33±0.02 -0.05±0.04 -0.13±0.03 8.41±1.00

exact BNN-posterior (see Theorem B.7). We calibrate by
choosing per dimension an optimal value of c in terms of
average NLL, which does not depend on the test-function.

Results In Table 2, we provide the results for input dimen-
sions 1, 2 and 5. We see that NOMU outperforms all other al-
gorithms including MCDO, which is a variational inference
method to approximate this posterior (Gal & Ghahramani,
2016). See Appendix B.2.5 for a detailed explanation of the
experiment setting and further results in modified settings
including a discussion of higher dimensional settings.

4.1.3. SOLAR IRRADIANCE TIME SERIES

Setting Although the current version of NOMU is specif-
ically designed for scarce settings without data noise, we
are also interested to see how well it performs in settings
where these assumptions are not satisfied. To this end, we
now study a setting with many training points and small
non-zero data noise. This allows us to analyze how well
NOMU captures D5 (Vanishing). We consider the popular
task of interpolating the solar irradiance data (Steinhilber
et al., 2009) also studied in (Gal & Ghahramani, 2016). We
scale the data to X = [−1, 1] and split it into 194 training
and 197 test points. As in (Gal & Ghahramani, 2016), we
choose five intervals to contain only test points. Since the
true function is likely of high frequency, we set λ = 10−19

for NOMU and the benchmarks’ regularization accordingly.
To account for small non-zero data noise, we set πexp = 0.05,
`min = 0.01 and use otherwise the same hyperparameters as
in Section 4.1.1.

Results Figure 5 visualizes NOMU’s UBs. We see that
NOMU manages to fit the training data well while capturing
model uncertainty between input training points. In particu-

1.0 0.5 0.0 0.5 1.0

1

0

1 NOMU:  f ± 2 f 

Figure 5. NOMU’s model prediction (solid), model uncertainty
(dotted) and UBs (shaded area) on the solar irradiance data. Train-
ing and test points are shown as black dots and red crosses.
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Table 3. Average NLL and a 95% normal-CI over 20 runs for UCI
data sets. Winners are marked in grey.

DATASET NOMU DE MCDO MCDO2 LL NLM-HPO NLM

BOSTON 2.68 ±0.11 2.41 ±0.49 2.46 ±0.11 2.40 ±0.07 2.57 ±0.09 2.58 ±0.17 3.63 ±0.39
CONCRETE 3.05 ±0.06 3.06 ±0.35 3.04 ±0.03 2.97 ±0.03 3.05 ±0.07 3.11 ±0.09 3.12 ±0.09
ENERGY 0.77 ±0.06 1.38 ±0.43 1.99 ±0.03 1.72 ±0.01 0.82 ±0.05 0.69 ±0.05 0.69 ±0.05
KIN8NM -1.08 ±0.01 -1.20 ±0.03 -0.95 ±0.01 -0.97 ±0.00 -1.23 ±0.01 -1.12 ±0.01 -1.13 ±0.01
NAVAL -5.63 ±0.39 -5.63 ±0.09 -3.80 ±0.01 -3.91 ±0.01 -6.40 ±0.11 -7.36 ±0.15 -7.35 ±0.01
CCPP 2.79 ±0.01 2.79 ±0.07 2.80 ±0.01 2.79 ±0.01 2.83 ±0.01 2.79 ±0.01 2.79 ±0.01
PROTEIN 2.79 ±0.01 2.83 ±0.03 2.89 ±0.00 2.87 ±0.00 2.89 ±0.00 2.78 ±0.01 2.81 ±0.00
WINE 1.08 ±0.04 0.94 ±0.23 0.93 ±0.01 0.92 ±0.01 0.97 ±0.03 0.96 ±0.01 1.48 ±0.09
YACHT 1.38 ±0.28 1.18 ±0.41 1.55 ±0.05 1.38 ±0.01 1.01 ±0.09 1.17 ±0.13 1.13 ±0.09

lar, large gaps between input training points are successfully
modeled as regions of high model uncertainty (D3 (Out-of-
Sample)). Moreover, in regions highly populated by input
training points, NOMU’s model uncertainty vanishes as re-
quired by D5 (Vanishing). Plots for the other algorithms
are provided in Appendix B.2.6, where we observe similar
patterns as in Section 4.1.1.

4.1.4. UCI DATA SETS

Setting Recall that NOMU is specifically tailored to noise-
less settings with scarce input training data. However, even
the current version of NOMU, which does not explicitly
model data noise, already performs on par with existing
benchmarks on real-world regression tasks with data noise.
To demonstrate this, we test its performance on (a) the UCI
data sets proposed in Hernández-Lobato & Adams (2015), a
common benchmark for uncertainty quantification in noisy,
real-world regression, and (b) the UCI gap data set exten-
sion proposed in Foong et al. (2019). We consider exactly
the same experiment setup as proposed in these works, with
a 70/20/10-train-validation-test split, equip NOMU with a
shallow architecture of 50 hidden nodes, and train it for 400
epochs. Validation data are used to calibrate the constant c
on NLL. See Appendix B.2.7 for details on NOMU’s setup.

Results Table 3 reports NLLs on test data, averaged across
20 splits, compared to the current state-of-the-art. We re-
port the NLL for MCDO (Gal & Ghahramani, 2016) and
DE (Lakshminarayanan et al., 2017) from the original pa-
pers. Moreover, we reprint the best results (for comparable
network sizes) of neural linear models (NLMs) with and
without hyperparameter optimization (HPO) from (Ober &
Rasmussen, 2019) (NLM-HPO, NLM), linearized laplace
(LL) (Foong et al., 2019) and a recent strong MCDO base-
line (MCDO2) from (Mukhoti et al., 2018). It is surprising
that, even though the current design of NOMU does not
yet explicitly incorporate data noise, it already performs
comparably to state-of-the-art results. We obtain similar
results for the UCI gap data. See Appendix B.2.7 for more
details on this experiment.

4.2. Bayesian Optimization

In this section, we assess the performance of NOMU in
high-dimensional noiseless Bayesian optimization (BO).

Setting In BO, the goal is to maximize an unknown
expensive-to-evaluate function, given a budget of function
queries. We use a set of test functions with different char-
acteristics from the same library as before, but now in 5 to
20 dimensions d, transformed to X = [−1, 1]d, f(X) =
[−1, 1].9 Additionally, we again use Gaussian BNNs to
create a generative test-bed consisting of a large variety
of test functions (see Section 4.1.2). For each test func-
tion, we randomly sample 8 initial points (xi, f(xi)) and
let each algorithm choose 64 further function evaluations
(one by one) using its upper UB as acquisition function.
This corresponds to a setting where one can only afford
72 expensive function evaluations in total. We provide de-
tails regarding the selected hyperparameters for each algo-
rithm in Appendix B.3.1. We measure the performance of
each algorithm based on its final regret |maxx∈X f(x) −
maxi∈{1,...,72} f(xi)|/|maxx∈X f(x)|.
For each algorithm, the UBs must be calibrated by choosing
appropriate values of c. We do so in the following straight-
forward way: First, after observing the 8 random initial
points, we determine those two values of c for which the
resulting mean width (MW) of the UBs is 0.05 and 0.5,
respectively (MW SCALING).10 We perform one BO run
for both resulting initial values of c. Additionally, if in a
BO run, an algorithm were to choose a point xi′ very close
to an already observed point xi, we dynamically increase
c to make it select a different one instead (DYNAMIC C;
see Appendix B.3.2 for details). A value of 0.05 in MW
SCALING corresponds to small model uncertainty, such that
exploration is mainly due to DYNAMIC C. Smaller values
than 0.05 thus lead to similar outcomes. In contrast, a value
of 0.5 corresponds to large model uncertainties, such that
DYNAMIC C is rarely used. Only for the “plain GP (pGP)”
we use neither MW SCALING nor DYNAMIC C, as pGP
uses its default calibration (c is determined by the built-
in hyperparameter optimization in every step). However, a
comparison of GP and pGP suggests that MW SCALING and
DYNAMIC C surpass the built-in calibration (see Table 4).
As a baseline, we also report random search (RAND).

Results In Table 4, we present the BO results in 5D, 10D
and 20D. We show the average final regret per dimension
across the five functions. For each algorithm and dimen-
sion, we give the results corresponding to the MW scaling
parameter (0.05 or 0.5) that minimizes the average final

9These functions are designed for minimization. We multiply
them by −1 and equivalently maximize instead.

10We fix MW instead of c, since the scales of the algorithms
vary by orders of magnitude.
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Table 4. BO results: average final regrets per dimension and ranks
for each individual function (1=best to 7=worst).

FUNCTION NOMU GP MCDO DE HDE PGP RAND

LEVY5D 1 1 6 3 3 4 7
ROSENBROCK5D 1 1 1 1 2 5 7
G-FUNCTION5D 2 3 1 4 2 3 7
PERM5D 3 1 1 5 7 2 4
BNN5D 1 1 4 1 4 1 7

Average Regret 5D 2.87e−2 5.03e−2 4.70e−2 5.18e−2 7.13e−2 4.14e−2 1.93e−1

LEVY10D 1 3 5 6 1 1 6
ROSENBROCK10D 1 1 2 6 3 2 7
G-FUNCTION10D 2 5 1 3 2 5 7
PERM10D 2 1 2 6 2 2 1
BNN10D 1 2 1 1 3 1 7

Average Regret 10D 8.40e−2 1.17e−1 6.96e−2 1.15e−1 9.32e−2 9.46e−2 2.35e−1

LEVY20D 1 1 5 7 1 1 6
ROSENBROCK20D 2 2 2 6 1 4 6
G-FUNCTION20D 1 4 5 1 1 3 7
PERM20D 3 5 3 2 3 3 1
BNN20D 1 2 2 2 6 1 7

Average Regret 20D 1.12e−1 1.33e−1 1.39e−1 1.71e−1 1.37e−1 1.17e−1 2.80e−1

regret across that dimension (see Appendix B.3.3 for both
MWs). In practice, one often only knows the dimensionality
of a given BO task, which is why we use the average final
regret per dimension as the criterion for setting the optimal
MW. For each individual function, we also present the ranks
based on the final regret and a 95% CI over 100 (5D) and 50
(10-20D) runs. We see that NOMU performs as well or bet-
ter than all benchmarks in terms of average final regret. By
inspecting the ranks achieved for each individual function,
we further observe that NOMU is never ranked worse than
3rd. In contrast, the performance of the benchmarks heavily
depends on the test function; and each benchmark is ranked
4th and worse multiple times. For Perm10D/20D we see
that RAND performs best. However, due to a flat optimum
of Perm, all algorithms achieve similar (very small) final
regrets. Finally, we see that NOMU is always ranked first
for the BNN test functions. Figure 6 shows the regret plot
for BNN20D (see Appendix B.3.4 for all regret plots).

8 24 40 56 72
Number of Evaluations

10
−1

10
0

R
eg

re
t

pGP
RAND

NOMU
HDE

GP
MCDO

DE

Figure 6. Regret plot for BNN20D. For each BO step, we show the
regrets averaged over 50 runs (solid lines) with 95% CIs.

5. Conclusion
We have introduced NOMU, a new algorithm for estimating
model uncertainty for NNs, specialized for scarce and noise-
less settings. By using a specific architecture and carefully-
designed loss function, we have ensured that NOMU satis-
fies five important desiderata regarding model uncertainty
that any method should satisfy. However, when analyz-
ing model uncertainty decoupled from data noise, we have
experimentally uncovered that, perhaps surprisingly, estab-
lished state-of-the-art methods fail to reliably capture some
of the desiderata, even those that are required by Bayesian
theory. In contrast, NOMU satisfies all desiderata, matches
the performance of all benchmarks in regression tasks, and
performs as well or better in noiseless BO tasks. We see
great potential to further improve NOMU, for example by
adapting the loss, or by modifying the connections between
the two sub-NNs. We also envision several extensions of
NOMU, including its application to classification, employ-
ing different architectures (CNNs, GNNs, RNNs or Trans-
formers), and incorporating data noise.
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We thank Marius Högger and Aurelio Dolfini for insightful
discussions and their excellent research assistance in im-
plementing the Bayesian optimization experiments and the
UCI data set experiments, respectively. Furthermore, we
thank the anonymous reviewers for helpful comments. This
paper is part of a project that has received funding from
the European Research Council (ERC) under the European
Union’s Horizon 2020 research and innovation programme
(Grant agreement No. 805542).

Page 9 of 51



NOMU: Neural Optimization-based Model Uncertainty

References
Ashukha, A., Lyzhov, A., Molchanov, D., and Vetrov,

D. Pitfalls of in-domain uncertainty estimation and
ensembling in deep learning. In International Confer-
ence on Learning Representations, 2020. URL https:
//openreview.net/forum?id=BJxI5gHKDr. 2

Baptista, R. and Poloczek, M. Bayesian optimization of
combinatorial structures. In International Conference on
Machine Learning, pp. 462–471. PMLR, 2018. URL http:
//proceedings.mlr.press/v80/baptista18a/baptista18a.pdf.
4

Bergstra, J. and Bengio, Y. Random search for hyper-
parameter optimization. Journal of machine learning
research, 13(2), 2012. URL https://www.jmlr.org/papers/
v13/bergstra12a.html. 18

Blundell, C., Cornebise, J., Kavukcuoglu, K., and Wierstra,
D. Weight uncertainty in neural networks. In 32nd Inter-
national Conference on Machine Learning (ICML), 2015.
URL http://proceedings.mlr.press/v37/blundell15.pdf. 2,
3, 38

Bronstein, M. M., Bruna, J., LeCun, Y., Szlam, A., and Van-
dergheynst, P. Geometric deep learning: going beyond
euclidean data. IEEE Signal Processing Magazine, 34(4):
18–42, 2017. URL https://arxiv.org/abs/1611.08097. 40,
41

Caruana, R., Niculescu-Mizil, A., Crew, G., and Ksikes,
A. Ensemble selection from libraries of models. In
Proceedings of the twenty-first international conference
on Machine learning, pp. 18, 2004. URL https://www.
cs.cornell.edu/∼caruana/ctp/ct.papers/caruana.icml04.ic
dm06long.pdf. 18

Cayton, L. Algorithms for manifold learning. Univ. of
California at San Diego Tech. Rep, 12(1-17):1, 2005.
URL https://www.lcayton.com/resexam.pdf. 5, 26

Foong, A. Y., Li, Y., Hernández-Lobato, J. M., and Turner,
R. E. “In-between” uncertainty in bayesian neural net-
works. arXiv preprint arXiv:1906.11537, 2019. URL
https://arxiv.org/abs/1906.11537. 8, 29, 30

Fort, S., Hu, H., and Lakshminarayanan, B. Deep en-
sembles: A loss landscape perspective. arXiv preprint
arXiv:1912.02757, 2019. URL https://arxiv.org/abs/1912
.02757. 2

Gal, Y. and Ghahramani, Z. Dropout as a bayesian ap-
proximation: Representing model uncertainty in deep
learning. In 33rd International Conference on Ma-
chine Learning (ICML), pp. 1050–1059, 2016. URL
https://proceedings.mlr.press/v48/gal16.html. 2, 7, 8, 20,
27, 29, 38

Garnelo, M., Rosenbaum, D., Maddison, C., Ramalho, T.,
Saxton, D., Shanahan, M., Teh, Y. W., Rezende, D., and
Eslami, S. A. Conditional neural processes. In Interna-
tional Conference on Machine Learning, pp. 1704–1713.
PMLR, 2018a. URL https://proceedings.mlr.press/v80/
garnelo18a.html. 3, 46

Garnelo, M., Schwarz, J., Rosenbaum, D., Viola, F.,
Rezende, D. J., Eslami, S., and Teh, Y. W. Neural pro-
cesses. arXiv preprint arXiv:1807.01622, 2018b. URL
https://arxiv.org/abs/1807.01622. 3, 46

Ghahramani, Z. Probabilistic machine learning and artificial
intelligence. Nature, 521(7553):452–459, 2015. URL
https://www.nature.com/articles/nature14541. 1
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Appendix

A. Theoretical Analysis of NOMU
In this section, we

1. first provide a theoretical motivation for the design of
NOMU and establish via Theorem A.1 a connection to
pointwise worst-case UBs UBpw, UBpw (Appendix A.1).

2. Next, we provide a Bayesian interpretation of those point-
wise worst-case UBs UBpw, UBpw and elaborate on rela-
tive uncertainties (Appendix A.2).

3. Then, we discuss the case if HDtrain is not upwards di-
rected as assumed in Theorem A.1 and further show how
we deal with this challenge (Appendix A.3).

4. Finally, we prove Theorem A.1 (Appendix A.4).

A.1. Relating NOMU to Pointwise Worst-Case
Uncertainty Bounds

In this section, we provide a theoretical motivation for the
design of NOMU. To this end, we first define worst-case
UBs. We then state a theorem connecting these worst case
bounds and NOMU’s UBs via NOMU’s loss function. In
what follows, we assume zero data noise σn = 0.

Consider a hypothesis classH given as a subset of a Banach
space of functions f : X → Y . Furthermore, letHDtrain :=
{f ∈ H : f(xtrain

i ) = ytrain
i , i = 1, . . . , ntrain} denote the set of

all functions from the hypothesis class that fit through the
training points and let f̂ ∈ HDtrain be a prediction function
(e.g., a NN trained on Dtrain). Worst-case bounds within the
classHDtrain can be defined pointwise for each x ∈ X as:

UBpw(x) := inf
f∈HDtrain

f(x), (5)

UBpw(x) := sup
f∈HDtrain

f(x). (6)

By definition, these UBs are the tightest possible bounds
that cover every f ∈ HDtrain (i.e., UBpw(x) ≤ f(x) ≤
UBpw(x) ∀x ∈ X). From a Bayesian perspective, such
bounds correspond to credible bounds for α = 1 if the sup-
port of the prior is contained in H. Interestingly, if H is
the class of regularized NNs, these bounds can also be in-
terpreted as an approximation of credible bounds for α < 1
with respect to a Gaussian prior on the parameters of a NN
(see Appendix A.2. for a derivation).11

In applications like BO, when optimizing an acquisition
function based on these pointwise-defined bounds, we re-
quire the UBs for all x ∈ X . Thus, numerically optimizing
such an acquisition function is practically infeasible, as it
would require solving the optimization problems from (5)

11Standard BNNs also aim to approximate the posterior coming
from exactly this prior.

millions of times. In NOMU, we circumvent this problem
by constructing the UBs for all x ∈ X simultaneously. We
can do so by only solving a single optimization problem,
i.e., minimizing the NOMU loss from (4).

In the following theorem, we show that these pointwise-
defined UBs can be computed by solving a single optimiza-
tion problem under the following assumption.

Assumption 1 (UPWARDS DIRECTED) For every f1, f2 ∈
HDtrain there exists an f ∈ HDtrain such that f(x) ≥
max(f1(x), f2(x)) for all x ∈ X .

Theorem A.1 (SINGLE OPTIMIZATION PROBLEM) Let
X =

∏d
i=1[ai, bi] ⊂ Rd, ai < bi, let Y = R, and let

Dtrain be a nonempty set of training points. Furthermore,
let HDtrain ⊂ (C(X,Y ), ‖ · ‖∞) be compact and upwards
directed and f̂ ∈ HDtrain . Then, for every strictly-increasing
and continuous u : R→ R, it holds that

UBpw = arg max
h∈HDtrain

∫

X

u(h(x)− f̂(x)) dx. (7)

In words, UBpw can be calculated via the single optimization
problem (7) onHDtrain .12

Proof. See Appendix A.4.

In practice, Assumption 1 can be violated such that a
straightforward calculation of the r.h.s. of (7) for an ar-
bitrary u would result in unreasonable UBs. However, for a
sensible choice of u, NOMU’s UBs based on the r.h.s. of
(7) still satisfy our Desiderata D1–D5, similar to UBpw (see
Appendix A.3 for a discussion).

The connection of NOMU’s UBs to the pointwise worst-
case bounds UBpw, UBpw becomes clear by observing that
minimizing NOMU’s loss function Lπ (Equation (4)) can
be interpreted as solving the r.h.s of (7) for a specific choice
of u, whenH is the class of regularized NNs. In detail:

• Term (a) of the NOMU-loss (4) implements that f̂ solves
the regression task and thus f̂ ∈ HDtrain up to numerical
precision (if the regularization λ is small enough).

• Term (b) enforces r̂f (xtrain
i ) ≈ 0 and thus when defining

h := f̂ + r̂f , we directly obtain h(xtrain
i ) ≈ ytrain

i corre-
sponding to the constraint h ∈ HDtrain in (7).

• While terms (a) and (b) enforce the constraints of (7),
term (c) is the objective function of (7) for the specific
choice of u(z) := −e−cexpz, cexp ∈ R≥0.

12We formulate Theorem A.1 for upper UBs UBpw. The analo-
gous statement also holds for lower UBs UBpw.
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A.2. Bayesian Interpretation of Pointwise Worst-Case
Uncertainty Bounds

In this section, we provide a Bayesian interpretation of
the pointwise worst-case UBs UBpw, UBpw and elaborate on
relative uncertainties.

In the following, we denote by NN f
θ : X → Y a (stan-

dard) NN for model predictions. Note that NN f
θ does not

represent the whole NOMU architecture but can be used as
f̂ -sub-network in the NOMU architecture NN θ. Further-
more, we consider the hypothesis class of regularized NNs,
i.e., H :=

{
NN f

θ : ‖θ‖2 ≤ γ
}

. Recall that one needs to
assume that the prior is fully concentrated on H in order
to interpret the pointwise UBs UBpw, UBpw as α=1 CBs.
In the following, we will present an alternative Bayesian
interpretation of UBpw.

Many other approaches (MC dropout, BNNs) assume a
Gaussian prior on the parameters of the NNs, i.e, θ ∼
N (0, σ2

θI), and try to approximate the corresponding poste-
rior CBs. Interestingly, UBpw and UBpw can also be seen as
approximations of α<1 CBs in the case of such a Gaussian
prior on the parameters. This can be seen as follows:

Let the data generating process be given as y = NN f
θ + ε,

with ε ∼ N (0, σ2
n ).13 For a Gaussian prior on the parame-

ters θ ∼ N (0, σ2
θI) the negative log posterior can be written

as

− log(p(θ|Dtrain)) =
1

2σ2
n

=:L(θ)︷ ︸︸ ︷
ntrain∑

i=1

(
NN f

θ (xtrain
i )− ytrain

i

)2

+
‖θ‖22
2σ2

θ

+ ntrain log(σn) + Cntrain,σθ .

(8)

for a constant Cntrain,σθ := ntrain

2 log(2π) + 1
2 log(2πσ2

θ).
Then the pointwise upper UBs can be reformulated to

UBpw(x)
def.
= sup

f∈HDtrain

f(x) = lim
σn→0

sup
f∈H̃σn

Dtrain

f(x) (9)

with

H̃σn
Dtrain : =

{
NN f

θ :
σ2
θ

σ2
n
L(θ) + ‖θ‖22 ≤ γ

}
(10a)

=
{
NN f

θ : log(p(θ|Dtrain)) ≥ γ̃σn

}
(10b)

where γ̃σn := − γ
2σ2
θ
− ntrain log(σn)− Cntrain,σθ .

Therefore, for small data noise σn ≈ 0 we obtain from
13For simplicity we assume homoskedastic noise in this section.

Equations (9) and (10b) that

UBpw(x) ≈ sup
θ

(
NN f

θ (x) : p(θ|Dtrain) > eγ̃σn

)
. (11)

In words, from a Bayesian point of view, we seek the highest
value NN f

θ (x) for which the posterior density p(θ|Dtrain) >
eγ̃σn , which can be seen as a heuristic to approximate CBs
analogously to the MAP on the parameter-space as a popular
heuristic to approximate the posterior mean.
Remark A.2 If p(NN f

θ (x)|Dtrain) = p(θ|Dtrain) and this
posterior is unimodal, Equation (11) is a classical high-
est posterior density interval (HPDI). However, typically
p(NN f

θ (x)|Dtrain) 6= p(θ|Dtrain). Thus, NOMU is only a
heuristic to approximate Gaussian BNN posterior CBs
(analogously to the MAP). Heiss et al. (2022) show that
such heuristics can perform better than exact BNNs (e.g., in
contrast to BNNs, NOMU fulfills D4 also for infinite-width).

A.2.1. FROM ABSOLUTE TO RELATIVE MODEL
UNCERTAINTY

If the prior scale (e.g., γ or σθ in the above mentioned
approaches) is known, in theory no further calibration is
needed and one can interpret the resulting UBs in abso-
lute terms (Kuleshov et al., 2018). However, typically, the
prior scale is unknown and the resulting UBs can only be
interpreted in terms of relative model uncertainty (i.e., how
much more model uncertainty does one have at one point
x compared to any other point x′?) and in a second step
careful calibration of the resulting UBs is required.

Thus, there are two (almost) independent problems: First,
the fundamental concept of how to estimate relative model
uncertainty (such as MC dropout, deep ensembles, hyper
deep ensembles or NOMU) and second, the calibration of
these UBs. In this paper, we do not mix up these two
challenges and only focus on the first one. Furthermore,
desiderata D1–D4 and our metrics AUC and NLLmin do not
depend on the scaling of the uncertainty. Whenever we use
NLL as a metric, we make sure to calibrate the uncertainties
by a scalar c to ensure that our evaluations do not depend
on the scaling of the uncertainty predictions.

A.3. A Note on Theorem A.1

In practice, the set HDtrain often is not upwards directed
for typical NN-architectures and Equation (7) of The-
orem A.1 is not fulfilled in general. Indeed, h∗ :=
arg maxh∈HDtrain

∫
X
u(h(x) − f̂(x)) d(x) can be much

more overconfident than UBpw. However, in the follow-
ing we will motivate why for a suitably chosen u the relative
model uncertainty of h∗ still fulfills the desiderata D1 (Non-
Negativity), D2 (In-Sample) and D3 (Out-of-Sample).
Remark A.3 In our proposed final algorithm from Sec-
tion 3 NOMU, we incorporated D4 (Metric Learning) by
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modifying the network architecture as presented in Sec-
tion 3.2.

Problem First, we give an example of a specific NN-
architecture, where Theorem A.1 is not fulfilled due to a
violation of the upwards directed assumption. Note that
from a Lagrangian perspective it is equivalent to add a term
−λ ‖θ‖22 , λ ≥ 0 to the target function of (7) instead of
bounding ‖θ‖22 ≤ γ2 as a constraint in HDtrain . Moreover,
for a specific NN-architecture it is shown that regularizing
‖θ‖22 is equivalent to regularizing the L2-norm of the second
derivative of the function f = NN f

θ (Heiss et al., 2019),
i.e., regularizing

∫
X
f ′′(x)2 dx. If we choose for example

u = id : R → R, then increasing h in-between the two
close points in the middle of Figure 7, would improve the
target function of (7)

∫
u(h(x) − f̂(x)) dx less than the

additional regularization cost resulting from the additional
second derivative when increasing h. Therefore, h∗ will
be below the mean prediction f̂ in this region, break D1
(Non-Negativity), and h∗ 6= UBpw.

መ𝑓
ℎ∗

Figure 7. h∗ would not fulfill D1 (Non-Negativity), if u was cho-
sen as the identity and the architecture from Heiss et al. (2019)
was used.

Solution However, if e.g., we choose u : x 7→ −e−cexpx

with cexp large enough, we highly penalize h < f̂ , and
thus f̂ ≤ h∗ D1 (Non-Negativity) is fulfilled. Since
h∗ ∈ HDtrain , it follows that h∗(xtrain

i ) − f̂(xtrain
i ) = 0 for

all training points. This together with f̂ ≤ h∗ implies that
∇
(
h∗ − f̂

)
(xtrain
i ) = 0 at the training points (in the interior

of X), which subsequently interrupts the downwards trend
of h∗ − f̂ from one side of a point to the other side of a
point as depicted in Figure 8.

መ𝑓
ℎ∗

Figure 8. h∗ fulfills D1–D3 if u prevents it from getting negative.
See Appendix D for a detailed discussion how NOMU ful-
fills all five desiderata.

A.4. Proof of Theorem A.1

In the following, we prove Theorem A.4, an even more gen-
eral version of Theorem A.1. The statement of Theorem A.1
follows from Theorem A.4 by setting

1. X =
∏d
i=1[ai, bi] ⊂ Rd compact, Y := R

2. µ = λd, where λd is the Lebesgue measure on Rd (which
is finite on every compact set and has full support).

Theorem A.4 Let X be a nonempty topological space
equipped with a finite measure µ with full support14, let Y be
a normed and totally ordered space and letDtrain denote a set
of observations. Moreover, letHDtrain ⊂ (C(X,Y ), ‖ · ‖∞)

be compact, and f̂ ∈ HDtrain . Assume further that HDtrain

is upwards directed (see Assumption 1). Then, for every
strictly-increasing and continuous u : Y → R it holds that

UBpw = arg max
h∈HDtrain

∫

X

u(h(x)− f̂(x)) dµ(x). (12)

Proof. First note that since µ is finite and h, f̂ and UBpw are
bounded sinceHDtrain is assumed to be compact with respect
to the ‖ · ‖∞-topology, it holds that the integral in (12) is
finite.

Let h∗ ∈ HDtrain denote an optimizer of (12), which exists
since HDtrain is assumed to be compact and the operator
h 7→

∫
X
u(h(x)− f̂(x)) dµ(x) is continuous on the ‖ · ‖∞-

topology.

We want to show that h∗(x) = UBpw(x) for every x ∈ X .

Note that per definition for all x ∈ X and h ∈ HDtrain it
holds that

UBpw(x) = sup
f∈HDtrain

f(x) ≥ h(x). (13)

Thus UBpw(x) ≥ h∗(x) for all x ∈ X.
For the reverse inequality assume on the contrary that there
exists an x′ ∈ X such that

UBpw(x′) > h∗(x′). (14)

Then, we define fx′ := arg maxf∈HDtrain
f(x′), which ex-

ists because of compactness and continuity. Since fx′ and
h∗ are both continuous and fx′(x′) = UBpw(x′) > h∗(x′)
there exists a neighbourhood Ux′ of x′ such that

fx′(x) > h∗(x) for all x ∈ Ux′ , (15)

Using the upwards directed property with f1 := fx′ and
f2 := h∗, it follows that there exists a h̃ ∈ HDtrain with

h̃(x) ≥ max(fx′(x), h∗(x)) for all x ∈ X. (16)

14I.e. every nonempty open set has non-zero measure.

Page 15 of 51



Appendix of NOMU: Neural Optimization-based Model Uncertainty

Using (15) together with (16) implies further that

h̃(x) ≥ h∗(x) for all x ∈ X and (17)

h̃(x) > h∗(x) for all x ∈ Ux′ . (18)

However, since u is strictly increasing and µ(Ux′) > 0 by
the full support assumption, we get that
∫

X

u(h̃(x)− f̂(x)) dµ(x) >

∫

X

u(h∗(x)− f̂(x)) dµ(x),

(19)

which is a contradiction to the assumption that h∗ is the
optimizer of (12). Therefore, it holds that UBpw(x) ≤ h∗(x)
for all x ∈ X .

In total we get that UBpw(x) = h∗(x) for all x ∈ X , which
concludes the proof.

Remark A.5 For our algorithm we select H :={
NN f

θ : ‖θ‖2 ≤ γ
}

to be the class of regularized NNs with
a continuous activation function. Thus, the assumption of
HDtrain being compact and a subset of C(X,Y ) is fulfilled.

B. Experiments
B.1. Benchmark Methods

In this section, we give a brief overview of each considered
benchmark algorithm.

B.1.1. GAUSSIAN PROCESS (GP)

A GP defines a distribution over a set of functions {f : X →
Y } where every finite collection of function evaluations
follows a Gaussian distribution (see Williams & Rasmussen
(2006) for a survey on GPs). A GP is completely specified
by a meanm : X → Y and a kernel function kπ : X×X →
Y , where π denotes a tuple of hyper-parameters. More
formally, for any finite set of k ∈ N input points x :=
{x1, . . . , xk} , xi ∈ X and for f := (f1, . . . , fk) ∈ Y k

with fi := f(xi) it holds that

f ∼ Nk (m(x),Kπ(x,x)) , (20)

i.e., it follows a k-dimensional Gaussian distribution with co-
variance (or Gramian) matrix [Kπ(x,x)]i,j := kπ(xi, xj),
and mean vector m(x) := (m(x1), . . . ,m(xk)). Let

f ∼ GP(m(·), kπ(·, ·)), (21)

denote a GP with mean function m and kernel kπ .

In the following, we summarize the main steps of GP re-
gression for a 1D-setting and m ≡ 0.

1. Define probabilistic model:

y = f(x) + ε. (22)

2. Specify prior (kernel and data noise):

f ∼ GP(0, kπ(·, ·)), (23)

ε|x ∼ N
(
0, σ2

n (x)
)
. (24)

3. Calculate likelihood for training points x and
y := {y1, . . . , yk}:

y|x, π ∼ Nk
(
0,Kπ(x,x) + diag(σ2

n (x)
)
, (25)

with σ2
n (x) :=

(
σ2

n (x1), . . . , σ2
n (xk)

)
.

4. Optimize kernel hyper-parameters (optional):

π̂ ∈ arg max
π

p(y|x, π). (26)

5. Calculate posterior predictive distribution for new point
(x∗):

f(x∗)|x∗,y,x, π̂ ∼ N
(
µ̂(x∗), σ̂2

f (x∗)
)
, (27)

where for A :=
(
Kπ̂(x,x) + diag(σ2

n (x)
)

and
kπ̂(x∗,x) := (kπ̂(x∗, x1), . . . , kπ̂(x∗, xk)) the parameters
are given as

µ̂(x∗) :=kπ̂(x∗,x)A−1f(x) (28)

σ̂2
f (x∗) :=kπ̂(x∗, x∗)− kπ̂(x∗,x)A−1kπ̂(x∗,x)T . (29)

Setting the data noise to zero σn ≡ 0 in (28) and (29) yields
the mean prediction f̂ and the model uncertainty prediction
σ̂2
f as

f̂(x∗)=kπ̂(x∗,x) (Kπ̂(x,x))
−1
f(x), (30)

σ̂2
f (x∗)=kπ̂(x∗, x∗)−kπ̂(x∗,x)(Kπ̂(x,x))

−1
kπ̂(x∗,x)T,

(31)

which are then used to define the Gaussian process’s UBs by(
f̂(x)∓ c σ̂f (x)

)
with a calibration parameter c ∈ R≥0.

B.1.2. MONTE CARLO DROPOUT (MCDO)

Let NN f
θ = WK ◦ φ ◦WK−1 ◦ . . . ◦ φ ◦W 1(x) be an

NN with K − 1 hidden layers, activation function φ, and
fixed parameters θ = {W 1, . . . ,WK}, which have been
trained with added dropout regularization. Furthermore,
let (p1, . . . , pK) denote the dropout probability vector used
when training NN f

θ , i.e, pi determines the probability for a
single node in the ith hidden layer W i to be dropped in each
backpropagation step.15

To obtain model uncertainty one draws M different NNs
according to the dropout probability vector and represents
model uncertainty using sample estimates of the mean and

15One could also use different probabilities pij for each node
within a hidden layer. The equations extend straightforwardly.
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variance of the model predictions.16 These predictions are
frequently termed stochastic forward passes. More formally,
given a dropout probability vector (p1, . . . , pK), one draws
M realisations {θ(1), . . . , θ(M)} of parameters θ, where
θ(m) := {W 1,(m), . . . ,WK,(m)}. W k,(m) is obtained from
the original hidden layer W k by dropping each column with
probability pi, i.e., for W k ∈ Rdrow×dcol set

W k,(m) = W k
[
z
(m)
1 , . . . , z

(m)
dcol

]
, z

(m)
j ∈ Rdrow (32)

where z(m)
j :=

{
0, with probability pi
1, with probability 1− pi.

(33)

UBs that represent model uncertainty and known data noise
σ2

n are then estimated for each x ∈ X as

f̂(x) :=
1

M

M∑

m=1

NN f
θ(m)(x), (34)

σ̂2(x) :=
1

M

M∑

m=1

(
NN f

θ(m)(x)− f̂(x)
)2

︸ ︷︷ ︸
model uncertainty

+ σ2
n (x)︸ ︷︷ ︸

data noise

.

(35)

The model uncertainty prediction σ̂2
f is then given as

σ̂2
f (x) :=

1

M

M∑

m=1

(
NN f

θ(m)(x)− f̂(x)
)2

(36)

which defines Mc dropout’s UBs as
(
f̂(x)∓ c σ̂f (x)

)
with

a calibration parameter c ∈ R≥0.

B.1.3. DEEP ENSEMBLES (DE)

Deep ensembles consists of the following two steps:17

1. Use a NN to define a predictive distribution pθ(y|x),
select a pointwise loss function (proper scoring rule)
`(pθ, (x, y)), which measures the quality of the predic-
tive distribution pθ(y|x) for an observation (x, y) and
define the empirical loss used for training as

L(θ) :=
∑

(x,y)∈Dtrain

`(pθ, (x, y)). (37)

2. Use an ensemble of NNs, each with different randomly
initialized parameters to represent model uncertainty.

16Alternatively, one could also determine the UBs using empiri-
cal upper and lower quantiles of the different model predictions.

17Lakshminarayanan et al. (2017) also considered in their paper
a third step: adversarial training. However, as the authors point
out, the effectiveness of adversarial training drops quickly as the
number of networks in the ensemble increases. Therefore, we do
not consider adversarial training in this paper.

Concretely, for regression, Lakshminarayanan et al. (2017)
use a NNNN f

θ with two outputs: µ̂θ (mean prediction) and
σ̂θn (data noise prediction) and train it using as pointwise
loss function the Gaussian negative log-likelihood, i.e,

pθ(y|x) :=N
(
y; µ̂θ(x),

(
σ̂θn (x)

)2)
, (38)

`(pθ, (x, y)) :=
log
((
σ̂θn (x)

)2)

2
+

(µ̂θ(x)− y)2

2 (σ̂θn (x))
2 . (39)

To add model uncertainty, Lakshminarayanan et al. (2017)
use an ensemble of M NNs {NN f

θ(1)
, . . . ,NN f

θ(M)},
where each NN outputs a mean and data noise prediction,
i.e, for x ∈ X and m ∈ {1, . . . ,M}

NN f
θ(m)(x) :=

(
µ̂θ

(m)

(x), σ̂θ
(m)

n (x)
)
. (40)

This then defines the learned predictive distribution for each
NN in regression as

pθ(m)(y|x) = N
(
y; µ̂θ

(m)

(x),
(
σ̂θ

(m)

n (x)
)2)

. (41)

Finally, the ensemble is treated as uniformly-weighted Gaus-
sian mixture model, i.e.,

1

M

M∑

m=1

pθ(m)(y|x), (42)

which is further approximated using a single Gaussian by
matching the first and second moments. The deep ensemble
predictions for the mean f̂ and for the combined model
uncertainty and data noise σ̂2 are given as

f̂(x) :=
1

M

M∑

m=1

µ̂θ
(m)

(x), (43)

σ̂2(x) :=
1

M

M∑

m=1

(
σ̂θ

(m)

n (x)
)2

︸ ︷︷ ︸
data noise

+
1

M

M∑

m=1

[
µ̂θ

(m)

(x)− f̂(x)
]2

︸ ︷︷ ︸
model uncertainty

.

(44)

The model uncertainty prediction σ̂2
f is then given as

σ̂2
f (x) :=

1

M

M∑

m=1

[
µ̂θ

(m)

(x)− f̂(x)
]2
. (45)

which defines deep ensembles’ UBs as
(
f̂(x)∓ c σ̂f (x)

)

with a calibration parameter c ∈ R≥0.
Remark B.1 For known data noise σn, no estimation is
required and one can use an NN NN f

θ with only one output
µ̂θ. If additionally the data noise σn is assumed to be ho-
moskedastic, one can train NN f

θ using the mean squared
error (MSE) with suitably chosen L2-regularization param-
eter λ. To obtain predictive bounds instead of credible
bounds, one can add σ2

n to (45) at the end.
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B.1.4. HYPER DEEP ENSEMBLES (HDE)

Hyper deep ensembles (HDE) (Wenzel et al., 2020b) is a
simple extension of DE. In HDE, the ensemble is designed
by varying not only weight initializations, but also hyperpa-
rameters. HDE involves (i) a random search over different
hyperparameters and (ii) stratification across different ran-
dom initializations. HDE inherits all the components (e.g.,
the architecture, or the loss function) from DE, which are
presented in detail in Appendix B.1.3. Specifically, formu-
las (43) and (44) for the mean prediction f̂ and the model
uncertainty prediction σ̂2

f (x) are the same for HDE.

Let NN f
θ(m),π(m) denote a NN for model predictions with

weights θ(m) and hyperparameters π(m) (e.g., the dropout
rate). Furthermore, let rand search(κ) denote the ran-
dom search algorithm from (Bergstra & Bengio, 2012),
where κ is the desired number of different NNs with ran-
domly sampled hyperparameters.

The only difference of HDE compared to DE is the proce-
dure how the ensemble is built, which we reprint in Algo-
rithm 2. Algorithm 2 uses as subprocedure Algorithm 1
from (Caruana et al., 2004), which we present first.

Algorithm 1 greedily grows an ensemble among a given
pre-defined set of modelsM, until some target size M is
met, by selecting with-replacement the NN leading to the
best improvement of a certain score S on a validation set.18

Algorithm 1 hyper ens (Caruana et al., 2004)

input M, M
Ensemble E := {}; Score S(·); sbest = +∞
while |E .unique()| ≤M do
NN f

θ∗ ∈ arg minNN fθ∈M
S
(
E ∪ {NN f

θ}
)

if S
(
E ∪ {NN f

θ}
)
< sbest then

E = E ∪ {NN f
θ}

else
output E

end if
end while

output E

Note that the Algorithm 1 does not require the NNs to have
the same random weight initialization. However, Wenzel
et al. (2020b) consider a fixed initialization for HDE to
isolate the effect of just varying the hyperparameters.

Finally, Algorithm 2 builds an ensemble of at most M
unique NNs which can exploit both sources of diversity:
different random initializations and different choices of hy-
perparameters.

18Note that we use a slightly different notation than Wenzel et al.
(2020a) here.

Algorithm 2 hyper deep ens (Wenzel et al., 2020b)

input M , κ
M0 = {NN f

θ(j),λ(j)}κj=1 ← rand search(κ)

E0 ← hyper ens(M0,M)
Estrat = {}
for all NN f

θ,λ ∈ E0.unique() do
for all m ∈ {1, . . . ,M} do
θ′ ← random initialization (seed number m)
NN f

θ(m),λ
← train NN f

θ′,λ

Estrat = Estrat ∪ {NN f
θ(m),λ

}
end for

end for
output hyper ens(Estrat,M)

B.2. Regression

B.2.1. METRICS

In this section, we provide details on the three metrics,
which we use to assess the quality of UBs in the regression
settings. In the following, let

(
UBc(x), UBc(x)

)
:=
(
f̂(x)∓ c σ̂f (x)

)
(46)

denote UBs obtained from any of the considered models via
a model prediction f̂ , a model uncertainty prediction σ̂f ,
and a calibration parameter c ∈ R≥0. Furthermore, we use
the following shorthand notation:

UBc(x) :=
(
UBc(x), UBc(x)

)
. (47)

In the following, let D := {(xi, yi) ∈ X × Y, i ∈
{1, . . . , n}}, with n ∈ N denote a set of input-output points
(depending on the specific purpose, D would typically refer
to a validation or test set).

Mean Width vs. Coverage Probability We first formal-
ize the concepts of mean width (MW) and coverage proba-
bility (CP). Then we define the metric AUC.

Definition B.2 (COVERAGE PROBABILITY) Let D denote
a set of input-output points, and let UBc denote UBs for a
calibration parameter c. Then the coverage probability is
defined as

CP (D | UBc) :=
1

|D|
∑

(x,y)∈D
1{UBc(x)≤y≤UBc(x)}. (48)

Definition B.3 (MEAN WIDTH) Let D denote a set of
input-output points, and let UBc denote UBs for a calibra-
tion parameter c. Then the mean width is defined as

MW (D | UBc) :=
1

|D|
∑

(x,y)∈D
|UB(x)− UB(x)|. (49)
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Remark B.4 Note that in Definition B.3, uncovered points
at which UBs (for some fixed calibration parameter c) are
narrow have a positive effect on overall mean width. In
order not to reward such overconfident mispredictions, a
possible remedy is to consider in (49) only the subsetDcapt ⊂
D of input-output points captured by the UBs, i.e.,

Dcapt :=
{

(x, y) ∈ D : UB(x) ≤ y ≤ UB(x)
}
.

However, focusing on captured data points only punishes
UBs that capture some points with large widths and almost
cover others with small widths unnecessarily harshly com-
pared to UBs for which the reverse is true. In other words,
a slight change in calibration parameter c can lead to very
diverse evaluations of UBs that have been assessed almost
equal under the original c. Since ultimately we are inter-
ested in comparing UBs based on a range of calibration
parameters (see Measure 1) we decided to include all points
in the calculation of MW in our experiments.

Ideally, MW should be as small as possible, while CP should
be close to its maximal value 1. Clearly, CP is counter-
acting MW. This naturally motivates considering ROC-like
curves, plotting MW against CP for a range of calibration
parameters c, and comparing different UBs based on their
area under the curves (AUC).

Metric 1 (AUC) Let D denote a set of input-output points.
Define further c∗ as the minimal calibration parameter
achieving full coverage of D for given UBs UBc, i.e.,

c∗ := arg min
c≥0

{CP (D | UBc) = 1}.

AUC is then defined as the integral of the following curve

{(CP (D | UBc) , MW (D | UBc)) : c ∈ [0, c∗]}.19

Negative Log-likelihood Next, we first define the second
metric: average20 negative log (Gaussian) likelihood (NLL)
and then present our third metric NLLmin.

Metric 2 (NLL) Let D denote a set of input-output points,
and let UBc denote UBs for a calibration parameter c with
corresponding model prediction f̂ : X → R and model un-
certainty prediction σ̂f : X → R≥0. Then NLL is defined

19In our experiments, we approximated this integral via the
trapezoidal rule.

20We remark that NLL can be interpreted as average marginal
predictive density over the set D, assuming these marginals are
Gaussian with mean f̂ and variance cσ̂f . In particular, we refrain
from posing assumptions of posterior independence, that we be-
lieve are highly flawed, i.e., NLL should not be interpreted as joint
negative log predictive density.

as

NLL(D|UBc) := (50)

1

|D|
∑

(x,y)∈D




(
y − f̂(x)

)2

2 (cσ̂f (x))
2 + ln (cσ̂f (x))


+ ln(2π)/2

The first term in NLL measures the error of the model predic-
tion, where large errors can be attenuated by large uncertain-
ties while the second term penalizes logarithmically larger
uncertainties. Thus, NLL penalizes both over-confident
(cσ̂f (x) ≈ 0) wrong predictions as well as under-confident
(cσ̂f (x)� 0) predictions.

We define the third metric as the minimal value of the NLL
when varying the calibration parameter c.
Metric 3 (MINIMUM NLL) Let D denote a set of input-
output points, and let UBc denote UBs for a calibration
parameter c. Then NLLmin is defined as

NLLmin := min
c∈R≥0

NLL(D|UBc). (51)

Remark B.5 (CALIBRATION) Different approaches of ob-
taining UBs require rather different scaling to reach similar
CP (as well as MW). For instance, we found that the cali-
bration parameter c required to achieve a certain value of
CP typically is larger for DE than those of the remaining
methods by a factor of approximately 10. Therefore, in prac-
tice it is important to find a well-calibrated parameter c.
Standard calibration techniques can be applied to NOMU
(e.g., methods based on isotonic regression (Kuleshov et al.,
2018), or when assuming Gaussian marginals of the pos-
terior one can select c as the arg min

c∈R≥0

NLL(D|UBc) on a

validation set D).

B.2.2. TOY REGRESSION: CONFIGURATION DETAILS

All NN-based methods are fully-connected feed-forward
NNs with ReLU activation functions, implemented in TEN-
SORFLOW.KERAS and trained for 210 epochs of TENSOR-
FLOW.KERAS’ Adam stochastic gradient descent with stan-
dard learning rate 0.001 and full batch size of all training
points. Moreover, weights and biases are initialized uni-
formly in the interval [−0.05, 0.05].

NOMU Setup For the MC-integration of the integral in
the NOMU loss (4), i.e., term (c), we use l = 128 and
l = 256 artificial input points (we draw new artificial input
points in every gradient descent step) in 1D and 2D, respec-
tively.21 For numerical stability, we use the parameters θ

21In 1D, we tried MC-integration based on uniform samples
and MC-integration based on a deterministic grid, where both
approaches led to qualitatively similar results and the latter is
presented in this paper.
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Table 5. Detailed results of the AUC metric for NOMU, GP, MCDO, DE, HDE and HDE* (our HDE see Appendix B.2.2) for all ten 1D
synthetic functions. Shown are the medians and a 95% bootstrap confidence interval over 500 runs. Winners are marked in grey.

NOMU GP MCDO DE HDE HDE*
FUNCTION AUC↓ 95%-CI AUC↓ 95%-CI AUC 95%-CI AUC↓ 95%-CI AUC↓ 95%-CI AUC↓ 95%-CI

ABS 0.07 [0.07, 0.08] 0.14 [0.13, 0.16] 0.16 [0.15, 0.17] 0.08 [0.07, 0.09] 1.02 [0.82, 1.20] 0.72 [0.65, 0.81]
STEP 0.29 [0.26, 0.31] 0.93 [0.85, 1.02] 0.25 [0.24, 0.27] 0.14 [0.13, 0.15] 1.90 [1.61, 2.67] 0.82 [0.66, 0.99]
KINK 0.08 [0.08, 0.09] 0.17 [0.15, 0.19] 0.22 [0.21, 0.23] 0.09 [0.07, 0.10] 1.81 [1.40, 2.31] 1.01 [0.9 , 1.24]
SQUARE 0.12 [0.11, 0.13] 0.16 [0.13, 0.19] 0.38 [0.36, 0.41] 0.14 [0.12, 0.15] 1.72 [1.50, 2.23] 1.86 [1.54, 2.53]
CUBIC 0.07 [0.07, 0.08] 0.00 [0.00, 0.00] 0.10 [0.10, 0.11] 0.10 [0.09, 0.11] 0.63 [0.54, 0.79] 0.52 [0.45, 0.66]
SINE 1 1.10 [1.03, 1.16] 1.14 [1.09, 1.2 ] 0.90 [0.87, 0.93] 1.21 [1.16, 1.26] 9.38 [7.42, 11.4] 9.75 [7.64, 12.1]
SINE 2 0.38 [0.37, 0.40] 0.42 [0.41, 0.44] 0.36 [0.35, 0.36] 0.50 [0.47, 0.53] 3.18 [2.82, 4.08] 2.43 [2.12, 3.38]
SINE 3 0.20 [0.19, 0.21] 0.31 [0.29, 0.34] 0.28 [0.26, 0.29] 0.20 [0.19, 0.21] 1.43 [1.19, 1.73] 1.33 [1.10, 1.57]
FORRESTER 0.19 [0.18, 0.20] 0.18 [0.17, 0.19] 0.26 [0.24, 0.28] 0.25 [0.24, 0.27] 1.28 [1.11, 1.51] 1.58 [1.35, 1.93]
LEVY 0.40 [0.39, 0.42] 0.53 [0.51, 0.56] 0.38 [0.36, 0.39] 0.45 [0.43, 0.48] 3.43 [2.67, 4.42] 3.58 [2.83, 4.18]

Table 6. Detailed results of the NLLmin metric (without constant ln(2π)/2) for NOMU, GP, MCDO, DE, HDE and HDE* (our HDE see
Appendix B.2.2) for all ten 1D synthetic functions. Shown are the medians and a 95% bootstrap confidence interval over 500 runs.
Winners are marked in grey.

NOMU GP MCDO DE HDE HDE*
FUNCTION NLLMIN↓ 95%-CI NLLMIN↓ 95%-CI NLLMIN↓ 95%-CI NLLMIN↓ 95%-CI NLLMIN↓ 95%-CI NLLMIN↓ 95%-CI

ABS −2.85 [−2.95,−2.80] −2.82 [−2.90,−2.71] −1.76 [−1.80,−1.69] −2.91 [−3.03,−2.76] −0.19 [−0.36, 0.00] −0.72 [−0.82,−0.56]
STEP −1.04 [−1.12,−0.97] −0.61 [−0.81,−0.49] −0.78 [−0.85,−0.69] −2.49 [−2.59,−2.36] 0.61 [ 0.38, 0.83] −1.18 [−1.42,−0.84]
KINK −2.74 [−2.80,−2.69] −2.64 [−2.75,−2.54] −1.28 [−1.32,−1.22] −2.81 [−2.93,−2.68] 0.56 [ 0.26, 0.83] −0.35 [−0.46,−0.17]
SQUARE −2.45 [−2.51,−2.41] −3.80 [−4.21,−3.38] −0.56 [−0.65,−0.52] −2.27 [−2.37,−2.16] 0.53 [ 0.31, 0.73] 0.07 [−0.17, 0.22]
CUBIC −2.98 [−3.04,−2.94] −6.03 [−6.15,−5.92] −2.41 [−2.47,−2.33] −2.65 [−2.70,−2.59] −0.77 [−0.93,−0.64] −1.42 [−1.63,−1.15]
SINE 1 0.10 [ 0.04, 0.18] −0.06 [−0.13, 0.01] 0.09 [ 0.07, 0.13] 0.09 [ 0.04, 0.16] 1.97 [ 1.71, 2.28] 1.65 [ 1.45, 1.84]
SINE 2 −1.35 [−1.38,−1.32] −1.48 [−1.52,−1.42] −1.03 [−1.06,−1.00] −0.92 [−0.96,−0.88] 1.21 [ 0.95, 1.65] 0.45 [ 0.26, 0.73]
SINE 3 −1.55 [−1.61,−1.47] −1.69 [−1.85,−1.55] −1.07 [−1.12,−1.01] −1.66 [−1.75,−1.58] 0.26 [ 0.10, 0.40] −0.02 [−0.21, 0.21]
FORRESTER −1.98 [−2.03,−1.91] −2.68 [−2.86,−2.49] −1.10 [−1.19,−1.03] −1.75 [−1.79,−1.69] −0.11 [−0.23, 0.17] −0.50 [−0.65,−0.28]
LEVY −1.12 [−1.14,−1.07] −0.93 [−0.98,−0.90] −0.76 [−0.79,−0.73] −1.04 [−1.08,−0.97] 1.35 [ 0.99, 1.53] 0.74 [ 0.53, 0.96]

that gave the best training loss during the training which are
not necessarily the ones after the last gradient descent step.

Deep Ensembles Setup We consider the proposed num-
ber of five ensembles (Lakshminarayanan et al., 2017) with
a single output µ̂θ only (accounting for zero data noise),
each with three hidden layers consisting of 28, 210 and 29

nodes (resulting in ≈ 4 million parameters). We train them
on standard regularized mean squared error (MSE) with reg-
ularization parameter λ = 10−8/ntrain chosen to represent
the same data noise assumptions as NOMU.

MC Dropout Setup The MC dropout network is set up
with three hidden layers as well, with 210, 211 and 210 nodes
(resulting in ≈ 4 million parameters). Both training and pre-
diction of this model is performed with constant dropout
probability p := pi = 0.2, proposed in (Gal & Ghahra-
mani, 2016). We perform 100 stochastic forward passes.
To represent the same data noise assumptions as NOMU
and deep ensembles we set the regularization parameter to
λ = (1− p) · 10−8/ntrain = (1− 0.2) · 10−8/ntrain (based on
equation (7) from (Gal & Ghahramani, 2016)).

Gaussian Process Setup Finally, we compare to a Gaus-
sian process22 with RBF-kernel,

kπ(x, x′) := κ · e−
(‖x−x′‖22

h2

)

, (52)

with hyperparameters π := (κ, h), where both the prior
variance parameter κ and the length scale parameter h (ini-
tialized as κ = h = 1) are optimized in the default range
[10−5, 105] using 10 restarts and the data noise level23 is set
to 10−7.

Hyper Deep Ensembles Setup We consider the same net-
work architectures as for DE with a single output µ̂θ only
(accounting for zero data noise), each with three hidden
layers consisting of 28, 210 and 29 nodes (resulting in ≈ 4
million parameters). We train them on standard regularized
mean squared error (MSE).

Furthermore, we use the following proposed parameter
values from Wenzel et al. (2020b) to build the ensem-
bles: we consider M := 5 networks (termed K in
(Wenzel et al., 2020b)) in the final ensemble and search
over κ = 50 networks resulting from random search.
Moreover, as random hyperparameters we use the pro-

22We use GaussianProcessRegressor from SCIKIT-LEARN.
23This is mainly used for numerical stability.
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Table 7. Aggregate results for NOMU, GP, MCDO, DE, HDE and
HDE* (our HDE see Appendix B.2.2) for the set of all ten 1D
synthetic functions. Shown are the medians and a 95% bootstrap
CI of AUC and NLLmin (without constant ln(2π)/2) across all runs.
Winners are marked in grey.

METHOD AUC↓ 95%-CI NLLMIN↓ 95%-CI

NOMU 0.21 [0.21, 0.22] -1.76 [-1.81, -1.72]
GP 0.33 [0.32, 0.35] -1.74 [-1.81, -1.69]
MCDO 0.30 [0.29, 0.30] -1.02 [-1.05, -0.99]
DE 0.22 [0.21, 0.23] -1.75 [-1.79, -1.70]
HDE 2.04 [1.90, 2.20] 0.59 [ 0.51, 0.66]
HDE* 1.73 [1.63, 1.84] 0.04 [-0.03, 0.10]

posed L2-regularization and the dropout rate, which
we draw as in (Wenzel et al., 2020b) log-uniform from
(0.001, 0.9) and (10−8 · 10−3, 10−8 · 103), respectively.
Furthermore, we use the proposed train/validation split
of 80%/20% and as score S the NLL. Finally, as for
MCDO and DE we scale the realized L2-regularization
by (1 − dropout rate)/floor(0.8 · ntrain) chosen to
represent the same data noise assumptions as NOMU.

For our HDE version termed HDE*, we use a train/val-
idation split of 70%/30%, draw the dropout probability
from (0.001, 0.5) and continue training the final ensem-
ble again on all ntrain training points (rescaling the realized
L2-regularization again by floor(0.8 · ntrain)/ntrain).

B.2.3. TOY REGRESSION: DETAILED RESULTS

Results 1D In Table 5 (AUC) and Table 6 (NLLmin), we
present detailed results, which correspond to the presented
ranks from Table 1 in the main paper. In Table 7, we present
aggregate results, i.e., median values (incl. a 95% bootstrap
confidence interval (CI)) of AUC and NLLmin across all
5000 runs (500 runs for 10 test functions) for each algo-
rithm. We see that NOMU performs well on both metrics
and yields numbers similar to those of DE. The GP is only
competitive on NLLmin. MCDO performs in both metrics
worse than NOMU and DE. Not surprisingly, HDE, shown
to be the state-of-the-art ensemble algorithm (Wenzel et al.,
2020b), fails to produce reliable model uncertainty esti-
mates in such a scarce and noiseless regression setting (see
Appendix B.2.4 for a discussion).

Results 2D Test functions for 2D input are taken from
the same library as in the 1D setting.24 Specifically, we
select the following 11 different test functions: Sphere, G-
Function, Goldstein-Price, Levy, Bukin N.6, Rosenbrock,
Beale, Camel, Perm, Branin, Styblisnki-Tang.

In Table 8, we present median values of AUC and NLLmin

24See sfu.ca/ ssurjano/optimization.html. All test functions are
scaled to X = [−1, 1]2 and f(X) = [−1, 1].

Table 8. Aggregate results for NOMU, GP, MCDO, DE, HDE and
HDE* (our HDE see Appendix B.2.2) for the set of all eleven 2D
synthetic functions. Shown are the medians and a 95% bootstrap
CI of of AUC and NLLmin (without constant ln(2π)/2) across all runs.
Winners are marked in grey.

METHOD AUC↓ 95%-CI NLLMIN↓ 95%-CI

NOMU 0.42 [0.41, 0.42] -0.99 [-1.01, -0.96]
GP 0.36 [0.36, 0.37] -1.07 [-1.09, -1.05]
MCDO 0.45 [0.44, 0.45] -0.61 [-0.62, -0.60]
DE 0.42 [0.41, 0.43] -0.95 [-0.97, -0.93]
HDE 5.06 [4.75, 5.49] 1.74 [ 1.66, 1.84]
HDE* 6.33 [5.87, 6.75] 1.58 [ 1.51, 1.67]

across all 5500 runs (500 runs for 11 test functions) for each
algorithm. We also provide a 95% bootstrap confidence
interval (CI) to assess statistical significance. We observe a
similar ranking of the different algorithms as in 1D, however,
now GP is ranked first in AUC, followed by NOMU and
DE; and the GP is also ranked first in NLLmin followed by
NOMU and DE, who share the second rank.

B.2.4. TOY REGRESSION: DETAILED
CHARACTERISTICS OF UNCERTAINTY BOUNDS

UB Characteristics in 1D Within the one-dimensional
setting, characteristics of NOMU UBs can be nicely com-
pared to those of the benchmark approaches. Figure 9 ex-
emplarily shows typical outcomes of the UBs on a number
of selected test functions as obtained in one run.

• Deep Ensembles UBs: Throughout the experiment, we
observe that deep ensembles, while sometimes nicely cap-
turing increased uncertainty in regions of high second
derivative (e.g., around the kink in Figure 9e; pursuant
in some form desiderata D4), still at times leads to UBs
of somewhat arbitrary shapes. This can be seen most
prominently in Figure 9b around x ≈ −0.25, in Figure 9f
around x ≈ −0.8 or in Figure 9d around x ≈ 0.2. More-
over, deep ensembles’ UBs are very different in width,
with no clear justification. This can be seen in Figure 9b
when comparing the UBs for x ≥ 0 against the UBs for
x ≤ 0 and at the edges of the input range in Figures 9a
and 9f. In addition, we frequently observe that deep en-
sembles UBs do not get narrow at training points, as for
instance depicted in Figure 9c for x < −0.5, in Figure 9f
for x > 0.2, or in Figure 9d for x ∈ [−1,−0.7] and thus
are not able to handle well small or zero data noise.

• Hyper Deep Ensembles UBs: Throughout our exper-
iments, HDE produces less accurate UBs, which vary
more from one run to another, than DE (recall that here
we consider the setting of noiseless scarce regression).
Possible reasons for this are:
1. The scarcity of training/validation data. HDE trains
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(c) Squared (GP would not behave reasonable for standard hyper-parameters in this instance, so we changed the range for the prior
variance parameter κ to be [10−5, 4].)
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Figure 9. Visualisations of resulting UBs for NOMU, GP, MCDO, DE, HDE and HDE* for a selection of test functions.

its NNs based on 80% of the training points and uses
the remaining 20% to build an ensemble based on a
score, whilst the other methods can use 100% of the
training points for training. In a scarce data setting this
implies that first, the mean prediction of HDE does
not fit through all the training points, and second, the
scoring rule is less reliable.

2. In a noiseless setting one already knows that the L2-
regularization should be small, and thus optimizing
this parameter is less useful here.

Therefore, we believe HDE is less well suited in a noise-
less scarce regression setting to reliably capture model
uncertainty. This manifests in Figure 9. HDE’s uncer-
tainty bounds often do not narrow at training points (Fig-
ures 9a–9c and 9e), while they suggest unreasonably over-
confident mean predictions in some regions (Figures 9b
and 9d). While our HDE* (see Appendix B.2.2 Hyper
Deep Ensembles) manages to better narrow at training
data, it tends to more frequently result in unnecessarily
narrow bounds (Figures 9a, 9c and 9d). Overall, both
HDE and HDE* vary a lot from run to run and thus tend
to yield bounds of seemingly arbitrary shapes, where in
each run the desiderata are captured in different regions.

• MC Dropout UBs: MCDO consistently yields tube-like

UBs that do not narrow at training points. Interestingly,
we remark that throughout the experiment MCDO sam-
ples frequently exhibit stepfunction-like shapes (e.g., see
Figure 9d at x ≈ 0.5 or Figure 9b for x ∈ [−0.5, 0]). This
effect intensifies with increasing training time.

• NOMU UBs: In contrast, NOMU displays the behaviour
it is designed to show. Its UBs nicely tighten at training
points and expand in between and thus NOMU fulfills
D1–D3 across all considered synthetic test functions.

• Gaussian Process UBs: The quality of the RBF-
Gaussian process’ UBs (as judged in this simulated set-
ting) naturally varies with the true underlying function.
While the UBs nicely capture parts of the true function
with low widths in Figures 9c and 9d they have a hard
time accurately enclosing true functions that are not as
conformant with the prior belief induced by the choice
of the RBF kernel (e.g., Figures 9b and 9e). Nonetheless,
we also observe instances in which the training points
are misleading to the GP’s mean predictions even when
considering ground truth functions for which this choice
of kernel is very suitable. This manifests in over-confident
mean predictions far away from the data generating true
function (Figure 9a) or over-swinging behavior of the fit-
ted mean (Figure 9f). It is true that one could find better
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Figure 10. Contour plot of the 2D Styblinski test function.
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Figure 11. Estimated model uncertainty σ̂f of NOMU for a single
run of the Styblinski test function.

function-specific kernels. However, the RBF kernel is a
good generic choice when evaluated across many differ-
ent test functions without any specific prior information,
which is why we choose this kernel for our comparison.

UB Characteristics in 2D To visualize the UBs in 2D,
we select as the ground truth the Styblinski test function
depicted in Figure 10. In Figure 11 (NOMU) and Figure 12
(benchmarks), we visualize the estimated model uncertainty
as obtained in one run for this Styblinski test function.

• NOMU (Figure 11): As in 1D, we observe that NOMU’s
UBs nicely tighten at input training points and ex-
pand in-between, with overall steady shapes. Specifi-
cally, NOMU’s UBs are larger for extrapolation, e.g.,
[0, 1]×[0.5, 1], compared to regions which are surrounded
by input training data points, e.g., [−0.25, 0.25] ×
[−0.25,−0.75], even though the distance to the closest
input training point is approximately the same. Thus,
NOMU’s UBs do not only depend on the distance to the
closest training point but rather on the arrangement of all
surrounding training points.

• Benchmarks (Figure 12): As in 1D, we see that the
RBF-based GP’s UBs do have the expected smooth and

isotropic shape with zero model uncertainty at input train-
ing points. Moreover, as in 1D, MCDO’s UBs exhibit a
tubular shape of equal size (≈ 0–0.25) across the whole
input space. Whilst DE nicely captures zero model uncer-
tainty at input training points, it again exhibits the some-
how arbitrary behaviour in areas with few input training
points. Both HDE and HDE* yield model uncertainty
estimates that are small at input training points, except for
HDE for one input training point (x1, x2) ≈ (0.6, 0.2),
where the estimated model uncertainty is only small when
continuing training on all training points (see HDE*).
However, these estimates drastically fail to capture in-
creased uncertainty in out-of-sample regions. For both al-
gorithms, the model uncertainty estimate is unreasonably
low in most regions of the input space and inexplicably
high in a tiny fraction of the input space.
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(a) GP with calibration constant c = 1.
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(b) MCDO with calibration constant c = 10.

Figure 12. Estimated model uncertainty of Gaussian process (GP)
and MC dropout (MCDO) for a single run of the Styblinski test
function.
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(c) DE with calibration constant c = 15.
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(d) HDE with calibration constant c = 30.
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(e) HDE* with calibration constant c = 30.

Figure 12. (cont.) Estimated model uncertainty of deep ensembles
(DE), hyper deep ensembles (HDE) and HDE* for a single run of
the Styblinski test function.

B.2.5. GENERATIVE TEST-BED: DETAILS

In this section, we give a detailed description of the genera-
tive test-bed setting and provide further results for up to 20
dimensional input.

Detailed Setting

1. We sample a test-function (i.e., the ground truth func-
tion) f : [−1, 1]d → R from a BNN with i.i.d Gaus-

sian weights. This means we sample i.i.d random pa-
rameters θi ∼ N (0, σprior) and set f = NN θ. The
BNN is set up with three hidden layers with 210, 211

and 210 nodes, respectively. We choose σprior such that

Eθ
[√

Vx[NN θ(x) | θ]
]
≈ 1.25 Resulting values for

σprior are shown in Table 9.

Table 9. σprior depending on the input dimension d.

d σPRIOR

1 0.114
2 0.102
5 0.092
10 0.084
20 0.070

2. We sample ntrain = 8 ·d input training points uniformly at
random from the input space [−1, 1]d for Tables 2 and 10.
In the case of Table 11, we sample ntrain = 8 · d input
training points from d-dimensional centered normal dis-
tribution with a covariance with min(5, d) eigenvalues
of value 0.15 and the remaining eigenvalues only have
the value 0.001. In both cases we get for input training
point xtrain

i the corresponding noiseless output-training
point ytrain

i = f(xtrain
i ) = NN θ(x

train
i ). And in both cases

we create ntest = 100 · d test-data points from the same
distribution as the training data points.26

3. We calculate UBs of all considered algorithms including
NOMU. For this, we use for all algorithms the same con-
figuration as in the 1D and 2D toy regression settings (see
Section 4.1.1 and Appendix B.2.2) except for NOMU,
where we set `min = 0.1, `max = 1 and use l = 100 · d
artificial data points, where d denotes the respective di-
mension.

4. We measure the quality of the UBs via NLL for a fine
grid of different values for the calibration parameter c.

We repeat these four steps mseeds = 200-times. Then we
choose for each method the value c where the average NLL
is minimal. Importantly, the chosen calibration constant c
only depends on the input-dimension d and on the algorithm
but not on the randomly chosen test-function f . In Table 10
and Table 11, we report the mean and a 95% CI over these
200 runs for the chosen calibration constant c.

25Eθ
[√
Vx[NN θ(x) | θ]

]
≈ 1 holds true for x ∼

Unif
(
[−1, 1]d

)
. This might deviate (slightly) for Gaussian x.

26Note that we sample the artificial data points for NOMU
always uniformly from [−1, 1]d, since we assume that the low-
dimensional manifold is often unknown in practice. NOMU could
probably be improved if one tries to learn the distribution of the
input data or if one already had some prior information about the
distribution of the input data points. It is good to see how robustly
NOMU can handle a different distribution of the input data points
without the need to adapt the distribution of the artificial data
points.
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Table 10. Uniform data generation. Shown are average NLL (with-

out constant ln(2π)/2) and a 95% CI over 200 BNN samples.

FUNCTION NOMU GP MCDO DE HDE TUBE

BNN1D -1.65±0.10 -1.08±0.22 -0.34±0.23 -0.38±0.36 8.47±1.00 -0.86±0.19
BNN2D -1.16±0.05 -0.52±0.11 -0.33±0.13 -0.77±0.07 9.10±0.39 -0.81±0.06
BNN5D -0.37±0.02 -0.33±0.02 -0.05±0.04 -0.13±0.03 8.41±1.00 -0.33±0.02
BNN10D -0.09±0.01 -0.11±0.01 0.06±0.02 0.10±0.01 6.44±1.36 -0.12±0.01
BNN20D 0.15±0.01 0.06±0.01 0.18±0.01 0.30±0.01 3.58±0.81 0.07±0.01

Discussion of the Results in Table 10 We see that for
d ≤ 5 NOMU significantly outperforms all other consid-
ered benchmarks. For dimensions d ≥ 10 it gets harder
to find a good metric for measuring the quality of the un-
certainty bounds: For high dimensions almost no test data
point sampled uniformly from [−1, 1]d is close to the train-
ing data points, so they all have quite high uncertainty. We
further verified this for dimensions d = 10 and d = 20 by
introducing another algorithm we call TUBE. TUBE uses
NOMU’s mean prediction and assigns the same (calibrated)
constant uncertainty c to all test data points. As we can
see in Table 10, TUBE is ranked first (en par with GP) in
d = 10 and d = 20, highlighting that the metric NLL is
flawed in this setting for dimensions d ≥ 10. However,
for dimensions d ≤ 5 the trivial TUBE algorithm is signif-
icantly outperformed by other methods. Thus, the NLL-
metric for dimensions d ≥ 10 and uniformly distributed
data on [−1, 1]d mainly measures if D3 (Out-of-Sample) is
reliably fulfilled. D3 (Out-of-Sample) is particularly reliably
fulfilled for TUBE and for GP. For BO however, especially
D2 (In-Sample) is important to not get stuck in local optima,
because in BO the test data-points are not uniformly dis-
tributed, and the predicted uncertainty close to the training
points is particularly important. Therefore, in this setting,
we only include results for input dimensions 1-5D (see Ta-
ble 2) in the main part of the paper.

Discussion of the Results in Table 11 Another approach
to circumvent the problem that the NLL metric loses its rele-
vance for scenarios where the input test data points are all far
away from the input training data points is to use a different
distribution for X . The well known manifold-hypothesis
(Cayton, 2005) states that in typical real world data-sets
relevant input data points lie close to a low-dimensional
manifold. Therefore, we run a further experiment where
we sample from our training and test data from a Gaussian
distribution that concentrates mainly close to a min(d, 5)-
dimensional flat manifold as described in Item 2 and report
the results in Table 11. For this experiment, we see that
dimension d ≥ 10 are interesting too, since TUBE is signifi-
cantly beaten by NOMU and GP. In Table 11, one can see
that NOMU is among the best methods for all considered
dimensions.

Table 11. 5D-Gaussian data generation. Shown are average NLL
(without constant ln(2π)/2) and a 95% CI over 200 BNN samples.

FUNCTION NOMU GP MCDO DE HDE TUBE

BNN1D -1.91±0.13 -1.13±0.27 -0.49±0.16 -0.27±0.54 8.95±1.18 -0.85±0.13
BNN2D -1.55±0.05 -0.85±0.12 -0.62±0.13 -1.15±0.08 7.92±0.42 -0.95±0.11
BNN5D -0.77±0.02 -0.72±0.02 -0.47±0.03 -0.55±0.03 9.68±1.08 -0.68±0.02
BNN10D -1.36±0.01 -1.31±0.01 -1.08±0.03 -1.14±0.02 5.16±1.55 -1.25±0.01
BNN20D -1.70±0.01 -1.72±0.01 -1.52±0.02 -1.53±0.01 0.99±0.39 -1.68±0.01

Our Generative Test-Bed vs. Osband et al. (2021) Os-
band et al. (2021) measures the Kullback–Leibler diver-
gence between the posterior of any method to the posterior
of shallow GP with a fixed (deep) neural tangent kernel
(NTK). Thus, they evaluate methods by their similarity to a
NTK-GP posterior. Because of the fixed kernel the posterior
of the NTK-GP does not fulfill D4 (Metric Learning) at all.
This implies that their evaluation metric does not reward D4
(Metric Learning) at all. However, we think that D4 (Metric
Learning) is very important for real-world deep learning
applications (see Footnote 4 and Appendix D.4). The pos-
terior of a finite-width BNN fulfills D4 (Metric Learning).
Therefore, approximating such a posterior is more desirable.
However, in contrast to the NTK-GP posterior in (Osband
et al., 2021), there is no closed formula for a finite-width
BNN posterior. Thus, at first sight one cannot straightfor-
wardly evaluate methods based on the Kullback–Leibler
divergence between their posterior and this intractable BNN
posterior as in Osband et al. (2021).

Nonetheless, in the following, we prove in Theorem B.7
that the metric we use in Tables 2, 10 and 11 indeed con-
verges (up to a constant)27 to the average Kullback–Leibler
divergence d̄KL to the posterior of a finite width BNN as
mseeds tends to infinity. First, we define the average Kull-
back–Leibler divergence d̄KL and introduce some notation.

Definition B.6 (AVG KULLBACK–LEIBLER DIVERGENCE)
Let Dtrain be a finite set of training points and consider a
prior distribution28 P [f ∈ ·] on the function space {f :
X → Y } and the corresponding posterior P [f ∈ · | Dtrain]
on the function space. Then the marginal of the posterior
P [f(x) ∈ · | Dtrain, x] is a measure on R for every given
input data point x ∈ X and every given training data set
Dtrain. Let Q [· | Dtrain, x] also be a measure on R for every
given input data point x ∈ X and every given training data
setDtrain.29 The average Kullback–Leibler divergence is then
defined as

d̄KL = EDtrain,x [dKL (P [f(x) ∈ · | Dtrain, x] || Q [· | Dtrain, x])] ,

27If we are just interested in the relative performance of different
methods compared to each other, the constant does not matter.

28In our generative test-bed the prior distribution is a BNN prior
with i.i.d centered Gaussian weights.

29In our context Q [· |Dtrain, x] can be the approximation of the
marginal posterior at x ∈ X given training data Dtrain obtained
from any method such as NOMU, GP, MCDO, DE, HDE, etc.
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where the expectation is taken over x and Dtrain according
to P, and dKL is the classical Kullback–Leibler divergence
between two probability measures on R. This is equivalent
to Equation (1) from (Osband et al., 2021).

Theorem B.7 Using the notation from Definition B.6,
let q(· | Dtrain, x) be the density of Q [· | Dtrain, x] on
R. Let (fj(xj), D

train
j , xj)j∈{1,...,mseeds} be i.i.d samples of

P [(f(x), Dtrain, x) ∈ ·].30 Then, the average NLL

lim
mseeds→∞

1

mseeds

mseeds∑

j=1

− log
(
q(fj(xj) | Dtrain

j , xj)
)

= d̄KL+CP

converges (P-a.s.) to d̄KL up to an additive constant CP,
where CP only31 depends on P and not on Q.

Proof. Let p be the density of P [(f(x), Dtrain, x) ∈ ·] and
p(· | Dtrain, x) the density on R of the marginal posterior
P [f(x) ∈ · | Dtrain, x]. Further we write p(Dtrain, x) for the
density of of the marginal P [(Dtrain, x) ∈ ·] evaluated at
(Dtrain, x). Since

lim
mseeds→∞

1

mseeds

mseeds∑

j=1

− log
(
q(fj(xj) | Dtrain

j , xj)
)

can be seen as a Monte-Carlo approximation, it converges
(P-a.s.) to

Ef(x),Dtrain,x[− log (q(f(x) | Dtrain, x))] =

=

∫
− log (q(f(x) | Dtrain, x)) p(f(x), Dtrain, x)d(f(x), Dtrain, x) =

=

∫
− log (q(f(x) | Dtrain, x)) p(f(x) | Dtrain, x)p(Dtrain, x)d(f(x), Dtrain, x).

By Fubini this is equal to

∫ ∫
− log (q(f(x) | Dtrain, x)) p(f(x) | Dtrain, x)d(f(x))p(Dtrain, x)d(Dtrain, x) =

= EDtrain,x

[∫
− log (q(f(x) | Dtrain, x)) p(f(x) | Dtrain, x)d(f(x))

︸ ︷︷ ︸
H(P[f(x)∈· | Dtrain,x],Q[· | Dtrain,x])

]
,

where H is the cross-entropy. So this is further equal to

30We formulate the theorem for the hardest case of ntest = 1.
The convergence of

lim
mseeds→∞

1

mseeds

mseeds∑

j=1

1

ntest

ntest∑

i=1

− log
(
q(fj(xj,i) |Dtrain

j , xj,i)
)

= d̄KL+CP

is obviously even faster for ntest > 1. For the proof it is only
important that mseeds →∞.

31P does not depend on the chosen method. Only Q (and ac-
cordingly q) differs among the methods. Thus, CP does not change
the ranking amongst different methods.

EDtrain,x [dKL (P [f(x) ∈ · | Dtrain, x] || Q [· | Dtrain, x])] +

EDtrain,x [H (P [f(x) ∈ · | Dtrain, x])] =

= d̄KL + CP,

where CP = EDtrain,x [H (P [f(x) ∈ · | Dtrain, x])] only de-
pends on P and not on Q or q.

To apply Theorem B.7 to the metrics reported in Tables 2,
10 and 11 one has to apply Footnote 30 and has to set
q(· | Dtrain, x) to be the density corresponding to the al-
ready calibrated uncertainty at x obtained from any method
trained on Dtrain, i.e., for example let c be a fitted calibra-
tion parameter, and f̂ and σ̂ be the fitted model and model
uncertainty prediction of NOMU then q(· | Dtrain, x) :=

N (·; f̂(x), c · σ̂(x)) for x ∈ X .32 In our setting, we made
sure that the correct calibration constant c is chosen in the
limit mseeds →∞, since we chose one fixed value for c per
dimension and method and do not over-fit on specific seeds.

B.2.6. SOLAR IRRADIANCE TIME SERIES: DETAILS

Configuration Details We use for all algorithms the same
configuration as in the 1D and 2D toy regression setting (see
Section 4.1.1 and Appendix B.2.2) except that we now train
all algorithms for 214 epochs and set as L2-regularization
λ = 10−19 for NOMU, λ = 10−19/ntrain for DE, and
λ = (1 − 0.2) · 10−19/ntrain for MCDO. For HDE, we ac-
cordingly draw the L2-regularization parameter log-uniform
from (10−19 · 10−3, 10−19 · 10+3) (which affects the L2-
regularization parameter of HDE* in the same way as in
Appendix B.2.2).

Results Figure 13 visualizes the UBs from NOMU and
the benchmark algorithms. As becomes evident, NOMU
manages to best fit the training data33, while keeping model
uncertainty in-between training points. The corresponding
metrics for this specific run are given in Table 12.

B.2.7. UCI DATA SETS: DETAILS

To get a feeling for how well NOMU (without data noise ex-
tension or hyperparameter tuning) performs in noisy regres-
sion with high-dimensional input, we test our algorithm on
the popular UCI benchmark (Hernández-Lobato & Adams,

32In theory, more general posteriors than Gaussians could be
used too, but within this paper we always assumed Gaussian
marginals of the posterior as all the considered benchmarks also
output Gaussian distributed approximations of the marginal poste-
riors.

33Gal & Ghahramani (2016) consider the same data set to com-
pare UBs of MC dropout and GPs. In this work however, NNs are
trained for 106 epochs possibly explaining why MC dropout more
nicely fits the training data in their case.
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Figure 13. Visualization of each algorithm’s model prediction (solid lines) and UBs (shaded areas) on the solar irradiance data set.
Training and test points are shown as black dots and red crosses, respectively. We present UBs obtained by NOMU (c=2) compared to the
benchmarks MC dropout (MCDO) (c=5), deep ensembles (DE) (c=5), Gaussian process (GP) (c=1) and hyper deep ensembles (HDE)
(c=15) and (HDE*) (c=40). Additionally, NOMU’s estimated and scaled model uncertainty 2σ̂f is shown as a dotted line.
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Table 12. Metrics for solar irradiance time series.

METHOD AUC↓ NLLMIN↓
NOMU 0.32 −1.44
GPR 0.46 −1.24
MCDO 0.30 −1.11
DE 0.35 −1.28
HDE 0.47 −0.98
HDE* 0.59 −1.08

2015) and the UCI gap data sets introduced in (Foong et al.,
2019).

The UCI gap data sets were designed to capture whether
an algorithm’s uncertainty estimate increases in between
separated clusters of observations where epistemic uncer-
tainty should be higher compared to regions with many data
points. This is also required by D3. However, in (Foong
et al., 2019) only those data points that had been removed
to create gaps in the training data were used as test data
for calculating NLL. Thus, NLL on UCI gap data fails by
construction to capture the uncertainty quality outside of the
gap: First, D2 is not properly measured by this evaluation,
since there are not many test-points in the test data-set that
are close to training points. Second, also D3 is not properly
measured, since the smaller gaps in between data points
outside of the gap are not part of the test data-set. Note that
D3 also concerns these kinds of gaps. To provide better eval-
uation of uncertainty, future work should focus on mixed
test data-sets (moving some input points outside of the gap
from the training set to the test set) similar to our train/test
split from the experimental setting in Appendix B.2.6.

Nonetheless, we test NOMU on the UCI and UCI gap data
sets using the same experiment setup as in the respective
works.

NOMU Setup In line with the literature, NOMU’s main
and side architectures were chosen as a single-hidden-layer
NN with 50 hidden nodes (except for the large protein
data set, where the number of hidden nodes was 100).
NOMU was trained for 400 (UCI) respectively 40 (UCI
gap) epochs, with L2-regularization 1e−09 and 1e−04

on the main- and side architectures respectively, using a
batch size of 100 in Adam stochastic gradient descent with
learning rate 0.01. NOMU used ` = 100 artificial data
points randomly sampled on each batch and was refit on
validation data after the constant c had been calibrated on
these. For the standard UCI data sets, we used the same
loss parameters as in the remaining regression experiments,
namely πexp = 0.01, πsqr = 0.1, and cexp = 30. For the UCI
gap data set, where uncertainty is only evaluated in gap
regions, we chose πexp = 0.1 and πsqr = 0.01, relaxing the
requirement of small uncertainty at observed data points and
strengthening the pull upward on our raw uncertainty output.

Table 13. UCI-GAP average NLL and a 95% normal-CI.

DATASET NOMU LL NLM-HPO NLM

BOSTON 2.80 ±0.11 2.79 ±0.09 2.81 ±0.15 3.60 ±0.21
CONCRETE 3.38 ±0.08 3.53 ±0.13 3.72 ±0.11 3.89 ±0.21
ENERGY 3.71 ±1.62 6.49 ±5.50 3.78 ±2.27 3.40 ±1.99
KIN8NM -0.97 ±0.02 -1.14 ±0.03 -1.06 ±0.03 -1.04 ±0.03
NAVAL 31.81 ±28.0 15.66 ±8.34 1.17 ±1.56 1.48 ±1.64
CCPP 2.91 ±0.04 2.89 ±0.03 2.96 ±0.09 2.90 ±0.05
PROTEIN 3.21 ±0.10 3.09 ±0.05 3.22 ±0.09 3.35 ±0.11
WINE 0.99 ±0.02 0.96 ±0.01 0.98 ±0.01 1.75 ±0.07
YACHT 2.15 ±0.30 1.33 ±0.29 1.72 ±0.33 1.44 ±0.21

Moreover, for numerical stability we use the following
slight adaptation of the NOMU loss from Definition 3.3:

Lπstable(NN θ) :=

ntrain∑

i=1

(f̂(xtrain
i )− ytrain

i )2

︸ ︷︷ ︸
(a)

+πsqr ·
ntrain∑

i=1

ρstable (r̂f (xtrain
i ))

︸ ︷︷ ︸
stable version of (b)

+

πexp ·
1

λd(X)

∫

X

ustable (r̂f (x)) dx

︸ ︷︷ ︸
stable version of (c)

, (53)

where

ρstable(r) =

{
r2 , |r| ≤ 1

2|r| − 1 , |r| > 1
(54)

is the Huber-loss and

ustable(r) =

{
u(r) = e−cexp·r , r ≥ 0

−cexp · r , r < 0.
(55)

This stable loss Lπstable behaves exactly the same as the stan-
dard NOMU-loss Lπ as long as the outputs of the NN stay
in a reasonable range. Only if the gradient descent gets
unstable, such that the NN outputs very extreme value, this
stabilized loss assures a bounded gradient of the loss Lπstable

with respect to the outputs of the NN NN θ.

Results UCI Table 3 in the main paper reports NLL on
test data averaged over 20 runs as in (Hernández-Lobato &
Adams, 2015) for the UCI data set. It includes the following
benchmark models:

• NLM-HPO and NLM correspond to BN(BO)-1 NL in Sec-
tion D.1 respectively Section D.2. of (Ober & Rasmussen,
2019),

• LL corresponds to LL 1HL TANH in (Foong et al., 2019),

• MCDO2 represents Dropout (Convergence) in (Mukhoti
et al., 2018),

• MCDO corresponds to Dropout in (Gal & Ghahramani,
2016) and DE to Deep Ensembles in (Lakshminarayanan
et al., 2017).
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We used the standard deviations that were reported in these
respective works to derive 95%-normal CIs.

Results UCI Gap Table 13 lists Gaussian 95%-
confidence intervals for NLL on the UCI gap data sets for
NOMU as well as the values reported for benchmarks NLM,
NLM-HPO and LL (Linearized Laplace) as listed above.
These values result from different runs where in each run
the gap were introduced in a different input dimension (see
Foong et al. (2019)). We see that NOMU performs com-
parably, and confirm the observation that LL tends to best
capture uncertainty in the large gaps artificially introduced
in the training data.

B.3. Bayesian Optimization

B.3.1. BO: CONFIGURATION DETAILS

In the following, we describe the detailed hyperparameter
setup of all algorithms.

NOMU Setup For NOMU, we set πsqr = 1, `min = 1e−6
and use l = 500 artificial input points for 5D, 10D and
20D. Otherwise we use the exact same hyperparameters as
in 1D and 2D regression (see in Section 4.1 the paragraph
Algorithm setup).

Deep Ensembles Setup For deep ensembles, we use the
exact same hyperparameters as in 1D and 2D regression
(see Appendix B.2.2).

MC Dropout Setup For MC dropout, due to computa-
tional constraints, we were only able to use 10 stochastic
forward passes (instead of 100 in the regression setting)
However, this still results in an increase in compute time
by a factor 10 of every single acquisition function evalu-
ation compared to NOMU. Otherwise, we use the exact
same hyperparameters as in 1D and 2D regression (see Ap-
pendix B.2.2) .

Gaussian Process Setup For Gaussian processes (pGP
and GP), we use the exact same setup as in 1D and 2D
regression (see Appendix B.2.2).

Hyper Deep Ensembles Setup For hyper deep ensem-
bles, due to computational constraints, we were only able
to use κ = 20 (instead of κ = 50 in the regression setting).
However, this still results in an increase of training time by
a factor of 5 in each single BO step compared to NOMU.
Otherwise we use the exact same hyperparameters as in the
1D and 2D regression setting (see Appendix B.2.2).

Acquisition Function Optimization For each algorithm
and each BO step, we determine the next BO input point

by maximizing the corresponding upper-bound acquisition
function, i.e., (f̂(x) + c σ̂f (x)). We maximize this upper-
bound acquisition function using the established DIRECT
(Dividing Rectangles) algorithm.

Gaussian BNN Test Functions Note that for the Gaus-
sian BNN test functions in BO (see Table 4 and Ta-
ble 14, respectively) we do not have access to the ground
truth global maximum. Thus, to determine the final re-
gret, we use the established DIRECT (Dividing Rectan-
gles) algorithm. With DIRECT, we calculate a point xdirect

s.t. f(xdirect) ≈ maxx∈X f(x) and report |f(xdirect) −
maxi∈{1,...,72} f(xi)|/f(xdirect) in Table 4 and Table 14,
respectively.

B.3.2. BO: CALIBRATION

MW SCALING In general, having a good understanding
of the prior scale is very hard. Nevertheless, often it is easier
to have at least some intuition in which order of magnitude
the posterior UBs should be on average. When function
values approximately range in [−1, 1], it is reasonable to
require that after observing 8 initial points the mean width
(MW) of the UBs lies within the order of magnitudes 0.05
and 0.5. Hence our motivation for choosing the calibration
parameter c accordingly. An advantage of such a calibration
is that it can be applied to every method equally, whereas
there is in general no clear notion of setting the prior scale
of two different methods (e.g., MC dropout and deep en-
sembles) to the same value. Note, that we only use MW to
calibrate c directly after mean and variance predictions were
fit based on the 8 initial data points. So MW is not fixed
when further data points are observed in subsequent steps
of the BO.

DYNAMIC C The initial choice of c can still be corrected
in each BO step. Certainly, in the noiseless case it does
not make sense to pick an input point xi′ that is identical to
an already observed input point xi, i < i′, where nothing
new is to be learned. Therefore, we want our NN-agent to
get “bored” if its acquisition function optimization would
suggest to pick an input point xi′ ≈ xi, i < i′. The idea
of DYNAMIC C is to encourage the agent, in case it was
“bored”, to become more “curious” to explore something
new instead of picking a “boring” input point. This can
be achieved by iteratively increasing c until the acquisition
function optimization suggests an input point xi′ 6≈ xi,∀i <
i′. We then only apply the expensive function evaluation for
xi′ 6≈ xi,∀i < i′ that we obtained after increasing c enough
to not “bore” the NN. However, towards the last BO-steps,
if we already know approximately where a global optimum
is and we only want to fix the last digits of the optimizer,
we have to evaluate the function closer to already observed
points. In contrast, a very “young” NN (i.e., a network that
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Table 14. Results for 15 different BO tasks. Shown are the average final regrets and a 95% normal-CI per dimension and for each
individual function over 100 (5D) and 50 (10D and 20D) runs for an initial mean width (MW) of 0.05 and 0.5, respectively. Winners are
marked in grey.

NOMU NOMU GP GP MCDO MCDO DE DE HDE HDE PGP RAND
FUNCTION MW 0.05 MW 0.5 MW 0.05 MW 0.5 MW 0.05 MW 0.5 MW 0.05 MW 0.5 MW 0.05 MW 0.5 MW MW

LEVY5D 2.12e−3± 5.95e−4 1.52e−3± 4.34e−4 1.10e−3± 1.68e−4 8.84e−3± 1.15e−3 1.98e−2± 3.59e−3 1.27e−2± 2.57e−3 7.09e−3± 3.76e−3 9.09e−2± 9.16e−3 4.48e−3± 1.25e−3 3.76e−3± 1.22e−3 6.25e−3± 5.26e−4 5.44e−2± 4.22e−3
ROSENBROCK5D 1.75e−4± 2.76e−5 3.57e−4± 6.39e−5 3.62e−4± 6.52e−5 8.44e−4± 1.62e−4 2.83e−4± 4.64e−5 7.35e−4± 1.08e−4 7.93e−4± 7.74e−4 5.96e−3± 1.78e−3 1.11e−3± 7.25e−4 5.02e−4± 1.04e−4 7.56e−4± 8.13e−5 4.73e−3± 7.04e−4
G-FUNCTION5D 1.12e−1± 1.99e−2 1.06e−1± 1.97e−2 1.68e−1± 1.62e−2 2.60e−1± 1.72e−2 2.66e−2± 8.57e−3 7.80e−2± 8.82e−3 1.88e−1± 2.08e−2 2.03e−1± 2.20e−2 1.35e−1± 2.46e−2 1.37e−1± 2.59e−2 1.78e−1± 1.22e−2 3.63e−1± 1.09e−2
PERM5D 4.06e−4± 1.70e−4 2.58e−4± 1.13e−4 7.76e−5± 3.19e−5 1.80e−3± 4.44e−4 7.79e−5± 4.19e−5 7.11e−5± 1.45e−5 6.96e−4± 2.20e−4 1.73e−3± 4.55e−4 2.74e−3± 5.20e−4 2.50e−3± 5.58e−4 2.06e−4± 7.03e−5 4.62e−4± 1.20e−4
BNN5D 6.60e−2± 4.03e−2 3.77e−2± 1.89e−2 1.16e−1± 8.63e−2 4.53e−2± 3.04e−2 2.37e−1± 8.04e−2 2.04e−1± 9.29e−2 6.32e−2± 5.28e−2 7.92e−2± 5.34e−2 2.70e−1± 8.78e−2 2.36e−1± 8.27e−2 2.23e−2± 6.42e−3 5.42e−1± 9.21e−2

Average Regret 5D 3.62e−2± 8.99e−3 2.91e−2± 5.46e−3 5.71e−2± 1.76e−2 6.33e−2± 6.99e−3 5.67e−2± 1.62e−2 5.92e−2± 1.87e−2 5.19e−2± 1.14e−2 7.62e−2± 1.17e−2 8.26e−2± 1.82e−2 7.59e−2± 1.73e−2 4.16e−2± 2.76e−3 1.93e−1± 1.86e−2

LEVY10D 6.27e−3± 2.22e−3 6.27e−3± 2.22e−3 1.04e−2± 2.10e−3 1.04e−2± 2.10e−3 2.16e−2± 3.71e−3 2.17e−2± 5.30e−3 8.65e−2± 2.01e−2 1.46e−1± 1.41e−2 6.21e−3± 2.48e−3 5.81e−3± 1.99e−3 6.16e−3± 8.94e−4 1.06e−1± 7.64e−3
ROSENBROCK10D 2.34e−3± 1.43e−3 2.01e−3± 6.91e−4 9.14e−4± 1.25e−4 5.67e−3± 1.60e−3 2.25e−3± 2.58e−4 4.96e−3± 4.40e−4 1.42e−2± 4.43e−3 7.65e−2± 1.03e−2 5.10e−3± 1.44e−3 5.00e−3± 1.70e−3 3.09e−3± 5.77e−4 2.82e−2± 3.92e−3
G-FUNCTION10D 2.92e−1± 3.85e−2 3.53e−1± 2.74e−2 3.79e−1± 2.24e−2 4.21e−1± 2.35e−2 1.79e−1± 2.54e−2 4.15e−1± 1.12e−2 3.24e−1± 2.28e−2 3.33e−1± 2.06e−2 2.53e−1± 3.76e−2 2.55e−1± 3.72e−2 3.80e−1± 1.34e−2 4.50e−1± 6.48e−3
PERM10D 3.74e−4± 1.26e−4 4.27e−4± 1.34e−4 3.59e−4± 2.13e−4 6.52e−4± 2.04e−4 3.37e−4± 8.49e−5 5.53e−4± 1.33e−4 1.01e−3± 3.10e−4 1.48e−3± 3.92e−4 4.07e−4± 1.21e−4 4.08e−4± 1.48e−4 5.57e−4± 1.43e−4 1.81e−4± 5.44e−5
BNN10D 1.23e−1± 3.76e−2 1.00e−1± 3.43e−2 1.96e−1± 5.16e−2 1.68e−1± 4.09e−2 1.45e−1± 3.60e−2 1.61e−1± 2.86e−2 1.51e−1± 4.27e−2 1.13e−1± 4.00e−2 2.58e−1± 4.96e−2 2.02e−1± 3.79e−2 8.65e−2± 2.29e−2 5.92e−1± 5.34e−2

Average Regret 10D 8.48e−2± 1.08e−2 9.24e−2± 8.79e−3 1.17e−1± 1.13e−2 1.21e−1± 9.45e−3 6.97e−2± 8.84e−3 1.21e−1± 6.24e−3 1.15e−1± 1.05e−2 1.34e−1± 9.65e−3 1.05e−1± 1.25e−2 9.36e−2± 1.06e−2 9.52e−2± 5.30e−3 2.35e−1± 1.09e−2

LEVY20D 1.51e−2± 1.69e−3 1.40e−2± 1.63e−3 1.98e−2± 8.61e−3 2.64e−2± 1.12e−2 4.27e−2± 4.16e−3 6.91e−2± 9.00e−3 1.88e−1± 1.15e−2 2.01e−1± 1.07e−2 1.13e−2± 4.60e−3 1.61e−2± 5.47e−3 1.98e−2± 7.88e−3 1.48e−1± 6.58e−3
ROSENBROCK20D 3.47e−2± 7.08e−3 6.03e−3± 9.93e−4 8.94e−3± 4.00e−3 1.91e−2± 4.04e−3 7.41e−3± 1.14e−3 7.61e−3± 2.15e−3 6.46e−2± 1.22e−2 1.41e−1± 1.29e−2 2.96e−3± 1.36e−4 4.27e−3± 1.33e−3 1.09e−2± 1.52e−3 7.80e−2± 8.38e−3
G-FUNCTION20D 4.16e−1± 8.99e−3 4.18e−1± 1.70e−2 4.59e−1± 6.77e−3 4.86e−1± 3.95e−3 4.70e−1± 4.43e−3 4.92e−1± 1.58e−3 4.18e−1± 1.33e−2 4.02e−1± 1.61e−2 3.79e−1± 2.97e−2 3.73e−1± 2.56e−2 4.47e−1± 9.37e−3 4.86e−1± 2.44e−3
PERM20D 7.45e−5± 2.09e−5 7.46e−5± 2.50e−5 2.20e−4± 8.98e−5 1.57e−4± 7.50e−5 9.98e−5± 3.19e−5 2.03e−4± 8.86e−5 3.54e−5± 6.52e−6 1.85e−4± 6.90e−5 7.98e−5± 2.19e−5 9.28e−5± 3.89e−5 9.44e−5± 3.25e−5 1.90e−5± 4.67e−6
BNN20D 1.58e−1± 4.12e−2 1.23e−1± 3.21e−2 1.84e−1± 3.46e−2 1.42e−1± 2.70e−2 1.77e−1± 3.46e−2 2.45e−1± 4.41e−2 1.89e−1± 3.98e−2 3.05e−1± 7.02e−2 2.93e−1± 5.72e−2 3.05e−1± 5.01e−2 1.11e−1± 2.06e−2 6.85e−1± 3.29e−2

Average Regret 20D 1.25e−1± 8.57e−3 1.12e−1± 7.27e−3 1.34e−1± 7.31e−3 1.35e−1± 5.95e−3 1.39e−1± 7.03e−3 1.63e−1± 9.02e−3 1.72e−1± 9.03e−3 2.10e−1± 1.48e−2 1.37e−1± 1.29e−2 1.40e−1± 1.13e−2 1.18e−1± 4.81e−3 2.80e−1± 6.94e−3

has been trained on few training points) should get “bored”
much more easily, since it is not sensible to exploit a given
local optimum up to the last digits, when there is plenty of
time to reach other, possibly better local optima.

Thus, it makes sense to first explore on a large scale where
the good local optima are approximately, then to find out
which of them are the best ones and finally to exploit the
best one in greater detail at the very end.

Therefore, we want the threshold δi, that determines if

xi′
δi′≈ xi ⇐⇒ ‖xi′ − xi‖2 ≤ δi′ to decrease in each

BO step. In our experiment, we choose an exponential
decay of

δi = δnstart ·
(
δnend

δnstart

)(i−nstart)/(nend−nstart)

, (56)

with δnstart = 1
16 and δnend = 0.01.

Concretely, we only evaluate f at xi′ if ‖xi′ − xi‖2 >
δi′∀i < i′ is fulfilled. Otherwise we double c until it is
fulfilled (With larger c more emphasis is put on exploration,
so there is a tendency that xi′ will be further away from
the observed input points the larger we pick c, if D3 (Out-
of-Sample) is fulfilled). After doubling c 15 times without
success, we evaluate f at xi′ no matter how close it is to the
already observed input points (for methods that have severe
troubles to fulfill D3 (Out-of-Sample), such as MCDO, even
doubling c infinite times would not help if the maximal un-
certainty is within an δi′-ball around an already observed
input point).

B.3.3. BO: DETAILED RESULTS

In Table 14, we present the mean final regrets, which corre-
spond to the ranks shown in Table 4 in the main paper.

B.3.4. BO: REGRET PLOTS

In Figures 14–16, we present the regret plots for each test
function and both MW values.

C. Extensions
C.1. Incorporating Data Noise

We now discuss one way to incorporate data noise in NOMU.
If σn is unknown, one option to learn it, is to add another
output σ̂n to its architecture and change the loss function to

Lπ(NN θ) :=
ntrain∑

i=1




(
f̂(xtrain

i )− ytrain
i

)2

2 (σ̂n(xtrain
i ))

2 + ln (σ̂n(xtrain
i ))




+ πsqr ·
ntrain∑

i=1

(r̂f (xtrain
i ))

2

2 (σ̂n(xtrain
i ))

2 (57)

+ πexp ·
1

λd(X)

∫

X

e−cexp·r̂f (x) dx,

in the case of Gaussian data noise uncertainty. In this case
we recommend to first train the model prediction f̂ and the
data noise σ̂n only and then freeze their parameters and train
the r̂f -network for capturing model uncertainty σ̂f . Note
that in the NOMU loss (4) we implicitly assumed a constant
very small and negligible data noise σ2

n , absorbed as a factor
into the hyperparameter πexp and the regularization factor
λ. Thus, when using the loss (57) instead of the NOMU
loss (4), πexp and λ need to be chosen significantly larger.

In the case of known (heteroscedastic) data noise σn(x), (57)
can be simplified, replacing σ̂n by σn and dropping the term
ln (σn) (in this case, one can then also drop the σ̂n-output of
the NOMU architecture).
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(a) Regret plot G-Function, 0.05 MW
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(e) Regret plot Perm, 0.05 MW
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(f) Regret plot Perm, 0.5 MW
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(g) Regret plot Rosenbrock, 0.05 MW
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(h) Regret plot Rosenbrock, 0.5 MW
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(i) Regret plot BNN, 0.05 MW

8 24 40 56 72
Number of Evaluations

10
2

10
1

10
0

R
eg

re
t

NOMU
GP

MCDO
DE

HDE
pGP

RAND

(j) Regret plot BNN, 0.5 MW

Figure 14. Regret plots for all 5D test functions and MWs of 0.05 and 0.5, respectively. We show regrets averaged over 100 runs (solid
lines) with 95% CIs.
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(h) Regret plot Rosenbrock, 0.5 MW
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(i) Regret plot BNN, 0.05 MW
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(j) Regret plot BNN, 0.5 MW

Figure 15. Regret plots for all 10D test functions and MWs of 0.05 and 0.5, respectively. We show regrets averaged over 100 runs (solid
lines) with 95% CIs.
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(i) Regret plot BNN, 0.05 MW
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(j) Regret plot BNN, 0.5 MW

Figure 16. Regret plots for all 20D test functions and MWs of 0.05 and 0.5, respectively. We show regrets averaged over 100 runs (solid
lines) with 95% CIs.
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Predictive UBs are then obtained as
(
f̂(x)∓

√
c1 σ̂2

f (x) + c2 σ̂2
n (x)

)
(58)

with suitable calibration parameters c1, c2 ∈ R≥0.

In the case of known normally distributed data noise (and
under the assumption that the posterior of each f(x) is Gaus-
sian), it is sufficient to calibrate one calibration parameter c̃
to obtain approximate α predictive bounds
(
f̂(x)∓ Φ−1(1− 1− α

2
)
√
c̃ σ̂2

f (x) + σ2
n (x)

)
, (59)

where c̃ relates to the typically unknown prior scale.

C.2. NOMU for Upwards and Downwards Directed
Hypothesis Classes

As mentioned in Appendix A.1 and discussed in more de-
tail in Appendix A.3, often the set HDtrain is not upwards
directed for typical NN-architectures and Equation (7) of
Theorem A.1 is not fulfilled in general. Therefore, we care-
fully designed our NOMU algorithm to be able to cope with
settings where the set HDtrain is not upwards and/or down-
wards directed. The downwards directed property is defined
analogously as follows:

Assumption 2 (DOWNWARDS DIRECTED) For every
f1, f2 ∈ HDtrain there exists an f ∈ HDtrain such that
f(x) ≤ min(f1(x), f2(x)) for all x ∈ X .

However, in the following, we discuss a modification of
NOMU, which is specifically designed for the case ifHDtrain

is indeed upwards and/or downwards directed. In this case,
by Theorem A.1, we can directly solve

arg max
h∈HDtrain

∫

X

u(h(x)− f̂(x)) dx (60)

to obtain an upper UB and/or

arg min
h∈HDtrain

∫

X

u(h(x)− f̂(x)) dx (61)

to obtain a lower UB, without the need for any modifications
as used in the proposed NOMU algorithm (we do not need
the dashed connections in the architecture from Figure 2,
we do not need a specific choice of u and we do not need
to introduce r̂f and the final activation function ϕ). The
UBs obtained in this way exactly coincide then with the
pointwise upper and lower UBs defined in (5), respectively.

Moreover in this case, f̂ can be even removed from Equa-
tions (60) and (61) (as can be seen from the proof of Theo-
rem A.4). Thus, in the following loss formulation, we will
remove f̂ in the respective term (c̃).

x ∈ X

...

...

...

...

...

...

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

...

...

...

ÛB(x) ∈ R≥0

f̂(x) ∈ Y

ÛB(x) ∈ R≥0

f̂ -network

ÛB-network

ÛB-network

Figure 17. ÑN θ: a modification of NOMU’s original network ar-
chitecture for upwards and downwards directed hypothesis classes.

C.2.1. THE ARCHITECTURE

Under Assumption 1 (upwards directed) and Assumption 2
(downwards directed), we propose an architecture ÑN θ

consisting of three sub-networks with three outputs: the
model prediction f̂ , the estimated lower UB ÛB and the es-

timated upper UB ÛB. In Figure 17, we provide a schematic
representation of ÑN θ.

C.2.2. THE LOSS FUNCTION

From Equations (60) and (61) we can then directly formulate
the following modified NOMU loss function L̃π .

Definition C.1 (NOMU LOSS UPWARDS AND DOWN-
WARDS DIRECTED) Let π := (πsqr, πexp, cexp) ∈ R3

≥0 de-
note a tuple of hyperparameters. Let λd denote the d-
dimensional Lebesgue measure. Furthermore, let u : Y →
R be strictly-increasing and continuous. Given a training
set Dtrain, the loss function L̃π is defined as

L̃π(ÑN θ) :=

ntrain∑

i=1

(f̂(xtrain
i )− ytrain

i )2

︸ ︷︷ ︸
(ã)

(62)

+ πsqr ·
ntrain∑

i=1

(ÛB(xtrain
i )− ytrain

i )2 + (ÛB(xtrain
i )− ytrain

i )2

︸ ︷︷ ︸
(b̃)

(63)

− πexp ·
1

λd(X)

∫

X

u(−ÛB(x)) + u(ÛB(x)) dx

︸ ︷︷ ︸
(c̃)

. (64)

The interpretations of the three terms (ã), (b̃) and (c̃) are
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analogous to the ones in the original NOMU loss.

Note that, the three sub-networks: the ÛB-network, the
ÛB-network and the f̂ -network can also be trained indepen-
dently using the corresponding terms in the loss function.
Moreover, if one is only interested in the upper (lower) UB
orHDtrain is only upwards (downwards) directed, i.e., fulfills
only Assumption 1 (Assumption 2), then one can remove
the respective sub-network from the architecture as well as
the corresponding terms in the loss function. Furthermore,
note that, now the obtained UBs can be asymmetric too.34

D. Discussion of the Desiderata
In this section, we discuss in more detail the desiderata pro-
posed in Section 3.1. Specifically, we discuss how NOMU
fulfills them and thereby prove several propositions. First,
we establish a relation of NOMU to the classical Bayesian
approach.

The Bayesian point of view allows for mathematically rigor-
ous estimation of uncertainty. However, in general a fully
Bayesian approach for quantifying uncertainty is very chal-
lenging and involves to

i. formulate a realistic prior,
ii. use an algorithm to approximate the posterior (chal-

lenging to get a good approximation in feasible time
for complex models such as NNs),

iii. use this approximation of the posterior to obtain UBs.

We follow a different approach by directly approximating
iii. based on essential properties of the posterior, e.g., for
zero data noise model uncertainty vanishes at, and becomes
larger far away from training data. This can be a reasonable
approach in applications since many Bayesian state-of-the-
art methods even fail to fulfill these basic properties when
implemented in practice (Malinin & Gales, 2018) (see Fig-
ure 1). Since especially for NNs ii. is very costly, we ask
ourselves the question, whether in practice it is even true
that one has more intuition about the important properties
of the prior than about the important properties of the pos-
terior? In other words, can i. and ii. be skipped by directly
approximating iii.? In the case of mean predictions, many
successful algorithms following this procedure already exist.
These algorithms directly try to approximate the posterior
mean by exploiting one’s intuition how the posterior of a
realistic prior should behave without the need of precisely
specifying the prior, e.g.,:

1. Spline regression: In many applications it is very intuitive
that a good approximation of the posterior mean should
not have unnecessarily large second derivative, without

34After the publication of the present paper, Weissteiner et al.
(2023) implemented such an upper UB for monotonically non-
decreasing functions.

explicitly stating the corresponding prior. Even though
spline regression can be formulated as the posterior mean
of a limit of priors (Wahba, 1978), for a practitioner it
can be much more intuitive to decide whether spline
regression fits to one’s prior beliefs by looking at the
smoothness properties of the posterior mean than looking
at such complex priors.

2. Convolutional Neural Networks (CNNs): In image recog-
nition, it is very intuitive to see that a good approximation
of the posterior mean should fulfill typical properties,
e.g., two pictures that are just slightly shifted should
be mapped to similar outputs. CNNs fulfill such typ-
ical properties to a large extent and thus have proven
to be very successful in practice. Nevertheless, from a
Bayesian point of view these properties rely on a yet
unknown prior.

D.1. Desideratum D1 (Non-Negativity)

Desideratum D1 (Non-Negativity) is trivial, since σf ≥ 0
per definition. Credible bounds CB and CB are lower and
upper bounds of an interval [CB,CB], therefore CB ≤ CB
holds by definition as well. To the best of our knowledge,
every established method to estimate model uncertainty
yields bounds that fulfil D1 (Non-Negativity). Furthermore,
note that D1 (Non-Negativity) also holds in the presence of
data noise uncertainty.

D.1.1. HOW DOES NOMU FULFILL D1
(NON-NEGATIVITY)?

By definition, NOMU exactly fulfills D1 (Non-Negativity).
Proposition D.1.a For NOMU, σ̂f ≥ 0 and thus UBc =

f̂ − cσf ≤ f̂ ≤ f̂ + cσf = UBc for all c ≥ 0.

Proof. This holds since `min ≥ 0 in the readout map ϕ (see
Equation (2)).

D.2. Desideratum D2 (In-Sample)

In the case of zero data noise, Desideratum D2 (In-Sample)
holds true exactly.
Proposition D.2.a (ZERO MODEL UNCERTAINTY AT
TRAINING POINTS) Let σn ≡ 0. Furthermore, let Dtrain

be a finite set of training points and consider a prior distri-
bution P [f ∈ ·] on the function space {f : X → Y } such
that there exists a function in the support of P [f ∈ ·] that
exactly fits through the training data. Then for the posterior
distribution it holds that for all (xtrain, ytrain) ∈ Dtrain that

P(f(xtrain) = ytrain|Dtrain) = 1 (65)
P(f(xtrain) 6= ytrain|Dtrain) = 0. (66)

In words, there is no model uncertainty at input train-
ing points, i.e., σf (xtrain) = 0 for all xtrain ∈ {xtrain :
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(xtrain, ytrain) ∈ Dtrain}.

Proof. Intuitively, if the noise is zero, the data generat-
ing process is ytrain = f(xtrain) + 0. Thus, if we observe
(xtrain, ytrain) ∈ Dtrain, we know that f(xtrain) = ytrain with zero
uncertainty. More formally, let (xtrain, ytrain) ∈ Dtrain and de-
fine for some ε > 0

Uε(y
train) := (ytrain − ε, ytrain + ε)

Uε(D
train) :=

⋃

(x,y)∈Dtrain

Uε(x, y),

where Uε(x, y) denotes an ε-ball around (x, y) ∈ X × Y .
Furthermore, let D be a random variable describing the data
generating process assuming zero noise. Then it holds that

P(f(xtrain) ∈ Uε(ytrain)c|D ∈ Uε(Dtrain))

=
P(D ∈ Uε(Dtrain) ∧ f(xtrain) ∈ Uε(ytrain)c)

P(D ∈ Uε(Dtrain))

=
0

P(D ∈ Uε(Dtrain))
.

Note that P(D ∈ Uε(Dtrain)) > 0 for every ε > 0, since by
assumption there exists a function in the support of the prior
that exactly fits through the training data.35 Defining the
posterior

P(f(xtrain) 6= ytrain|Dtrain) :=

lim
ε→0

P(f(xtrain) ∈ Uε(ytrain)c|D ∈ Uε(Dtrain)),

in the canonical way concludes the proof.

Even if theoretically, we know that σf (xtrain) = 0 at all train-
ing points xtrain, in practice σ̂f (xtrain) ≈ 0 can be acceptable
(due to numerical reasons).

D.2.1. NON-ZERO DATA NOISE

For non-zero data noise there is non-zero data-noise induced
model uncertainty at input training points. However, also
for non-zero but small data noise the model uncertainty at
input training points should not be significantly larger than
the data noise. In fact, for GPs one can rigorously show that
σf (xtrain) ≤ σn(xtrain) in the case of known σn.

Proposition D.2.b (GPS MODEL UNCERTAINTY AT
TRAINING POINTS) Let Dtrain be a set of training points.
For a prior f ∼ GP(m(·), k(·, ·)) and fixed σn it holds that

σf (xtrain) ≤ σn(xtrain), (67)

for all input training points xtrain.
35Formally, ∃f∗ that fits exactly through Dtrain with the property

P [f ∈ Uε(f∗)] > 0. Since, 0 < P [f ∈ Uε(f∗)] < P(D ∈
Uε(D

train)) (for the canonical L∞-topology) the claim follows.
Given this one can also see that Proposition D.2.a still holds true
with the even weaker assumption P(D ∈ Uε(Dtrain)) > 0.

Proof. We prove the proposition by induction over the num-
ber of training points ntrain. For this let

An
train

:= {xtrain : (xtrain, ytrain) ∈ Dtrain}.

• Base case ntrain = 1: In this case An
train

= A1 = {xtrain
1 }.

Let k := k(xtrain
1 , xtrain

1 ). Since

σ2
f (xtrain

1 )
(29)
= k − k 1

k + σ2
n (xtrain

1 )
· k ≤ σ2

n (xtrain
1 ) (68)

⇐⇒ k2 ≥ k2 − σ4
n (xtrain

1 ), (69)

the claim follows.

• ntrain = m: Let K(Am, Am) be the Gram matrix and let

P := [K(Am, Am) + diag(σn(Am))] .

We then assume for all xtrain ∈ Am that

σ2
f (xtrain|Am)

(29)
= (70)

k(xtrain, xtrain)− k(xtrain, Am)TP−1k(xtrain, Am) ≤ σ2
n (xtrain)

(71)

• Inductive step ntrain = m + 1: We now show that under
the inductive assumption for any xtrain ∈ Am+1 we have

σ
2
f (x

train
)

(29)
= k(x

train
, x

train
)−

(
k(xtrain, Am)

k(xtrain, xtrain
m+1)

)T (
P Q
R S

)−1 ( k(xtrain, Am)

k(xtrain, xtrain
m+1)

)

(72)

≤ σ2
n (x

train
)

with

R := (k(xtrain
1 , xtrain

m+1), . . . k(xtrain
m , xtrain

m+1)) = k(xtrain
m+1, A

m)T ,

Q := (k(xtrain
1 , xtrain

m+1), . . . k(xtrain
m , xtrain

m+1))T = RT ,

S := k(xtrain
m+1, x

train
m+1) + σ2

n (xtrain
m+1).

Setting k := k(xtrain, xtrain), v := k(xtrain, Am), and w :=
k(xtrain, xtrain

m+1) (72) can be rewritten as

k −
(
v
w

)T (
P̃ Q̃

R̃ S̃

)(
v
w

)
≤ σ2

n (xtrain) (73)

with submatrices P̃ , Q̃, R̃, S̃ as in (Williams & Ras-
mussen, 2006, (A.12)). Furthermore, with M := (S −
RP−1Q)−1 as in (Williams & Rasmussen, 2006, (A.12)),
we get that (73) is equivalent to

k −
(
v
T
P̃ v + v

T
Q̃w + wR̃v + wS̃w

)
≤ σ2

n (x
train

)

⇐⇒ k −
(
v
T
P
−1
v + v

T
P
−1
QMRP

−1
v − vTP−1

QMw

− wMRP
−1
v + wMw

)
≤ σ2

n (x
train

)

⇐⇒ k − vTP−1
v − (v

T
P
−1
Q− w)M(RP

−1
v − w) ≤ σ2

n (x
train

)

⇐⇒ k − vTP−1
v︸ ︷︷ ︸

=σ2
f
(xtrain|Am)

−(vTP−1
Q− w)

2
M ≤ σ2

n (x
train

) (74)
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where the last line follows since RT = Q and P symmet-
ric. Note that

M =

(
k(xtrain

m+1, x
train
m+1) + σ2

n (xtrain
m+1)

− k(xtrain
m+1, A

m)TP−1k(xtrain
m+1, A

m)

)−1

=
(
σ2

n (xtrain
m+1) + σ2

f (xtrain
m+1|Am)

)−1
.

With this, (74) can be further reformulated as

σ
2
f (x

train|Am)−
(
k(xtrain, Am)TP−1k(xtrain

m+1, A
m)− k(xtrain, xtrain

m+1)
)2

σ2
n (x

train
m+1) + σ2

f (x
train
m+1|Am)

︸ ︷︷ ︸
≥0

≤ σ2
n (x

train
). (75)

First, for xtrain ∈ Am, (75) holds true by assumption. Sec-
ond, for xtrain = xtrain

m+1 we obtain

σ
2
f (x

train
m+1|A

m
)−

(
σ2
f (x

train
m+1|Am)

)2

σ2
n (x

train
m+1) + σ2

f (x
train
m+1|Am)

≤ σ2
n (x

train
m+1)

⇐⇒ σ
4
f (x

train
m+1|A

m
)− σ4

n (x
train
m+1) ≤ σ

4
f (x

train
m+1|A

m
)

⇐⇒ − σ4
n (x

train
m+1) ≤ 0.

Thus, (73) holds true for any xtrain ∈ Am+1.

In fact, Proposition D.2.b does not come as a surprise:
Even if we only observe one training point (xtrain, ytrain) and
ignore all our prior knowledge by using a flat “uninfor-
mative” improper prior p(f(xtrain)) ∝ 1, this results in
σf (xtrain) = σn(xtrain). Introducing additional information,
e.g., observing more additional training points and intro-
ducing additional prior information (such as smoothness
assumptions instead of a flat uninformative prior), typically
reduces model uncertainty further. Thus, we believe that
σf (xtrain) ≤ σn(xtrain) holds for most reasonable priors.

Finally, note that Proposition D.2.a and Proposition D.2.b
hold true for every prior respectively every Gaussian process
prior as long as there exists an f in the support of this prior
which explains the observed training points (even if this
prior is strongly misspecified). For example this assumption
is obviously fulfilled for the prior of Gaussian distributed
weights of an overparameterized NN (BNN).

D.2.2. WHY DOES MC DROPOUT STRONGLY VIOLATE
D2 (IN-SAMPLE) ?

In Figure 1, MC dropout (MCDO) predicts for every in-
put training point σ̂f (xtrain

i ) > 100σn. Thus, if σ̂f (xtrain
i )

was correctly calculated as posterior model uncertainty, this
would be an practically unobservable event as long as f actu-
ally comes from this prior (P [|ytrain

i − f(xtrain
i )| > 100σn] <

10−2173). Therefore, this is clear statistical evidence that

MCDO severely fails to estimate posterior model uncer-
tainty at training points. This can have one of the following
three reasons:

1. MCDO severely fails in correctly approximating the pos-
terior given its prior (i.i.d. Gaussian on weights).

2. MCDO’s prior does not fit to the data generating process
at all.

3. During our experiments we very often observed very
extreme events that should only happen with probabilities
smaller than 10−2000.

We agree with prior work (Gal & Ghahramani, 2016; Blun-
dell et al., 2015) that a Gaussian prior on the weights of a
NN, i.e., the prior mentioned in Item 2, is a very reasonable
assumption. Note that NOMU can also be seen as a heuris-
tic to approximate the posterior model uncertainty given
exactly the same prior (see Appendix A.2). Therefore, since
Item 3 can be ruled out, we can conclude that MCDO’s
problem is Item 1.

MC Dropout’s Failure in Approximating the Posterior
Table 10 and Table 11 show that even though we gener-
ate the ground truth function from the same prior assumed
by MCDO (and also assumed by most BNN algorithms),
NOMU significantly outperforms MCDO. This empirically
shows (with the help of Theorem B.7) that (i) NOMU is
able to better approximate posterior BNN-credible bounds
than MCDO in terms of average Kullback-Leibler diver-
gence d̄KL (including further popular variational BNN ap-
proximations from (Graves, 2011; Blundell et al., 2015;
Hernández-Lobato & Adams, 2015), which themselves are
outperformed by MCDO) and (ii) MCDO’s variational ap-
proximation algorithm severely fails in approximating the
targeted posterior.

D.2.3. IMPORTANCE OF D2 (IN-SAMPLE) IN BO

Especially in Bayesian optimization (BO) it is particu-
larly important to fulfill D2 (In-Sample) as much as pos-
sible, since D2 (In-Sample) helps a lot to prevent the BO-
algorithm from getting stuck in local maxima. For NNs, we
often observed that at the i′-th step, the mean prediction f̂
is maximized/minimized either at the boundary or exactly at
a training point with the largest/smallest function value ob-
served so far maxi∈{1,...,i′} f(xi)/mini∈{1,...,i′} f(xi) (see
Figure 9). In the latter case, without model uncertainty (or
with almost constant model uncertainty as is the case in MC
dropout), one would query all future function evaluations
at exactly this point without learning anything new. E.g.,
consider the situation of Figure 9d when minimizing the
Forrester function. Each new function evaluation of MC
Dropout would be sampled at an already observed training
point x ≈ 0.4. This intuitively explains why estimating
model uncertainty precisely at the training data points is
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especially important in BO and why it can be very prob-
lematic in BO, if the model uncertainty does not decrease
sufficiently at the training data points. To summarize, D2
(In-Sample) strongly influences the acquisition function in
a direction that discourages the algorithm from choosing
the same point again and D2 (In-Sample) together with D3
(Out-of-Sample) can prevent the BO-algorithm from getting
stuck (see also Appendix B.3.2).

D.2.4. DOMINATING DATA NOISE

In the case of dominating data noise uncertainty σn �
0, the model uncertainty σf should not be small at input
training points (only if one observes a very large amount of
input training points very close to a input training point xtrain

the model uncertainty should become small.) However, in
this paper, we do not focus on the case of large data noise
uncertainty, but on the case of negligible or zero data noise.
In particular, D2 (In-Sample) is only formulated for this
case.

D.2.5. HOW DOES NOMU FULFILL D2 (IN-SAMPLE)?

Recall, that we train NOMU by minimizing

Lπ(NN θ) + λ ‖θ‖22 , (76)

where the NOMU loss Lπ(NN θ) is defined as:

Lπ(NN θ) :=
ntrain∑

i=1

(f̂(xtrain
i )− ytrain

i )2

︸ ︷︷ ︸
(a)

+πsqr ·
ntrain∑

i=1

(r̂f (xtrain
i ))

2

︸ ︷︷ ︸
(b)

(77)

+ πexp ·
1

λd(X)

∫

X

e−cexp·r̂f (x) dx
︸ ︷︷ ︸

(c)

. (78)

Then, the following proposition holds:

Proposition D.2.c Let λ, πexp, cexp ∈ R≥0 be fixed and let
σ̂f be NOMU’s model uncertainty prediction. Then, it holds
that σ̂f (xtrain

i ) converges to `min for πsqr → ∞ for all input
training points xtrain

i , where `min ≥ 0 is an arbitrarily small
constant modelling a minimal model uncertainty used for
numerical reasons.

Proof. By the definition of Lπ(NN θ), i.e., since (b)
dominates the loss function if πsqr → ∞, it follows that
r̂f (xtrain

i ) = 0. More precisely, for the NNNN θ∗ = (f̂∗, r̂∗f )
with parameters θ∗ that minimize (76) it holds that

Lπ(NN θ∗) + λ ‖θ∗‖22 ≤ Lπ(0) + λ ‖0‖22

=

ntrain∑

i=1

(ytrain
i )2 + πexp · 1

⇐⇒
ntrain∑

i=1

(f̂∗(xtrain
i )− ytrain

i )2 + πsqr ·
ntrain∑

i=1

(
r̂∗f (xtrain

i )
)2

+

πexp ·
1

λd(X)

∫

X

e−cexp·r̂∗f (x) dx+ λ ‖θ∗‖22 ≤
ntrain∑

i=1

(ytrain
i )2 + πexp

⇐⇒ πsqr ·
ntrain∑

i=1

(
r̂∗f (xtrain

i )
)2 ≤

ntrain∑

i=1

(ytrain
i )2 + πexp =: C

where for fixed parameters λ, πexp, cexp ∈ R≥0, C > 0 is
a constant. Assume now that for r̂∗f does not vanish at
all training data points for πsqr to infinity, i.e., that there
exists an ε > 0 such that for every πsqr large enough
∑ntrain

i=1

(
r̂∗f (xtrain

i )
)2

> ε. This however implies

πsqr · ε < C ⇐⇒ πsqr <
C

ε
∀πsqr large enough,

which yields a contradiction. Thus, limπsqr→∞ r̂∗f (xtrain) = 0
for all training input points xtrain. Finally, by Equation (2) it
follows that σ̂f (xtrain

i ) = `min.

Note that even for a finite (sufficiently large) πsqr, the raw
model uncertainty r̂f converges to zero as λ goes to zero
(πsqr

λ →∞), if the model is sufficiently over-parameterized.
Empirically one can see in Figures 1, 4, 5, 9, 11, 13, 18
and 19 that NOMU fulfills D2 (In-Sample) with a high
precision for our choice of hyper-parameters.

D.3. Desideratum D3 (Out-of-Sample)

We first consider the case of zero (or negligible) data noise
σn ≈ 0 and then discuss possible extensions to settings with
non-zero data noise.

D.3.1. ZERO DATA NOISE

The notion of distance used in D3 (Out-of-Sample) heavily
depends on the specific application (i.e., on the prior used in
this application). More concretely, there are the following
two “hyperparameters”.

1. First, the metric36 d : X ×X → R≥0 on X we use to
measure distances can heavily depend on the prior for the
specific application. For example, in the case of image
recognition, two pictures that are only slightly shifted can
be seen as very close to each other even if the Euclidean
distance of their pixel-values is quite high.37 If one uses
a CNN-architecture in NOMU this prior belief on d is

36We use the term “metric” to describe a general pseudometric.
37For example, if one sees a 1920× 1080-pixel image, which is
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approximately captured. The successful generalization
properties of many different network architectures can be
explained precisely by their use of application-dependent
non-Euclidean metrics (Bronstein et al., 2017). (Addi-
tionally, instead of fixing d apriori, further aspects of
the metric d can be learned from the training data as we
discuss in detail in Appendix D.4.)

2. Second, even if we can precisely write down a met-
ric d : X × X → R≥0, a priori it is not clear how
to define the distance d̃ : X × 2X → R≥0 between
a point x and the input training points from Dtrain

X :=
{xtrain : (xtrain, ytrain) ∈ Dtrain}. Both common definitions
d̃(x,Dtrain

X ) := infz∈Dtrain
X
d(x, z) and d̃(x,Dtrain

X ) :=

infz∈Conv(Dtrain
X ) d(x, z), where Conv(·) denotes the con-

vex hull, are inappropriate choices for d̃.38 In Section 3.1,
we consider a point x closer to the input training points
if it is “surrounded” by input training points in all di-
rections, as opposed to a point x which only has close
input training points in some directions and there is a
large range of directions without any close input training
points. This implies that, for example,

(i) very close to noiseless input training points that are
surrounded by many other noiseless input training
points there is very little model uncertainty.

(ii) for extrapolation one typically has more uncertainty
than for interpolation.

(iii) far away from the convex hull of the training points
model uncertainty is very high.

(iv) also within the convex hull of the training data,
model uncertainty is high within big gaps in-
between training points.

Figure 11 shows how well NOMU fulfills these proper-
ties of d̃ similarly to a GP (see Figure 12a).

D.3.2. NON-ZERO HOMOSCEDASTIC DATA NOISE

If there is homoscedastic non-zero data noise σn(x) ≡ σn >
0, it is important that the “distance” d̃ of x to the input
training points is not minimal if it exactly equals one of the
input training points. Instead, one should use a notion of
distance d̃ that can even get smaller if there are multiple
input training points at x or very close to x.

perfectly recognizable as a cat, every 10-pixel shift of this picture
is also recognizable as a cat with almost no uncertainty (even
though this cannot be proven mathematically). Thus, it is very
desirable to predict very small model uncertainty σ̂f (x) for every
image x ∈ X which is only shifted by less than 10 pixel from at
least one noiselessly labeled training image xtrain.

38E.g., for GPs, none of these two classical notions of distance
between a point and a set is entirely applicable (see Equation (29)).
An appropriate choice of d̃ should be a compromise between these
two notions.

D.3.3. NON-ZERO HETEROSCEDASTIC DATA NOISE

One can also extend D3 (Out-of-Sample) to heteroscedastic
settings. In that case, the used notion of “distance” d̃ of
x to the input training points needs to be weighted by the
precision of the input training points, i.e., if x is close to
multiple input training points with low data noise σn(·) you
consider x “closer” to the input training points than if x is
close to multiple input training points with high data noise.

D.3.4. EXAMPLE FOR d̃ BASED ON GPS

In this section, we give the concrete example of Gaussian
process regression (GPR) from Appendix B.1.1 in which d̃
from D3 (Out-of-Sample) can be written down explicitly in
closed form.

For any arbitrary metric d on X , consider for instance
the kernel k(xi, xj) = e−d(xi,xj)

2

. Then, d̃(x,Dtrain
X ) =

σ̂f (x|Dtrain
X ), with posterior model uncertainty σ̂f from Equa-

tion (29). While this is one of the simplest possible ways to
define d̃, alternatively one could also define it differently if
it shares similar qualitative properties.39

Why do we still consider it interesting to formulate D3
(Out-of-Sample) vaguely, given that there is already such a
precise formula as is the case for GPs?

1. The GP’s formula only holds true for the specific prior
of a GP. We however, want to formulate desiderata that
capture the most essential properties of credible bounds
that almost all reasonable priors have in common.

2. We want to provide some easy to understand intuition
for D3 (Out-of-Sample): It might be challenging to see
directly from the GP’s formula (29) how the posterior
model uncertainty qualitatively behaves as visualized in
Figure 12a.

To summarize, both the exact notion of distances d, d̃ and
the exact rate of how model uncertainty increases with in-
creasing distance to the input training points depend on
one’s prior belief. However, Section 3.1 gives a qualita-
tive description of properties that most reasonable (generic)
priors have in common (see Items (i)–(iv)).

D.3.5. HOW DOES NOMU FULFILL D3
(OUT-OF-SAMPLE)?

Recall, that we train NOMU by minimizing

Lπ(NN θ) + λ ‖θ‖22 , (79)

39For instance, d̃ could also be defined based on a kernel of the
form k(xi, xj) = g(d(xi, xj)) with a monotonically decreasing
function g, e.g., a Matérn-typed kernel.
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where the NOMU loss Lπ(NN θ) is defined as:

Lπ(NN θ) :=

ntrain∑

i=1

(f̂(xtrain
i )− ytrain

i )2

︸ ︷︷ ︸
(a)

+πsqr ·
ntrain∑

i=1

(r̂f (xtrain
i ))

2

︸ ︷︷ ︸
(b)

(80)

+ πexp ·
1

λd(X)

∫

X

e−cexp·r̂f (x) dx
︸ ︷︷ ︸

(c)

. (81)

The interplay of (b), (c), and regularization promotes D3
(Out-of-Sample) (note that the behaviour of r̂f directly trans-
lates to the behaviour of σf ): Term (c) pushes r̂f towards
infinity across the whole input space X . However, due to
the counteracting force of (b) as well as regularization, r̂f
increases continuously as you move away from the train-
ing data – see for example Figure 9 and Figure 11 (or any
other plot showing NOMU, i.e., Figures 1, 4, 5, 13, 18
and 19). In Figure 11, one can see how NOMU fulfills
the properties (i)–(iv) of d̃ : X × 2X → R≥0 mentioned
in Appendix D.3.1. In Figures 18 and 19, one can ob-
serve how NOMU behaves when a non-stationary metric
dFigure 18(x, x′) 6= |x− x′| respectively non-stationary non-
isotropic metric dFigure 19(x, x′) 6= ‖x − x′‖2 is used (be-
cause dFigure 18 and dFigure 19 were learned from the data as
desired by D4 (Metric Learning) in these examples).

The hyperparameters πexp and cexp control the size and shape
of the UBs. Concretely, the larger πexp, the wider the UBs;
the larger cexp, the narrower the UBs at points x with large
σ̂f (x) and the wider the UBs at points x with small σ̂f (x).

Finally, we give some intuition that if CNNs are used for
the two sub-networks in NOMU’s architecture, D3 (Out-
of-Sample) will be fulfilled with respect to an almost shift-
invariant metric d: In the noiseless setting, we can choose
πsqr large enough such that D2 (In-Sample) is fulfilled, so
that we have σ̂f (xtrain) ≈ 0 at any training input point xtrain.
Regularized CNNs have the property that if you slightly
shift the input the output barely changes. So if x can be
obtained from xtrain by slightly shifting it, the CNN-output
σ̂f (x) ≈ σ̂f (xtrain) ≈ 0 also does not move too far away
from zero. Only if you move further away with respect
to the almost shift-invariant metric d, the CNN-output σ̂f
is able to move further away from zero. The same princi-
ple can also be used for other geometric NNs (e.g., graph
neural networks (GNNs)) which correspond to different
(non-Euclidean) metrics Bronstein et al. (2017).

D.4. Desideratum D4 (Metric Learning)

A priori, it is often not obvious which metric d to choose
in D3 to measure distances. In many applications, it is
therefore best to learn this metric from the training data (as

explained in Footnote 4 on Page 4).

In the following section, we present visualizations of D4
(Metric Learning) for all benchmark algorithms in easy to
understand, low dimensional settings.

D.4.1. VISUALIZATION OF D4 (METRIC LEARNING)

1D In order to visualize D4 and show how for NOMU the
mean prediction impacts it’s model uncertainty prediction
we conduct the following experiment. We sample 16 equidis-
tant noiseless training points of a trend-adjusted version of
Sine 3. We then train NOMU (hyperparameters are as in
Appendix B.2.2 with πsqr = 0.5, `min = 10−4, regularization
parameter 10−4 on the r̂f -network, and number of training
epochs 212) and compute the corresponding UBs. Figure 18
shows that NOMU UBs are wider (cp. the dotted blue line)
in those areas of the input space where small changes of x
lead to large variation in the target (≈ x ≥ 0) compared
to areas without large variation in the target (≈ x ≤ 0).
This effect is present even though the input training points
are sampled from an equidistant grid, and thus isolates the
effect of D4.

2D Analogously, we visualize D4 for two-dimensional in-
put by training NOMU on 16 training points sampled on an
equidistant 4×4-grid and evaluated at the two-dimensional
extension of the Step function, i.e.,

f = R2 → R : (x1, x2) 7→
{
−1 if x1 < 0

1 if x1 ≥ 0.
(82)

Here, D4 can be interpreted as follows: imagine we do not
have any prior knowledge of whether x1 or x2 is more impor-
tant for predicting the unknown function f . However, when
NOMU observes the 16 training points it should be able
to learn that x1 is more important for the model prediction
than x2, and that the function is more regular/predictable
far away from {x1 ≈ 0}. D4 requires in this example that
feature x1 should have a higher impact than feature x2 also

1.0 0.5 0.0 0.5 1.0

1

0

1

2 NOMU: 3 f

NOMU:  f ± 3 f 

Figure 18. Visualisation of D4 (Metric Learning).
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on the model uncertainty prediction. If a model for UBs did
not incorporate D4, we would expect the uncertainty in this
example to fulfill σ̂f ((x1, x2)) = σ̂f ((x2, x1)) because of
the equidistant grid of the training points (this is indeed the
case for GPs, see Figure 20a).

For NOMU however, we have very good control on how
strongly we enforce D4, e.g., we can strengthen D4 by
increasing the L2-regularization of the hidden layers in the
r̂f -network and/or decreasing the size of the r̂f -network.

NOMU: Visualization of D4 in 2D In Figure 19, we
present the estimated model uncertainty σ̂f obtained for
different hyperparameters of the r̂f -network with fixed f̂ -
architecture among all four subplots. Thus, Figure 19 shows
how D4 realizes in different magnitudes. In Figure 19a, we
use the same hyperparameters for the r̂f -network as for the
f̂ -network. In 19b, we only increase the L2-regularization
of the r̂f -network. In Figure 19c, we only decrease the
size of r̂f -networks. In Figure 19d, we combine both, i.e.,
we increase the L2-regularization of the r̂f -network and
decrease the size of the r̂f -network. While D4 is barely
visible in Figure 19a, it is clearly visible in Figures 19b–
19d. In Figures 19b–19d, we observe that the estimated
model uncertainty σ̂f grows faster in horizontal directions
(corresponding to changes in x1) than in vertical directions.
In Figures 19b–19d, we further observe that the estimated
model uncertainty σ̂f is larger around {x1 ≈ 0} than far
away from this region. The magnitude of both these effects
increases from Figure 19b to Figure 19d. Both of these
effects can also be observed for MC dropout (MCDO) and
deep ensembles (DE) (see Figure 20b and Figure 20c).

Benchmarks: Visualization of D4 in 2D In Figure 20,
we present uncertainty plots of all benchmark methods. We
can see that deep ensembles (DE) gives high preference to
capturing D4, even though its estimated model uncertainty
still is subject to some randomness with non-uniform pat-
terns for x1 ∈ [−0.25, 0.25] (Figure 20c). Moreover, MC
dropout (MCDO) also captures higher model uncertainty for
x1 ∈ [−0.25, 0.25] as desired by D4, but it does not fulfill
D2 (Figure 20b). The Gaussian process (GP) with RBF
kernel does not account for D4 (Figure 20a), which directly
follows from the definition. Similarly to deep ensembles
(DE), hyper deep ensembles (HDE) and HDE* strongly
capture D4 but show even more random behaviour. This ran-
domness is visible most prominently along x1 = 0 where
one should observe large model uncertainty, whereas their
estimated model uncertainty is surprisingly close to 0.
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(a) Same L2-regularization on the r̂f -network and f̂ -network
(λ = 10−8).
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(b) Larger L2-regularization on the r̂f -network (λ = 10−4)
than on the f̂ -network (λ = 10−8).
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(c) Shallow r̂f -network consisting of 4 hidden nodes.
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(d) Shallow r̂f -network consisting of 4 hidden nodes and
larger regularization of λ = 10−4 on r̂f -network.

Figure 19. Estimated model uncertainty σ̂f of NOMU: visualizing
D4 in 2D.
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(a) GP (c=15)
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(b) MCDO (c=20)
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(c) DE (c=30)
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(d) HDE (c=30)

Figure 20. Estimated model uncertainty of Gaussian process (GP),
MC dropout (MCDO), deep ensembles (DE), and hyper deep
ensembles (HDE)
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(e) HDE* (c=30)

Figure 20. (cont.) Estimated model uncertainty of HDE*.

D.4.2. HOW DOES NOMU FULFILL D4 (METRIC
LEARNING)?

Recall NOMU’s architecture depicted in Figure 2 in the
main paper.

The r̂f -network learns the raw model uncertainty and is
connected with the f̂ -network through the last hidden layer
(dashed lines in Figure 2). This connection enables r̂f to
re-use features that are important for the model prediction f̂ .
More theory on how features are reused in L2-regularized
deep neural networks can be found in (Heiss et al., 2022).
This behaviour directly translates to σ̂f (see Equation (2)),
implementing Desideratum D4 (Metric Learning).

In Figures 18 and 19, one can observe that NOMU fulfills
D4 (Metric Learning). Moreover, Figure 19 shows how to
control the strength of D4 (Metric Learning) by varying
the L2-regularization and the number of neurons of the r̂f -
architecture.

D.5. Desideratum D5 (Vanishing)

First, note that D3 (Out-of-Sample) already suggest D5
(Vanishing), since for ntrain →∞ every point x in the support
of the input data generating distribution is infinitely close to
infinitely many other i.i.d input training points xtrain and thus
infinitely close to the input training set.

To the best of our knowledge, D5 (Vanishing) is fulfilled by
most reasonable algorithms that estimate model uncertainty.
Specifically, NOMU, GPs, DE and HDE capture D5 (Van-
ishing). This can be nicely observed in Figure 13, where all
these algorithms result in zero model uncertainty in areas
with many input training points (up to numerical precision).

MC Dropout can be seen as a variational algorithm for
approximating BNNs. While in theory, BNNs should also
fulfill D5 (Vanishing), MC Dropout often struggles to do
so, as can be observed in Figure 13 (see also D.2.2 for
a discussion why MC Dropout struggles to approximate
BNNs).
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Finally, D5 (Vanishing) is widely accepted (Kendall &
Gal, 2017; Malinin & Gales, 2018) and most of the time
loosely stated along the lines of “While data noise uncer-
tainty (aleatoric uncertainty) is irreducible, model uncer-
tainty (epistemic uncertainty) vanishes with an increasing
number of training observations.” In other words, the width
of credible bounds converges to zero whilst the width of
predictive bounds does not converge to zero in the presence
of data noise.

However, whilst such statements are qualitatively true, for-
mally, D5 (Vanishing) only holds in the limit of the number
of i.i.d training points ntrain to infinity and for x ∈ X that
are in the support of the input data generating distribution.
Furthermore, note that D3 (Out-of-Sample) also holds in
the presence of data noise uncertainty.

Moreover, note that while D1–D4 are statements on relative
model uncertainty, i.e., statements that are independent of
the calibration parameter c ≥ 0 (see A.2.1), D5 (Vanishing)
is a statement about absolute model uncertainty. Thus, D5
(Vanishing) only holds for a fixed calibration parameter
c ≥ 0 (if c increases sufficiently fast with increasing ntrain,
model uncertainty does not vanish).

D.5.1. WHY DOES D5 (VANISHING) ONLY HOLD IN THE
LIMIT?

1. Even for fixed c ≥ 0, in the case of large unknown data
noise uncertainty that is simultaneously learned by the
algorithm, adding another input training point x close
to existing input training points xtrain whose correspond-
ing target y is very far away from ytrain could lead to an
increase in model uncertainty, since this new training
point (x, y) would increase the predicted data noise un-
certainty and thus increase the data noise induced model
uncertainty.

2. Even if there is no data noise uncertainty σn ≡ 0 and
c ≥ 0 is fixed, adding another input training point can in-
crease the model uncertainty, when D4 (Metric Learning)
is fulfilled. To see this, consider the following scenario:
an already observed set of training points suggest that f
is very flat/simple/predictable (e.g., linear) in a certain re-
gion. However, adding a new training point (x, y) shows
that f is much more irregular in this region than expected.
Then, the learned metric can drastically change resulting
in increased model uncertainty in this region (outside an
ε-ball around the new input training point x).

D.5.2. HOW DOES NOMU FULFILL D5 (VANISHING)?

Recall, that we train NOMU by minimizing

Lπ(NN θ) + λ ‖θ‖22 , (83)

where the NOMU loss Lπ(NN θ) is defined as:

Lπ(NN θ) :=
ntrain∑

i=1

(f̂(xtrain
i )− ytrain

i )2

︸ ︷︷ ︸
(a)

+πsqr ·
ntrain∑

i=1

(r̂f (xtrain
i ))

2

︸ ︷︷ ︸
(b)

(84)

+ πexp ·
1

λd(X)

∫

X

e−cexp·r̂f (x) dx
︸ ︷︷ ︸

(c)

. (85)

Then, the following proposition holds:

Proposition D.5.a Let λ, πexp, cexp, πsqr ∈ R>0 be fixed and
let the activation-functions ofNN θ be Lipschitz-continuous
and let σ̂f (x) be NOMU’s model uncertainty prediction.
Then, it holds that σ̂f (x) converges in probability to `min for

ntrain → ∞ (with xtrain
i

i.i.d∼ PX ) for all input points x in the
support of the input data generating distribution PX , i.e.,
more formally ∀x ∈ supp (PX) ,∀ε > 0,∀δ ≥ 0 : ∃n0 :
∀n ≥ n0 :

P [|σ̂f (x)− `min| ≥ ε] < δ, (86)

where `min ≥ 0 is an arbitrarily small constant modelling a
minimal model uncertainty used for numerical reasons.

Proof. Let x ∈ supp (PX), δ ≥ 0 and ε > 0.

First, letLπ(0) := c <∞, i.e., the value of the loss function
when inserting the constant zero function. Then for the
optimal solution NN θ∗ of (83) it immediately follows that

‖θ∗‖22 ≤
c

λ
. (87)

Using the fact that all activation-functions φ of NN ∗θ are
Lipschitz-continuous together with (87), one can show that
there exists a constant L := L(c, λ, φ, architecture) such
that the raw model uncertainty prediction r̂θ

∗
f is Lipschitz-

continuous with constant L.

Next, let U := U ε
4L

(x) be an open ball with radius ε
4L

around x. Given that the diameter of U is equal to ε
2L and

the fact that r̂θ
∗
f is Lipschitz-continuous with constant L, it

follows that

max
z∈U

r̂θ
∗
f (z)−min

z∈U
r̂θ
∗
f (z) <

ε

2
. (88)

Given U let p := P [x ∈ U ]. Since x ∈ supp (PX), per
definition it holds that p > 0.

In the following let Dtrain
n,x ∼ (PX)n denote the random

variable representing a set of n input training points. Now,
let n0 be sufficiently large such that

P
[
|Dtrain

n0,x ∩ U | > 4 · c
ε2

]
> 1− δ. (89)
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Note that one can explicitly calculate the value of n0, since
|Dtrain

n0,x ∩ U | ∈ N0 is binomial distributed with p > 0 and
n0 ∈ N.

Finally, we show that r̂θ
∗
f (x) < ε by contradiction. For this,

assume on the contrary that

r̂θ
∗
f (x) ≥ ε. (90)

Using (88) it follows that for all z ∈ Dtrain
n0,x ∩ U it holds

that r̂θ
∗
f (z) > ε

2 with probability larger than 1 − δ. This
together with the fact that each summand in the term (b) in
the NOMU loss function Lπ is non-negative implies that

(b) ≥
∑

xtrain∈Dtrain
n0,x
∩U

(r̂f (xtrain))
2
>
( ε

2

)2
· 4 · c

ε2
= c.

(91)

Putting everything together and using the fact that each term
in the NOMU loss is non-negative implies that

Lπ(NN θ∗) + λ ‖θ∗‖22 ≥ (b)
(91)
> c = Lπ(0) + λ ‖0‖22 ,

which is a contradiction for NN θ∗ being optimal in (83).

Therefore, we can conclude that r̂θ
∗
f (x) < εwith probability

larger than 1 − δ. By definition of σ̂f this implies that
|σ̂f − `min| < ε with probability larger than 1 − δ, which
concludes the proof.

Note that empirically one can see in Figure 13 (in the areas
with many input training points) how well NOMU fulfills D5
(Vanishing) in real-world settings. Furthermore, one can see
that the statement only holds true and is only desirable for x
in the support of the input data generating distribution PX
(not in the gaps).

E. NOMU vs. Prior Networks
In this section, we highlight several differences of NOMU
compared to prior regression networks that were recently
introduced in a working paper by Malinin et al. (2020a).

While the high level idea of introducing a separate loss term
for the in-sample-distribution and out-of-distribution (OOD)
distribution is related to NOMU, there are several important
differences, which we discuss next:

1. Malinin et al. (2020a)’s approach focuses on estimat-
ing both model and data noise uncertainty. Thus, to
properly compare it to NOMU, we consider their ap-
proach for known and negligible data noise uncertainty,
e.g., for σn = 10−10 we need to set in their paper
(L, ν) = (I · l−1, 1

σn
l) with l → ∞, such that the their

corresponding model uncertainty prediction is given by
(κ(x)Λ(x))

−1 l→∞
= σn

κ(x) · I . In the following, we will

consider for simplicity a one-dimensional output, i.e.,
σ̂f = σn

κ(x) .

2. They explicitly define a prior “target” distribution inde-
pendent of x ∈ X , which is parametrized by κ0 (model
uncertainty) and m0 (mean prediction) for OOD input
points. Specifically, for OOD input points their mean
prediction f̂ is pushed towards m0. In many applications
the success of classical mean predictions of deep NNs is
evident. In none of these applications there was a term
that pushed the mean prediction to a fixed predefined
prior mean. Therefore, for NOMU we keep the mean
prediction untouched.

3. Instead of our loss, their loss (derived from a reverse
KL-divergence) is of the form:

ntrain∑

i=1

(
f̂(xtrain

i )− ytrain
i

)2

2 (σn)
2 +

ntrain∑

i=1

1

κ(x)
︸ ︷︷ ︸

in-sample

+ (92)

∫

X

κ0

(
f̂(x)−m0

)2

2 (σn)
2 +

κ0
κ(x)

− log
κ0
κ(x)

− 1 dµOOD(x)

︸ ︷︷ ︸
out-of-distribution

,

where m0, κ0 are the prior parameters for the mean and
model uncertainty prediction and µOOD is an OOD mea-
sure. Specifically, they enforce zero model uncertainty
at input training points via the linear term 1

κ(x) , while
we use a quadratic term. Moreover, they only use an
OOD term and no out-of-sample (OOS) term (see below
Item 4).

4. In their loss formulation in (92), they only use an out-of-
distribution (OOD) term, while we use an out-of-sample
(OOS) term. By OOD they refer to input training points
only far away from the training data, e.g., in (Malinin
et al., 2020a, Section 3) µOOD only has support far away
from the convex hull of the input training points. Thus,
they do not enforce model uncertainty in gaps between
input training points. In contrast, by out-of-sample (OOS)
we refer to a distribution with no mass on the input
training points, i.e., we sample new input points that are
not equal to the input training points but come from the
same range (we recommend to use a distribution that is
similar to the data generating process). Therefore, our
loss explicitly also enforces model uncertainty in gaps
between input training points.

5. They use a different architecture and train only one NN.
This implies that their mean prediction m(x) can be
influenced in unwanted ways by the model uncertainty
prediction (κ(x)Λ(x))

−1.

6. Their theoretical motivation substantially differs from
ours: They only partially specify a prior belief by defin-
ing marginal distributions for f(x) for each input point
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x ∈ X , without specifying a joint prior distribution
for f . However, given only marginals no joint distribu-
tion, which is the crucial aspect when defining a prior in
regression, can be derived without further information
(E.g., consider Gaussian processes (GPs); here all one-
dimensional marginal distributions are simply given by
N ((m(x)), k(x, x)). However, the crucial part is how to
define k(x, x

′
) specifying the relation of x and x

′
. Only

defining the marginals does not suffice to fully define
GPs, leaving this most crucial part undefined).
However, for NOMU, we give in Appendix A a theo-
retical connection to BNNs, with Gaussian prior on the
weights. This induces a prior on the function space,
i.e., a distribution over f rather than separate marginal
distributions over f(x) for each x ∈ X .

7. Parametrizing the model precision instead of the model
uncertainty can have negative effects due to (implicit)
regularization of NNs in the case of negligible or zero
data noise. To get uncertainties in gaps between the
input training points (small κ(x)) while having almost
zero uncertainty at these input training points (κ(x)→
∞), would imply very high regularization costs for the
function κ(x) and thus is very hard to learn for a NN. For
NOMU, we therefore parameterize directly the model
uncertainty (which is always finite) instead of the model
precision (that should be infinite at noiseless training
data points).

8. Our experimental results suggest that NOMU clearly
outperforms DE in BO, whilst DE outperforms prior
regression networks in their set of experiments.

F. NOMU vs. Neural Processes
In this section, we discuss the differences between neural
processes (NPs) introduced by Garnelo et al. (2018a;b) and
NOMU. Specifically, we explain in the following why NPs
and NOMU are solving very different problems in different
settings.

For training NPs, one has to observe data from 1000s of
realizations of fk, sampled i.i.d. from the prior distribution
(for each fk one observes xi and fk(xi) to train the NP).
This is often mentioned in Garnelo et al. (2018a;b), e.g., Gar-
nelo et al. (2018a, Section 4.1): ”We generate [...] datasets
that consist of functions generated from a GP [...] At every
training step we sample a curve from the GP [...].“. For
NOMU we consider the very different task of estimating
p(ytest|xtest;Dtrain) based on a single dataset, i.e, generated
from a single realization f = f1.

For example in the case of the Boston housing data set from
Section 4.1.4, there is only one function f = f1 involved
that maps a (multidimensional) input data point x corre-
sponding to a house in Boston to its price f(x). For this

data set, NPs would not be well suited, since it only contains
data (xi, yi) = (xi, f(xi) + εi) coming from this specific
function f . One does not have access to data corresponding
to another function f2 that had been sampled from the same
prior distribution.

The same is true for the other data sets we consider in
this paper (e.g., for the solar irradiance data set we only
use the data visible in Figure 5 and NOMU does not have
access to any data coming from other time series to make
its predictions). Thus, NPs cannot be applied to the tasks
considered in this paper.

Summary. NOMU, GP, MCDO, DE and HDE are de-
signed to be trained on data coming from one unknown
function f without having access to data from other func-
tions f2, f3, . . . . In contrast, NPs are designed to be trained
on multiple data sets generated from multiple functions
f1, f2, f3, . . . .

G. Aleatoric Neural Networks: Aleatoric vs.
Epistemic Uncertainty

In this section, we discuss the classical approach of a NN
with two outputs, one output for a model prediction and
another for aleatoric uncertainty, which is trained using the
(scaled) Gaussian negative log-likelihood as introduced by
Nix & Weigend (1994). We will use the terms aleatoric
uncertainty and data noise as well as model uncertainty and
epistemic uncertainty interchangeably.

In what follows, we call this method aleatoric neural net-
work (ANN). Within this section, we show that such an ANN
does not explicitly estimate model uncertainty (in contrast
to all other benchmark methods discussed in this paper),
i.e., when using the aleatoric uncertainty output σ̂n naively
as σ̂f , the so obtained σ̂f := σ̂n does not represent model
uncertainty (epistemic uncertainty).40 First, we give the
definition of an ANN.

Definition G.1 (ANN) An ANN is a fully-connected feed-
forward NN NN ANN : Rd → R× R+ with two outputs: (i)
the model prediction f̂ ∈ R and (ii) a model uncertainty
prediction σ̂n ∈ R+ that is trained for a given set of training
points Dtrain using the following loss function:

LANN(NN ANN) :=

1

|Dtrain|
∑

(x,y)∈Dtrain




(
y − f̂(x)

)2

2 (σ̂n(x))
2 + ln (σ̂n(x))


 (93)

The idea of ANN is to estimate the noise scale σn(x) =√
V[ε] =

√
V[y|x, f(x)]. Figure 21 shows that, as we

40The reminder of this section only targets readers who do not
directly see that substituting σ̂f by σ̂n is an extremely bad idea.
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Figure 21. Comparison of UBs resulting from ANN (c = 1)
(where σ̂n is used as a substitute for σ̂f ) vs. NOMU for the For-
rester function (solid black line). For NOMU, we also show σ̂f as
a dotted blue line. Training points are shown as black dots.

would expect, the trained ANN has learned the true σn ≡
0 ≈ σ̂n quite precisely. However, it as also becomes evident
that the ANN does not learn any form of model uncertainty.
Very far away from all observed training data points, the
ANN does not express any uncertainty about its prediction
(in Figure 22, to the right of x = 0.5, the predictions are
very far away from the truth, but σ̂n does not capture this
uncertainty). Therefore, the ANN’s aleatoric uncertainty
output σ̂n does not fulfill desideratum D3 (Out-of-Sample).
The problem of misusing σ̂n as substitute for σf is not that
σ̂n is too small (as we study relative uncertainty in this paper
(see Appendix A.2.1), one can always scale the uncertainty
by a factor c). However, Figure 22 shows that also the scaled
uncertainty completely fails to capture the desiderata, i.e.,
the aleatoric uncertainty output σ̂n is almost constant for all
input points x. Thus, UBs of an ANN do not fulfill D2 (In-
Sample) and D3 (Out-of-Sample). In Figure 22, we can see
that 5σ̂n is way too underconfident at input training points
and at the same time way too overconfident far away from
the observed input training points. This would result in very
bad NLL scores on a test set. (Moreover in noisy settings,
i.e., σn 6= 0, the aleatoric uncertainty output σ̂n of an ANN
does not fulfill D5 (Vanishing) either: σ̂n should converge
to σn while σ̂f should converge to zero as the amount of
training data increases.)

Furthermore, especially in Bayesian optimization (BO) cσ̂n
would be a terribly bad substitute for σf : Maximizing the
upper UB acquisition function f̂ + cσ̂n, would be almost
equivalent to maximizing f̂ since cσ̂n is almost constant
because of the lack of D2 (In-Sample) and D3 (Out-of-
Sample). If one wants to maximize the function in Figure 22
on [−1, 1], the next BO-step would propose to query an
input training point at the left boundary x = −1 (even
for large c). However, one does not learn anything new
from evaluating at x = −1, because this input training
point has already been evaluated in a previous BO-step. All
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ANN:  f ± 5 f 

Figure 22. Comparison of UBs resulting from ANN (c = 5)
(where σ̂n is used as a substitute for σ̂f ) vs. NOMU for the For-
rester function (solid black line). For NOMU, we also show σ̂f as
a dotted blue line. Training points are shown as black dots.

subsequent BO steps would propose to query the same point
x = −1 without exploring any other region of the input
space and one would never find the true maximum at x ≈ 1.
In contrast, a reasonable model for estimating σf (such as
NOMU), would directly (after scaling up c dynamically by
a factor 2 as described in Appendix B.3.2) choose a point
in the unexplored right region x ≈ 1, because the left side
x ≈ −1 is already well explored.

Overall, aleatoric uncertainty σn and epistemic uncertainty
σf are two very different objects. Thus, an estimator σ̂n
designed to estimate σn is usually a bad estimator for σf .

H. Hyperparameter Sensitivity Analysis
In this section, we provide a sensitivity analysis with respect
to NOMU’s loss hyperparameters, i.e., πsqr, πexp, cexp, and
Dart. First, we present a visual qualitative analysis in 1D
showing how each of these hyperparameters affects the
shape of NOMU’s UBs (Appendix H.1). Second, we also
present an extensive quantitative sensitivity analysis in the
generative test-bed setting from Section 4.1.2, where in
addition to the loss hyperparameters we also include the
hyperparameters of the readout map `min, and `max in our
analysis (Appendix H.2).

H.1. Qualitative Sensitivity Analysis

In this section, we consider the setting of Section 4.1.1,
and visualize the effect of increasing or decreasing each
of NOMU’s loss hyperparameters πsqr, πexp, cexp, and Dart

on the example of the 1D Levy function. For reference,
Figure 23 shows NOMU’s UBs (with scaling factor c = 2)
for the default loss hyperparameters πsqr = 0.1, πexp = 0.01,
cexp = 30, and Dart = 128 that are used in Section 4.1.1 in
the main paper.

For each of Dart and cexp, we fit two additional NOMU mod-
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Figure 23. NOMU’s UBs (c=2) for the generic loss hyperparame-
ters from Section 4.1.1 in the main paper.

els, where we ceteris paribus de- and increase the hyperpa-
rameter’s default value by factors 1/s and s, respectively.
The multiplicative factors πsqr and πexp we treat jointly in
our sensitivity analysis: First, we show the effect of ceteris
paribus de- and increasing the default value of the product
πexpπsqr by factors sl = 0.001 and su = 10. Second, we vary
the ratio πexp/πsqr in the same fashion, with scaling factors
sl = 1/16 and su = 16. Within all of the experiments
in this section, we sample artificial input points Dart on an
equidistant (deterministic) grid on [−1.1, 1.1]. This allows
us to give a qualitative analysis of the hyperparameters’
effects as follows.

Varying πexpπsqr with Scaling Factors of sl = 0.001 and
su = 10. Decreasing πexpπsqr by decreasing both πexp and
πsqr leads to more tubular bounds by relaxing the desider-
ata D2 (In-Sample) and D3 (Out-of-Sample). This can be
seen in Figure 24: NOMU’s blue dashed uncertainty (cor-
responding to small πexpπsqr) is larger at data points than the
orange one of NOMU 2 (corresponding to large πexpπsqr),
and it is smaller further away from the training data points.
NOMU’s default hyperparameters are in a range where the
loss is already at its limit41 enforcing the desiderata D2
(In-Sample) and D3 (Out-of-Sample). Therefore, further
increasing πexpπsqr (while keeping their ratio and the other
hyperparameters fixed) barely causes the UBs to change as
can be seen for the orange UBs in Figure 24. Increasing

41For NOMU’s default parameters the ratio πexpπsqr/λ is already
very large such that the explicit regularization via λ ‖θ‖22 is almost
negligible. Thus, the UBs are only prevented from having even
larger curvature by implicit regularization, i.e., within a given
number of epochs the training algorithm cannot reach a function
with more curvature, because increasing the amplitude of the loss is
(partially) compensated by the adaptivity of the ADAM algorithm.
Only in ranges where πexpπsqr/λ is small enough for the explicit
regularization to actually matter, the UBs become sensitive to
the ratio πexpπsqr/λ. Then the regularization of λ ‖θ‖22 keeps the
curvature of σ̂f low, i.e., the UBs become more tubular.
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Figure 24. NOMU’s UBs (c=2) for πsqr = 1e − 4, πexp = 1e − 5
(blue) and πsqr = 1, πexp = 0.1 (orange).

πexpπsqr too much, can lead to numerical instabilities.

Varying πexp/πsqr with Scaling Factors of sl = 1/16 and
su = 16. Increasing the ratio of πexp/πsqr (while keeping
their product and all other hyperparameters fixed) simply
causes NOMU’s UBs to uniformly widen across the entire
domain. Indeed, in Figure 25, the orange UBs of NOMU 2
(corresponding to large πexp/πsqr) are blown up and cover the
blue UBs (corresponding to small πexp/πsqr) throughout the
input space.
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Figure 25. NOMU’s UBs (c=2) for πexp = 0.0025, πsqr = 0.4
(blue) and πexp = 0.04, πsqr = 0.025 (orange).

Varying cexp with a Scaling Factor of s = 2. Increasing
the hyperparameter cexp causes UBs to shrink in areas of
large uncertainty and to widen in areas of small uncertainty.
This effect is visualized in Figure 26: the orange dashed
uncertainty line of NOMU 2 (large cexp = 60) lies above the
blue one of NOMU (small cexp = 15) at data points; and in
regions of large uncertainty, the orange UBs (corresponding
to large cexp) turn out to be more narrow than the blue ones
(corresponding to small cexp). Thus, increasing cexp causes
NOMU’s UBs to be more tubular.

VaryingDart with a Scaling Factor of s = 8. Finally, we
assess the effect of changing the number of artificial data
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Figure 26. NOMU’s UBs (c=2) for cexp = 15 (blue) and cexp = 60
(orange).

points Dart used to approximate the integral (c) of NOMU’s
loss function defined in Equation (4). As expected, the UBs
behave overall very similarly. However, for very small gaps
in between input training points, Dart can have an influence
on the estimated UBs. For example, in the gap between
the training input point at x ≈ −0.77 and the one at x ≈
−0.73, the σ̂f obtained from the smallerDart (blue) vanishes
(because of a lack of artificial data points falling in this gap),
while σ̂f obtained from the larger Dart also estimates non-
zero model uncertainty in this small gap.
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Figure 27. NOMU’s UBs (c=2) for Dart = 16 (blue) and Dart =
1024 (orange).

Varying the architecture and L2-regularization In Ap-
pendix D.4.1, we visualize how certain changes to the ar-
chitecture and different L2-regularization parameters λ for
different parts of the network influence NOMU’s model
uncertainty estimate σ̂f . In particular, we show in Ap-
pendix D.4.1 how the choice of the architecture and the
L2-regularization determine the degree to which NOMU
fulfills desiderata D4 (Metric Learning).

Finally, in Appendix H.2, we empirically show that NOMU
is robust with respect to its hyperparameters within a certain
range.

H.2. Quantitative Sensitivity Analysis

We now present an extensive quantitative sensitivity analysis
of NOMU’s loss hyperparameters: πsqr, πexp, cexp, and Dart in
the generative test-bed setting (see Section 4.1.2 for details
on this setting). Additionally, we also consider in this analy-
sis the hyperparameters corresponding to the readout map,
i.e., `min and `max. We decided to perform the quantitative
sensitivity analysis in the generative test-bed setting, since
it offers a particularly rich variety of different test functions
and thus exposes each hyperparameter selection to hundreds
of different test functions.

Setting We use the same default hyperparameters as in
Section 4.1.2. This includes NOMU’s loss hyperparameters:
πsqr, πexp, cexp, and Dart, the hyperparameters of the readout
map: `min and `max as well as all other hyperparameters. For
the following sensitivity analysis, we then vary at each time
only a single hyperparameter, i.e., one of πsqr, πexp, cexp, Dart,
`min, and `max, and set all other hyperparameters to their de-
fault values (i.e., we perform a ceteris paribus analysis as
in Appendix H.1).

In Table 15, we present for each considered hyperparam-
eter a grid of five different values which we use to test its
sensitivity. The NOMU column in Table 15 corresponds to
the NOMU’s default hyperparameters used in the generative
test-bed setting (Section 4.1.2). The columns NOMU1 to
NOMU4 in Table 15 then correspond to deviations from
these original hyperparameters.

Results In Table 16, Table 17, and Table 18 we present
for each of the ceteris paribus runs average NLL values for
input dimensions 1D, 2D, and 5D, respectively. Each cell
in those tables represents a single hyperparameter selec-
tion where we use NOMU’s default hyperparameters except
for the hyperparameter of the corresponding row which
we choose according to the cell’s column, e.g., to obtain
the result for the cell (πexp, NOMU3), we use the default
NOMU hyperparameters from Section 4.1.2 except for πexp

Table 15. Grid selection for each hyperparameter (HP). The col-
umn NOMU corresponds to NOMU’s default hyperparameters
used in the generative test-bed setting. NOMU1 to NOMU4 corre-
spond to deviations from these default hyperparameters. For Dart,
d denotes the input dimension.

HP NOMU1 NOMU2 NOMU NOMU3 NOMU4

πSQR 0.01 0.02 0.1 0.5 1
πEXP 0.001 0.002 0.01 0.05 0.1
cEXP 10 20 30 45 90
DART 100·d

4
100·d

2
100 · d 2 · (100 · d) 4 · (100 · d)

`MIN 0.01 0.05 0.1 0.15 0.20
`MAX 0.50 0.75 1 2.0 4.0
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which we set according to column NOMU3 in Table 15
to πexp := 0.05. Overall, we can make the following three
main observations:

1. The majority of all cells in Table 16, Table 17, and
Table 18 are marked in grey. This shows that, their
corresponding hyperparameters lead to average NLL
results which are statistically on par with the results
obtained via NOMU’s default hyperparameters in the
NOMU columns. This highlights NOMU’s robustness
with respect to all considered hyperparameters within the
chosen grids. Furthermore, it confirms our claim from
the main paper that using generic hyperparameters for
NOMU often works well without much hyperparameter-
tuning.

2. Since NOMU with the default hyperparameters already
outperforms all other considered benchmark methods
in this setting, i.e., each NOMU column represents the
winning method among benchmarks (see Table 2), we see
that all grey marked deviations of hyperparameters lead
to results that outperform all other considered benchmark
methods too. Moreover, all except for one (5D (`min,
NOMU1)) NOMU models corresponding to cells which
are not marked in grey, i.e., with hyperparameters that
lead to statistically worse results than NOMU’s default
hyperparameters, are as good or better than the best
benchmark methods from Table 2.

3. By varying NOMU’s hyperparameters, we can even ob-
tain better results (i.e., with a smaller average NLL) than
the ones reported in Table 2 of the main paper, e.g., in 1D
with `min := 0.01 the average NLL = −1.83 < −1.65.
While these improvements are not statistically significant,
these results still suggest that systematic hyperparameter-
tuning could improve the performance of NOMU even
further.

Table 16. Sensitivity analysis for 1D generative test-bed setting.
We present for each hyperparameter (HP) and its five correspond-
ing grid-points the average NLL (without const. ln(2π)/2) and a 95%
CI over 200 BNN samples. Results which are statistically on par
with NOMU’s default HPs, i.e., the column NOMU, are marked
in grey. Note that, the best benchmark method for this experiment
is GP with NLL = −1.08± 0.22 (see Table 2).

HP NOMU1 NOMU2 NOMU NOMU3 NOMU4

πSQR -1.59±0.11 -1.63±0.10 -1.65±0.10 -1.55±0.13 -1.54±0.14
πEXP -1.64±0.09 -1.67±0.09 -1.65±0.10 -1.62±0.10 -1.60±0.10
cEXP -1.77±0.12 -1.73±0.10 -1.65±0.10 -1.49±0.12 -1.11±0.13
DART -1.65±0.09 -1.62±0.11 -1.65±0.10 -1.63±0.12 -1.65±0.10
`MIN -1.83±0.09 -1.72±0.10 -1.65±0.10 -1.58±0.10 -1.47±0.12
`MAX -1.49±0.12 -1.60±0.10 -1.65±0.10 -1.63±0.16 -1.66±0.14

Table 17. Sensitivity analysis for 2D generative test-bed setting.
We present for each hyperparameter (HP) and its five correspond-
ing grid-points the average NLL (without const. ln(2π)/2) and a 95%
CI over 200 BNN samples. Results which are statistically on par
with NOMU’s default HPs, i.e., the column NOMU, are marked
in grey. Note that, the best benchmark method for this experiment
is DE with NLL = −0.77± 0.07 (see Table 2).

HP NOMU1 NOMU2 NOMU NOMU3 NOMU4

πSQR -1.18±0.04 -1.18±0.04 -1.16±0.05 -1.15±0.04 -1.15±0.04
πEXP -1.15±0.04 -1.15±0.05 -1.16±0.05 -1.18±0.04 -1.18±0.04
cEXP -1.17±0.04 -1.19±0.04 -1.16±0.05 -1.11±0.05 -1.00±0.05
DART -1.16±0.05 -1.16±0.05 -1.16±0.05 -1.16±0.04 -1.15±0.05
`MIN -1.07±0.05 -1.17±0.04 -1.16±0.05 -1.14±0.05 -1.12±0.05
`MAX -1.13±0.05 -1.15±0.05 -1.16±0.05 -1.16±0.04 -1.16±0.04

Table 18. Sensitivity analysis for 5D generative test-bed setting.
We present for each hyperparameter (HP) and its five correspond-
ing grid-points the average NLL (without const. ln(2π)/2) and a 95%
CI over 200 BNN samples. Results which are statistically on par
with NOMU’s default HPs, i.e., the column NOMU, are marked
in grey. Note that, the best benchmark method for this experiment
is GP with NLL = −0.33± 0.02 (see Table 2).

HP NOMU1 NOMU2 NOMU NOMU3 NOMU4

πSQR -0.37±0.03 -0.37±0.02 -0.37±0.02 -0.36±0.02 -0.35±0.02
πEXP -0.33±0.02 -0.34±0.02 -0.37±0.02 -0.40±0.02 -0.40±0.02
cEXP -0.39±0.02 -0.38±0.02 -0.37±0.02 -0.37±0.02 -0.34±0.05
DART -0.37±0.02 -0.37±0.02 -0.37±0.02 -0.37±0.02 -0.37±0.02
`MIN -0.21±0.03 -0.33±0.02 -0.37±0.02 -0.38±0.02 -0.39±0.02
`MAX -0.39±0.02 -0.37±0.02 -0.37±0.02 -0.35±0.02 -0.33±0.02

I. Details on our Notation
In Section 2, we are using a slightly overloaded notation,
where we use the same symbol f for different mathematical
objects. Sometimes, we use f for a function-valued random
variable F : (Ω,Σ,P)→ Y X . and sometimes we use f for
the specific unknown ground truth function ftrue := F (ω)
(i.e., ∀x ∈ X : ftrue(x) = (F (ω))(x)). While we used this
slightly overloaded notation for the sake of readability in the
main paper, we will now introduce our Bayesian uncertainty
framework in its full mathematical detail:

In practice, there exists an unknown ground truth function
ftrue. In the classical Bayesian paradigm, one assumes that
everything unknown (i.e., here ftrue) was sampled from a
prior distribution. Specifically, ftrue := F (ω) is a realization
of a random variable F : (Ω,Σ,P) → Y X distributed
according to a prior belief, i.e., a prior distribution. Using
this notation, one can mathematically describe in a rigorous
way the full Bayesian data generating process as follows:

Let F : (Ω,Σ,P) → Y X be a function-valued random
variable distributed according to a prior belief, i.e., a prior
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distribution. Moreover, let (Xi, Ei)i∈{1,...,ntrain} denote the
random variable representing the input data points and
the corresponding data noise, i.e., a family off i.i.d ran-
dom variables independent of F , where each random vari-
able (Xi, Ei) : (Ω,Σ,P) → X × R fulfills ∀x ∈ X :
(Ei|Xi = x) ∼ N (0, σn(x)). Finally, let Yi be the ran-
dom variable associated to the targets, which we define as
Yi : (Ω,Σ,P)→ Y, ω 7→ Yi(ω) := F (ω)(Xi(ω)) + Ei(ω).

With this notation in place, the objects used in the main
paper in Section 2: xi = Xi(ω), yi = Yi(ω) and εi = Ei(ω)
are the values one actually observe in practice as training
data, i.e., the realizations of the data generating process.

Therefore, σf (x) from Equation (1) should be interpreted
for all x ∈ X as

σf (x) =
√
V [F (·)(x)|∀i ∈ {1, . . . , ntrain} : (Xi,Yi) = (xi, yi)],

(94)

which, for all x ∈ X , is defined mathematically even more
rigorously via the conditional variance as follows:

√
V
[
F (·)(x)

∣∣(Xi,Yi)i∈{1,...,ntrain}
]

(ω). (95)

Throughout the paper it should always be clear from the con-
text if xi refers to the random variable Xi or its realization
Xi(ω) where the same holds true for yi, εi and f .

Importantly, note that in the setting which we consider in
this paper, one only observes data coming from a single
function f = F (ω) and one does not have access to more
functions fi. Specifically, we neither have access to other
samples of the random variable F nor do we consider mul-
tiple i.i.d random variables Fi in contrast to the setting
considered for neural processes as described in Appendix F.

J. Visualization of the Readout Map
In this section, we provide in Figure 28 a visualization of
the readout map

ϕ(z) = `max

(
1− exp

(
−max(0, z) + `min

`max

))
, (96)

for `min ≥ 0 and `max > 0. The readout map ϕwas introduced
in Section 3.2 to transform the raw model uncertainty output

0 2 4 6 8 10

10 3

10 2

10 1

1.0
1.5
2.0

1 with min 10 3, max 2.0
2 with min 10 2, max 1.5
3 with min 10 1, max 1.0
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3(z) 0.09516 for z 0

Figure 28. Visualization of the readout mapϕ(z) for three different
(`min, `max)-pairs.

r̂f into NOMU’s model uncertainty prediction σ̂f (x) =
ϕ(r̂f (x)) (see Equation (2)).

Figure 28 shows how the readout map ϕ interpolates be-
tween its minimal value `max(1−exp(− `min

`max
)) ≈ `max(1−1+

`min
`max

)) = `min (shown in Figure 28 for three different pairs
of (`min, `max) as the three dots) and its asymptotic maximal
value `max = limz→∞ ϕ(z). Specifically, we designed the
readout map ϕ such that it has a relatively steep increase
starting from 0 and flattens when asymptotically converging
to its maximal value `max. The parameter `min is used for
numerical stability to prevent 0 model uncertainty outputs,
which would be a very extreme statements, causing metrics
such as NLL or AUC to result in infinitely bad values for ar-
bitrarily small numerical deviations of the model predictions.
The parameter `max defines the maximal model uncertainty
far away from input training points (similarly to the prior
variance for GPs with RBF kernel). As discussed in Re-
mark 3.2, the readout map ϕ can be modified depending
on the subsequent use of the estimated UBs or it can even
be learned by parameterizing ϕ by a NN and minimizing a
valid metric (such as the NLL) on a validation set.
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Abstract
Many important resource allocation problems in-
volve the combinatorial assignment of items, e.g.,
auctions or course allocation. Because the bun-
dle space grows exponentially in the number of
items, preference elicitation is a key challenge in
these domains. Recently, researchers have pro-
posed ML-based mechanisms that outperform tra-
ditional mechanisms while reducing preference
elicitation costs for agents. However, one major
shortcoming of the ML algorithms that were used is
their disregard of important prior knowledge about
agents’ preferences. To address this, we intro-
duce monotone-value neural networks (MVNNs),
which are designed to capture combinatorial val-
uations, while enforcing monotonicity and normal-
ity. On a technical level, we prove that our MVNNs
are universal in the class of monotone and nor-
malized value functions, and we provide a mixed-
integer linear program (MILP) formulation to make
solving MVNN-based winner determination prob-
lems (WDPs) practically feasible. We evaluate
our MVNNs experimentally in spectrum auction
domains. Our results show that MVNNs im-
prove the prediction performance, they yield state-
of-the-art allocative efficiency in the auction, and
they also reduce the run-time of the WDPs. Our
code is available on GitHub: https://github.com/
marketdesignresearch/MVNN.

1 Introduction
Many important economic problems involve the combina-
torial assignment of multiple indivisible items to multiple
agents. In domains with money, prominent examples include
combinatorial auctions (CAs) and combinatorial exchanges
(CEs). In CAs, heterogeneous items are allocated amongst a
set of bidders, e.g., for the sale of spectrum licenses [Cram-
ton, 2013]. In CEs, a set of items is allocated between mul-
tiple agents who can be sellers and buyers at the same time,

*This paper is the slightly updated version of Weissteiner et al.
[2022a] published at IJCAI’22 including the appendix.

†These authors contributed equally to this paper.

e.g., for the reallocation of catch shares [Bichler et al., 2019].
In domains without money, a popular example is combina-
torial course allocation, where course seats are allocated to
students at large business schools [Budish, 2011].

What all of these domains have in common is that the
agents can report their values on bundles of items rather than
only on individual items. This allows them to express more
complex preferences, i.e., an agent’s valuation of a bundle is
not simply the sum of each individual item’s value, but it can
be more (complementarity) or less (substitutability). How-
ever, since the bundle space grows exponentially in the num-
ber of items, agents cannot report values for all bundles in
settings with more than a modest number of items. Thus,
parsimonious preference elicitation is key for the design of
practical combinatorial assignment mechanisms.

In this paper, we present a new machine learning approach
that exploits prior (structural) knowledge about agents’ pref-
erences and can be integrated well into iterative market mech-
anisms. Our contribution applies to any combinatorial assign-
ment problem. However, we present our algorithms in the
context of a CA specifically, to simplify the notation and be-
cause there exist well-studied preference generators for CAs
that we can use for our experimental evaluation.

For CAs with general valuations, Nisan and Segal [2006]
have shown that exponential communication in the number
of items is needed in the worst case to find an optimal al-
location of items to bidders, i.e., to ensure full efficiency.
Thus, for general valuations, practical CAs cannot provide
efficiency guarantees in large domains. In practice, iterative
combinatorial auctions (ICAs) are employed, where the auc-
tioneer interacts with bidders over multiple rounds, eliciting
a limited amount of information, aiming to find a highly ef-
ficient allocation. ICAs are widely used, e.g., for the sale of
licenses to build offshore wind farms [Ausubel and Cramton,
2011]. The provision of spectrum licenses via the combinato-
rial clock auction (CCA) [Ausubel et al., 2006] has generated
more than $20 billion in total revenue [Ausubel and Baranov,
2017]. Therefore, increasing the efficiency of such real-world
ICAs by only 1% point translates into monetary gains of hun-
dreds of millions of dollars.

1.1 ML-based Auction Design
In recent years, researchers have successfully integrated ma-
chine learning (ML) algorithms into the design of CAs to im-
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prove their performance. Dütting et al. [2019] and Rahme
et al. [2021] used neural networks (NNs) to learn entire auc-
tion mechanisms from data, following the automated mecha-
nism design paradigm. Brero et al. [2019] studied a Bayesian
ICA using probabilistic price updates to achieve faster con-
vergence to an efficient allocation.

Most related to this paper is the work by Brero et al. [2018;
2021], who developed a value-query-based ICA that achieves
even higher efficiency than the widely used CCA. In follow-
up work, Weissteiner and Seuken [2020] extended their work
by integrating neural networks (NN) in their mechanisms and
could further increase the efficiency. Finally, Weissteiner et
al. [2022b] used Fourier transforms (FTs) to leverage differ-
ent notions of sparsity of value functions in preference elic-
itation. However, despite these advances, it remains a chal-
lenging problem to find the efficient allocation while keeping
the elicitation cost for bidders low. Even state-of-the-art ap-
proaches suffer from significant efficiency losses, highlight-
ing the need for better preference elicitation algorithms.

We show in this paper that these limitations can be par-
tially explained due to the usage of poor, non-informative
ML-algorithms, which either do not include important prior
domain knowledge or make too restrictive assumptions about
the bidders’ value functions. Brero et al. [2018; 2021]
used support vector regressions (SVRs) with quadratic ker-
nels which can only learn up to two way interactions between
items and do not account for an important monotonicity prop-
erty of bidders’ value functions. While the fully-connected
feed-forward NNs used by Weissteiner and Seuken [2020]
are more expressive, they also do not account for this mono-
tonicity property. In particular when operating with only a
small number of data points (which is the standard in market
mechanisms, because preference elicitation is costly), this can
cause significant efficiency losses.

Over the last decade, major successes in ML were made
by specialized NN architectures (e.g., Convolutional Neural
Networks) that incorporate domain-specific prior knowledge
to improve generalization [Bronstein et al., 2017]. With this
paper, we follow the same paradigm by incorporating prior
knowledge about monotone preferences into an NN archi-
tecture to improve generalization, which is key for a well-
functioning preference elicitation algorithm.

Several other approaches for incorporating monotonicity
into NNs have previously been proposed. However, for these
architectures, it is not known how the NN-based winner de-
termination problem (WDP) could be solved quickly or they
have other limitations. Sill [1998] proposes only a shallow ar-
chitecture which violates the normalization property. You et
al. [2017] propose a complicated non-standard architecture,
where no computationally feasible MILP formulation of the
corresponding WDP is known. Wehenkel and Louppe [2019]
implement monotonicity by representing the target function
as an integral of an NN and thus the WDP would result in a
computationally infeasible MILP. Liu et al. [2020] train NNs
with successively higher regularization until a MILP based
verification procedure guarantees monotonicity. The repeated
retraining and verification lead to high computational cost.

In contrast, our approach is particularly well suited for
combinatorial assignment, because (i) our NN-based WDP

can be formulated as a succinct MILP and thus solved quickly
in practice and (ii) we propose a generic fully-connected feed-
forward architecture with arbitrary number of hidden layers
which can be trained efficiently.

1.2 Our Contribution
We make the following contributions:
1. We introduce monotone-value neural networks (MVNNs),

a new class of NNs. For our MVNNs, we use as activation
function bounded ReLU (bReLU) and enforce constraints
on the parameters such that they are normalized and ful-
fill a monotonicity property (Section 3). These MVNNs
are specifically suited to model monotone (combinatorial)
value functions in economic settings.

2. On a technical level, we provide the following two the-
orems (Section 3.1): First, we prove that MVNNs are
universal in the class of monotone and normalized com-
binatorial value functions, i.e., one can represent any
value function with arbitrarily complex substitutabilities
and complementarities exactly as an MVNN. Second, we
show how to formulate the MVNN-based WDP as a MILP,
which is key to calculate optimal allocations in practice.

3. We experimentally evaluate the learning performance of
MVNNs vs. NNs in four different spectrum CA domains
and show that MVNNs are significantly better at mod-
elling bidders’ combinatorial value functions (Section 4).

4. Finally, we experimentally investigate the performance of
MVNNs vs. plain NNs when integrated into an existing
ML-based ICA (MLCA) and compare them also to the
FT-based method by Weissteiner et al. [2022b]. We show
that MVNNs lead to substantially smaller efficiency losses
than existing state-of-the-art mechanisms (Section 5).

2 Preliminaries
In this section, we present our formal model and review the
ML-based ICA by Brero et al. [2021].

2.1 Formal Model for ICAs
We consider a CA with n bidders and m indivisible items.
Let N = {1, . . . , n} and M = {1, . . . ,m} denote the set of
bidders and items, respectively. We denote with x ∈ X =
{0, 1}m a bundle of items represented as an indicator vec-
tor, where xj = 1 iff item j ∈ M is contained in x. Bid-
ders’ true preferences over bundles are represented by their
(private) value functions vi : X → R+, i ∈ N , i.e., vi(x)
represents bidder i’s true value for bundle x.

By a = (a1, . . . , an) ∈ Xn we denote an allocation
of bundles to bidders, where ai is the bundle bidder i ob-
tains. We denote the set of feasible allocations by F ={
a ∈ Xn :

∑
i∈N aij ≤ 1, ∀j ∈M

}
. We assume that bid-

ders’ have quasilinear utilities ui, i.e., for payments p ∈
Rn+, ui(a, p) = vi(ai)−pi. This implies that the (true) social
welfare V (a) of an allocation a is equal to the sum of all bid-
ders’ values, i.e., V (a) =

∑
i∈N ui(ai, pi) + uauctioneer(p) =∑

i∈N vi(ai) − pi +
∑
i∈N pi =

∑
i∈N vi(ai). We let

a∗ ∈ argmaxa∈F V (a) be a social-welfare maximizing, i.e.,
efficient, allocation. The efficiency of any allocation a ∈ F is
measured as V (a)/V (a∗).
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An ICA mechanism defines how the bidders interact with
the auctioneer and how the final allocation and payments are
determined. We denote a bidder’s (possibly untruthful) re-
ported value function by v̂i : X → R+. In this paper,
we consider ICAs that ask bidders to iteratively report their
values v̂i(x) for particular bundles x selected by the mech-
anism. A set of L ∈ N reported bundle-value pairs of
bidder i is denoted as Ri =

{(
x(l), v̂i(x

(l))
)}L
l=1

, x(l) ∈ X .
Let R = (R1, . . . , Rn) denote the tuple of reported bundle-
value pairs obtained from all bidders. We define the reported
social welfare of an allocation a given R as V̂ (a|R) :=∑
i∈N : (ai,v̂i(ai))∈Ri

v̂i(ai), where (ai, v̂i(ai)) ∈ Ri ensures
that only values for reported bundles contribute. The final op-
timal allocation a∗R ∈ F and payments p(R) ∈ Rn+ are com-
puted based on the elicited reportsR only. More formally, the
optimal allocation a∗R ∈ F given the reports R is defined as

a∗R ∈ argmax
a∈F

V̂ (a|R). (1)

As the auctioneer can generally only query each bidder i a
limited number of bundles |Ri| ≤ Qmax (e.g., Qmax = 100),
the mechanism needs a sophisticated preference elicitation al-
gorithm, with the goal of finding a highly efficient final allo-
cation a∗R with a limited number of value queries.

2.2 A Machine Learning-powered ICA
We now review the machine learning-powered combinatorial
auction (MLCA) by Brero et al. [2021]. Interested readers are
referred to Appendix A, where we present MLCA in detail.

MLCA proceeds in rounds until a maximum number of
value queries per bidder Qmax is reached. In each round, a
generic ML algorithm Ai is trained for every bidder i ∈ N
on the bidder’s reports Ri. Next, MLCA generates new value
queries qnew = (qnew

i )ni=1 with qnew
i ∈ X \ Ri by solving a

ML-based WDP qnew ∈ argmax
a∈F

∑
i∈N
Ai(ai).

The idea is the following: if Ai are good surrogate mod-
els of the bidders’ true value functions then qnew should be a
good proxy of the efficient allocation a∗ and thus provide the
auctioneer with valuable information. Additionally, in a real-
world MLCA, bidders’ are always allowed to report values
of further bundles that they deem potentially useful (“push”-
bids). This mitigates the risk of bidders not getting asked the
right queries. In our experiments, MLCA achieves already
state-of-the-art results without making use of any “push”-bids
(mathematically additional “push”-bids can only improve the
results further).

At the end of each round, MLCA receives reports Rnew

from all bidders for the newly generated queries qnew, and up-
dates the overall elicited reports R. When Qmax is reached,
MLCA computes an allocation a∗R that maximizes the re-
ported social welfare (see Equation (1)) and determines VCG
payments p(R) based on the reported values (see Appendix
Definition B.1).

Remark 1 (IR, No-Deficit, and Incentives of MLCA). Brero
et al. [2021] showed that MLCA satisfies individual rational-
ity (IR) and no-deficit, with any ML algorithm Ai. Further-
more, they studied the incentive properties of MLCA; this is

important, given that opportunities for manipulations might
lower efficiency. Like all deployed spectrum auctions (in-
cluding the CCA [Ausubel and Baranov, 2017]) MLCA is not
strategyproof. However, Brero et al. [2021] argued that it
has good incentives in practice; and given two additional as-
sumptions, bidding truthfully is an ex-post Nash equilibrium
in MLCA. Their analyses apply to MLCA using any ML al-
gorithm, and therefore also to an MVNN-based MLCA. We
present a more detailed summary of their incentive analysis
in Appendix B.

3 Monotone-Value Neural Networks
In combinatorial assignment problems, value functions are
used to model each agent’s (reported) value for a bundle of
items (v̂i : {0, 1}m → R+). However, while the bundle space
grows exponentially with the number of items, the agents’
value functions often exhibit useful structure that can be ex-
ploited. A common assumption is monotonicity:
(M) Monotonicity (“additional items increase value”):

For A,B ∈ 2M : if A ⊆ B it holds that v̂i(A) ≤ v̂i(B).1

This property is satisfied in many market domains. For ex-
ample, in many CAs, bidders can freely dispose of unwanted
items; in combinatorial course allocation, students can just
drop courses they have been assigned. However, prior work
on ML-based market design [Weissteiner and Seuken, 2020;
Weissteiner et al., 2022b; Brero et al., 2021] has not taken
this property into account, which negatively affects the per-
formance (see Sections 4 and 5).

For ease of exposition, we additionally assume that the
value functions are normalized:
(N) Normalization (”no value for empty bundle”):

v̂i(∅) = v̂i((0, . . . , 0)) := 0

Note that this property is not required by our method and can
be easily adapted to be any other fixed value, or to be a learned
parameter. In the following, we denote with

V := {v̂i : X → R+| satisfy (N) and (M)} (2)

the set of all value functions, that satisfy the normalization
and monotonicity property. Next, we introduce Monotone-
Value Neural Networks (MVNNs) and show that they span the
entire set V . Thus, MVNNs are specifically suited to all ap-
plications with monotone value functions.

Definition 1 (MVNN). An MVNN N θ
i : X → R+ for bidder

i ∈ N is defined as

N θ
i (x) =W i,Kiϕ0,t

(
. . . ϕ0,t(W

i,1x+ bi,1) . . .
)
, (3)

• Ki+1 ∈ N is the number of layers (Ki− 1 hidden layers),
• ϕ0,t is the bounded ReLU (bReLU)2 activation function

with cutoff t > 0:

ϕ0,t(z) := min(t,max(0, z)) (4)

1We slightly abused the notation here by using sets instead of
their corresponding indicator vectors as arguments of v̂i.

2bReLUs have been widely used in practice, e.g., to enhance
training stability in visual pattern recognition [Liew et al., 2016].

3



• W i := (W i,k)Ki

k=1 with W i,k ≥ 0 and bi := (bi,k)Ki

k=1 with
bi,k ≤ 0 denote a tuple of non-negative weights and non-
positive biases of dimensions di,k × di,k−1 and di,k, whose
parameters are stored in θ = (W i, bi).3

For implementation details of MVNNs we refer to Ap-
pendix C.6. Unless explicitly stated, we consider from now
on a cutoff of t = 1 for the bReLU, i.e., ϕ(z) := ϕ0,1(z) =
min(1,max(0, z)). Next, we discuss the choice of bReLU.
Choice of bReLU (i) The constraints on the weights and bi-
ases enforce monotonicity of MVNNs (in fact for any mono-
tone activation). (ii) For universality (see Theorem 1) we need
a bounded monotone non-constant activation, i.e., with Re-
LUs and our constraints one cannot express substitutabilities.
(iii) for the MILP (see Theorem 2), we need a piecewise lin-
ear activation (e.g., with sigmoids we could not formulate a
MILP). Taking all together, bReLU is the simplest bounded,
monotone, non-constant, piecewise-linear activation (see Ap-
pendix Remarks C.2 and C.3 for a detailed discussion).
Remark 2. For applications where value functions are ex-
pected to be ”almost“ (but not completely) monotone, one
can adapt MVNNs to only have soft monotonicity constraints
by implementing the constraints on the weights and biases via
regularization, e.g.,

∑
i,k,j,lmax(0,−W i,k

j,l ). This results in
soft-MVNNs that can model non-monotone changes in some
items if the data evidence is strong.

3.1 Theoretical Analysis and MILP-Formulation
Next, we provide a theoretical analysis of MVNNs and
present a MILP formulation of the MVNN-based WDP.
Lemma 1. Let N θ

i : X → R+ be an MVNN (Definition 1).

Then it holds that N (W i,bi)
i ∈ V for all W i ≥ 0 and bi ≤ 0.

We provide the proof for Lemma 1 in Appendix C.1. Next,
we state our main theorem about MVNNs.
Theorem 1 (Universality). Any value function v̂i : X → R+

that satisfies (N) and (M) can be represented exactly as an
MVNN N θ

i from Definition 1, i.e.,

V =
{
N (W i,bi)
i :W i ≥ 0, bi ≤ 0

}
. (5)

We present a constructive proof for Theorem 1 in Ap-
pendix C.3. In the proof, we consider an arbitrary
(v̂i(x))x∈X ∈ V for which we construct a two hidden layer
MVNN N θ

i of dimensions [m, 2m − 1, 2m − 1, 1] with pa-
rameters θ = (W i

v̂i
, biv̂i) such that N θ

i (x) = v̂i(x)∀x ∈ X .
Note that for q queries, it is always possible to construct

MVNN of size [m, q, q, 1] that perfectly fits through the q
data-points (see Appendix Corollary C.1). Thus, the worst-
case required architecture size grows only linearly with the
number of queries. In our experiments we already achieve
very good performance with even smaller architectures. Ex-
ample C.1 in the Appendix nicely illustrates how exactly

3We apply a linear readout map to the last hidden layer, i.e, no
ϕ0,t and bi,Ki := 0. By setting bi,Ki 6= 0 with trainable=False, the
MVNN can model any other value than zero in the normalization
property. By not restricting bi,k ≤ 0 and setting bi,Ki 6= 0 with
trainable=True one can also learn the value for the empty bundle.

MVNNs capture complementarities, substitutabilities and in-
dependent items.

A key step in combinatorial assignment mechanisms is
finding the social welfare-maximizing allocation, i.e., solving
the Winner Determination Problem (WDP). To use MVNNs
in such mechanisms, we need to be able to solve MVNN-
based WDPs in a practically feasible amount of time. To
this end, we present a MILP formulation of the MVNN-
based WDP which can be (approximately) solved in practice
for reasonably-sized NNs (see Section 5.3). The key idea
is to rewrite the bReLU ϕ(z) as −max(−1,−max(0, z))
and encode for each bidder i, hidden layer k and neuron j
both max(·, ·) operators with two binary decision variables
yi,kj , µi,kj . First, we show how to encode one single hidden
layer of an MVNN as multiple linear constraints. We provide
the proof in Appendix C.4.
Lemma 2. Fix bidder i ∈ N , let k ∈ {1, . . . ,Ki −
1} and denote the pre-activated output of the kth layer as
oi,k := W i,kzi,k−1 + bi,k with W i,k ∈ Rdi,k×di,k−1

, bi,k ∈
Rdi,k . Then the output of the kth layer zi,k := ϕ(oi,k) =
min(1,max(0, oi,k)) = −max(−1,−ηi,k), with ηi,k :=
max(0, oi,k) can be equivalently expressed by the following
linear constraints:

oi,k ≤ ηi,k ≤ oi,k + yi,k · Li,k1 (6)

0 ≤ ηi,k ≤ (1− yi,k) · Li,k2 (7)

ηi,k − µi,k · Li,k3 ≤ zi,k ≤ ηi,k (8)

1− (1− µi,k) · Li,k4 ≤ zi,k ≤ 1 (9)

yi,k ∈ {0, 1}di,k , µi,k ∈ {0, 1}di,k , (10)

where Li,k1 , Li,k2 , Li,k3 , Li,k4 ∈ R+ are large enough constants
for the respective big-M constraints.4

Finally, we formulate the MVNN-based WDP as a MILP.
Theorem 2 (MILP). The MVNN-based WDP
max
a∈F

∑
i∈N N

(W i,bi)
i (ai) can be equivalently formulated as

the following MILP5:

max
a∈F,zi,k,µi,k,ηi,k,yi,k

{∑

i∈N
W i,Kizi,Ki−1

}
(11)

s.t. for i ∈ N and k ∈ {1, . . . ,Ki − 1}
zi,0 = ai (12)

W i,kzi,k−1 + bi,k ≤ ηi,k (13)

ηi,k ≤W i,kzi,k−1 + bi,k + yi,k · Li,k1 (14)

0 ≤ ηi,k ≤ (1− yi,k) · Li,k2 (15)

ηi,k − µi,k · Li,k3 ≤ zi,k ≤ ηi,k (16)

1− (1− µi,k) · Li,k4 ≤ zi,k ≤ 1 (17)

yi,k ∈ {0, 1}di,k , µi,k ∈ {0, 1}di,k (18)
4To account for a general cutoff t 6= 1 in the bReLU, one needs

to adjust (9) by replacing the left- and rightmost 1 with t.
5To account for a general cutoff t 6= 1 in the bReLU, one needs

to adjust (17) by replacing the left- and rightmost 1 with t.
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Proof. The proof follows by iteratively applying Lemma 2
for each bidder and all her respective hidden MVNN layers.

Fact 1. One can significantly reduce the solve time for the
MILP by tightening the bounds of each neuron. In Ap-
pendix C.5, we present bound tightening via interval arith-
metic (IA) [Tjeng et al., 2019] for MVNNs. For a plain ReLU
NN, these IA bounds are not tight and calculating tighter
bounds in a computationally efficient manner is very chal-
lenging. In contrast, the MVNN-IA bounds are always per-
fectly tight, because of their encoded monotonicity property.
The upper and lower bound of a neuron is the value the neu-
ron outputs for the input (1, . . . , 1) and (0, . . . , 0). This is a
big advantage of MVNNs compared to plain (ReLU) NNs.

Remark 3 (MVNNs as Preference Generator). To experi-
mentally evaluate a new mechanism one needs to generate
many different possible value functions. Preference genera-
tors like the Spectrum Auction Test Suite [Weiss et al., 2017]
are carefully designed to capture the essential properties of
spectrum auctions, but they are not available for every ap-
plication. Instead of using such a domain-specific preference
generator, one can also use MVNNs with randomly initial-
ized weights to generate possible value functions. An ad-
vantage of random MVNNs is that they are universal (see
Theorem 1) and hence come with a diversity rich enough to
sample any possible monotone value function with arbitrarily
complex substitutabilities and complementarities (the distri-
bution of supplements and complements can be controlled via
the cutoff t, where the smaller/larger t the more substitutabil-
ities/complementarities). Future work could investigate this
distribution, i.e., how representative it is for real-world valua-
tions. These types of generative test beds become increasingly
important to avoid overfitting on specific simulation engines
and/or real data sets [Osband et al., 2021].

4 Prediction Performance of MVNNs
In this section, we show that in all considered CA domains,
MVNNs are significantly better at capturing bidders’ com-
plex value functions than plain (ReLU) NNs, which allows
them to extrapolate much better in the bundle space.

4.1 Experimental Setup - Prediction Performance
CA Domains In our experiments we use simulated data
from the Spectrum Auction Test Suite (SATS) version 0.7.0
[Weiss et al., 2017]. We consider the following four domains:
• Global Synergy Value Model (GSVM) [Goeree and Holt,

2010] has 18 items, 6 regional and 1 national bidder.
• Local Synergy Value Model (LSVM) [Scheffel et al.,

2012] has 18 items, 5 regional and 1 national bidder. Com-
plementarities arise from spatial proximity of items.

• Single-Region Value Model (SRVM) [Weiss et al., 2017]
has 29 items and 7 bidders (categorized as local, high fre-
quency regional, or national) and models large UK 4G
spectrum auctions.

• Multi-Region Value Model (MRVM) [Weiss et al., 2017]
has 98 items and 10 bidders (local, regional, or national)
and models large Canadian 4G spectrum auctions.

When simulating bidders, we follow prior work (e.g.,
[Brero et al., 2021]) and assume truthful bidding (i.e., v̂i =
vi). Details on how we collect the data and the train/val/test
split can be found in Appendix D.1.

HPO To efficiently optimize the hyperparameters and fairly
compare MVNNs and plain NNs for best generalization
across different instances of each SATS domain, we frame the
hyperparameter optimization (HPO) problem as an algorithm
configuration problem and use the well-established sequen-
tial model-based algorithm configuration (SMAC) [Hutter et
al., 2011]. SMAC quickly discards hyperparameters which
already perform poorly on a few SATS instances and proposes
more promising ones via Bayesian optimization. It is flexible
enough for the parameterization of NNs as it naturally han-
dles a mixture of categorical, integer and float hyperparame-
ters. Further details on the setting including hyperparameter
ranges can be found in Appendix D.2.

4.2 Prediction Performance Results
For ease of exposition, we only present our results for the
MVNN-RELU-PROJECTED implementation of our MVNNs
(termed MVNN in the following). Results for other MVNN
implementations can be found in the Appendix D.3. In Ta-
ble 1, we compare the prediction performance of the winning
models that the HPO found for different amounts of train-
ing data (T) on the test data. We see that, compared to plain

R2 ↑ KT ↑

DOMAIN T BIDDER MVNN NN MVNN NN

GSVM 10 NAT 0.686 ±0.061 0.534 ±0.040 0.668 ±0.027 0.583 ±0.021

REG 0.618 ±0.068 0.504 ±0.062 0.633 ±0.038 0.557 ±0.033

20 NAT 0.923 ±0.016 0.818 ±0.032 0.849 ±0.017 0.752 ±0.029

REG 0.940 ±0.018 0.880 ±0.022 0.882 ±0.020 0.815 ±0.021

50 NAT 0.992 ±0.001 0.988 ±0.001 0.962 ±0.003 0.953 ±0.003

REG 0.997 ±0.001 0.988 ±0.001 0.974 ±0.002 0.953 ±0.003

LSVM 10 NAT 0.248 ±0.069 0.137 ±0.031 0.693 ±0.011 0.710 ±0.023

REG 0.563 ±0.049 0.348 ±0.067 0.605 ±0.031 0.504 ±0.025

50 NAT 0.616 ±0.020 0.199 ±0.031 0.753 ±0.009 0.678 ±0.035

REG 0.921 ±0.015 0.872 ±0.012 0.860 ±0.017 0.812 ±0.013

100 NAT 0.677 ±0.014 0.396 ±0.033 0.813 ±0.005 0.706 ±0.018

REG 0.965 ±0.010 0.936 ±0.010 0.918 ±0.015 0.857 ±0.012

SRVM 10 H.F. 0.538 ±0.044 -2.123 ±0.268 0.626 ±0.020 0.607 ±0.012

LO 0.381 ±0.045 0.267 ±0.042 0.559 ±0.030 0.489 ±0.032

NAT 0.389 ±0.063 0.341 ±0.038 0.560 ±0.026 0.535 ±0.012

REG 0.422 ±0.051 0.372 ±0.036 0.562 ±0.023 0.544 ±0.014

50 H.F. 0.860 ±0.015 0.773 ±0.034 0.853 ±0.013 0.803 ±0.020

LO 0.895 ±0.020 0.588 ±0.031 0.902 ±0.000 0.771 ±0.030

NAT 0.988 ±0.004 0.828 ±0.015 0.918 ±0.005 0.801 ±0.009

REG 0.989 ±0.004 0.872 ±0.047 0.931 ±0.004 0.823 ±0.022

100 H.F. 0.911 ±0.008 0.849 ±0.011 0.908 ±0.006 0.896 ±0.006

LO 0.948 ±0.014 0.723 ±0.005 0.903 ±0.000 0.900 ±0.002

NAT 0.998 ±0.000 0.913 ±0.008 0.952 ±0.003 0.841 ±0.008

REG 0.996 ±0.001 0.945 ±0.004 0.948 ±0.021 0.895 ±0.012

MRVM 10 LO -0.055 ±0.058 -0.018 ±0.050 0.262 ±0.017 0.200 ±0.015

NAT 0.182 ±0.045 -0.556 ±1.355 0.365 ±0.018 0.414 ±0.008

REG 0.036 ±0.085 -0.048 ±0.092 0.322 ±0.022 0.255 ±0.038

100 LOCAL 0.831 ±0.023 0.493 ±0.027 0.786 ±0.019 0.545 ±0.012

NAT 0.778 ±0.022 0.560 ±0.019 0.726 ±0.014 0.581 ±0.010

REG 0.832 ±0.028 0.447 ±0.053 0.779 ±0.027 0.572 ±0.018

300 LOCAL 0.944 ±0.006 0.871 ±0.009 0.883 ±0.010 0.819 ±0.009

NAT 0.868 ±0.016 0.855 ±0.029 0.814 ±0.009 0.808 ±0.013

REG 0.917 ±0.017 0.847 ±0.010 0.851 ±0.019 0.809 ±0.012

Table 1: Prediction performance measured via R-squared (R2) and
Kendall tau (KT) with a 95%-CI in four SATS domains with cor-
responding bidder types: high frequency (H.F.), local (LO), re-
gional (REG) and national (NAT), averaged over 30 auction in-
stances. Both MVNNs and plain NNs are trained on T and evaluated
on 209 715− T random bundles. Winners are marked in grey.

5



EFFICIENCY LOSS IN % ↓ T-TEST FOR EFFICIENCY:

DOMAIN QMAX MVNN NN FT RS H0 : µNN ≤ µMVNN H0 : µFT ≤ µMVNN

GSVM 100 00.00 ± 0.00 00.00 ± 0.00 01.77± 0.96 30.34 ± 1.61 pVAL = 3e−6
LSVM 100 00.70 ± 0.40 02.91 ± 1.44 01.54± 0.65 31.73 ± 2.15 pVAL = 2e−03 pVAL = 5e−3
SRVM 100 00.23 ± 0.06 01.13 ± 0.22 00.72± 0.16 28.56 ± 1.74 pVAL = 5e−10 pVAL = 2e−8
MRVM 100 08.16 ± 0.41 09.05 ± 0.53 10.37± 0.57 48.79 ± 1.13 pVAL = 9e−03 pVAL = 1e−7

Table 2: Efficiency loss of MVNN vs plain NNs, the Fourier Transform (FT) benchmark and random search (RS). Shown are averages and a
95% CI on a test set of 50 CA instances. Winners based on a (paired) t-test with significance level of 1% are marked in grey.

Figure 1: Prediction performance of MVNNs vs plain NNs in SRVM
(national bidder). The identity is shown in grey.

NNs, MVNNs provide both a significantly better fit in terms
of R-squared R2 as well as a better Kendall Tau rank corre-
lation KT (i.e., a better ordinal ranking of the predicted test
bundle values). Thus, enforcing the monotonicity property in
MVNNs significantly improves the learning performance.

Figure 1 illustrates our findings by providing a visual com-
parison of the prediction performance for the highly non-
unimodal SRVM.6 We see that the MVNN fits the training
data exactly (blue crosses), although the HPO only optimized
generalization performance on the validation data. This is a
strong indication that MVNNs correspond to a more realis-
tic prior, since for a realistic prior, it is optimal to exactly
fit the training data in noiseless settings [Heiss et al., 2022,
Proposition D.2.a]. In contrast, the HPO has selected hyper-
parameters for the plain NNs that result in a worse fit of the
training data (otherwise generalization to unseen data would
be even worse). Moreover, the plain NNs show a particularly
bad fit on the less frequent lower and higher valued bundles.

5 MVNN-powered Iterative CA
To evaluate the performance of MVNNs when used in-
side a combinatorial market mechanism, we have integrated
MVNNs into MLCA (see Section 2.2), yielding an MVNN-
powered Iterative CA. In this section, we compare the eco-
nomic efficiency of our MVNN-based MLCA against the pre-
viously proposed NN-based MLCA. For solving the MVNN-
based WDPs in MLCA, we use our MILP from Theorem 2.

5.1 Experimental Setup - MLCA
To generate synthetic CA instances, we use the same four
SATS domains as in Section 4. SATS also gives us access to
the true optimal allocation a∗, which we use to measure the

6We provide corresponding plots for the other domains and bid-
der types in Appendix D.3; the results are qualitatively similar.

efficiency loss, i.e., 1 − V (a∗R)/V (a∗) and relative revenue∑
i∈N p(R)i/V (a∗) of an allocation a∗R ∈ F and payments

p(R) ∈ Rn+ determined by MLCA when eliciting reports R.
Due to the long run-time of a single evaluation of MLCA,
we perform a restricted HPO, which, for each domain, only
uses the winners of the prediction performance experiment
(Table 1) for the three amounts of training data T . This is a
reasonable choice, because in the prediction performance we
optimize the generalization performance for bidders’ value
functions that is also key in MLCA.

For each domain, we use Qinit = 40 initial random queries
and set the query budget toQmax = 100. We terminate MLCA
in an intermediate iteration if it already found an efficient al-
location (i.e., with 0 efficiency loss).

5.2 Efficiency Results
In Table 2, we present the efficiency results of MVNN-based
MLCA and NN-based MLCA, averaged over 50 auction in-
stances. We focus on efficiency rather than revenue, since
spectrum auctions are government-run auctions with a man-
date to maximize efficiency and not revenue [Cramton, 2013].
In Appendices E.2 and E.3, we also present and discuss de-
tailed revenue results.

For each domain, we present results corresponding to the
best MVNNs and NNs amongst the three incumbents ob-
tained from the prediction performance experiments. We
present results for all three incumbents in Appendix E.2.
Overall, we see that the better prediction performance of
MVNNs (Table 1) translates to smaller efficiency losses in
MLCA. In LSVM and SRVM, MVNNs significantly outper-
form NNs and have a more than four times lower efficiency
loss. In MRVM, MVNN’s average efficiency loss is approxi-
mately 1% point smaller than the NN’s loss. Given that in the
2014 Canadian 4G auction the total revenue was on the order
of 5 billion USD [Ausubel and Baranov, 2017], an efficiency
loss decrease of 1% point in MRVM can translate to wel-
fare gains on the order of 50 million USD. Finally, in GSVM,
the simplest domain, where bidders’ value functions have at
most two-way interactions between items, both MVNNs and
plain NNs incur no efficiency loss. As further baselines, we
evaluate the Fourier transform (FT) auction [Weissteiner et
al., 2022b] using their proposed optimal hyperparameters and
random search (RS). We do not compare to SVRs [Brero et
al., 2021] since they were already outperformed by plain NNs
in [Weissteiner and Seuken, 2020]. We observe that RS incurs
efficiency losses of 30–50% illustrating the need for smart
preference elicitation. Moreover, we see that MVNNs also
significantly outperform FTs in all domains.
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Figure 2: Efficiency loss paths of MLCA with MVNNs vs plain
NNs. Shown are averages with 95% CIs over 50 auction instances.

In Figure 2, we present the efficiency loss path of MVNNs
vs NNs (i.e., the regret curve) corresponding to Table 2. We
see that in LSVM and SRVM, MVNNs lead to a smaller (av-
erage) efficiency loss for every number of queries. In MRVM,
the same holds true for 50 and more queries. In GSVM, both
networks have no efficiency loss in every instance after only
56 queries. Since a single query can be very costly in real-
world CAs, it makes sense to ask few queries. Figure 2 shows
that MVNNs consistently outperform plain NNs also in set-
tings with a small number of queries (i.e., reduced Qmax)

5.3 MILP Runtime Analysis
When integrating MVNNs into MLCA or another iterative
combinatorial assignment mechanism, one needs to solve the
MVNN-based WDP multiple times in one full run. Thus,
the key computational challenge when integrating MVNNs in
such mechanisms is to make solving the MVNN-based WDP
practically feasible. In Theorem 2, we have shown how to en-
code the MVNN-based WDP as a succinct MILP, which can
be (approximately) solved in practice for reasonably-sized
NNs. However, due to the bReLU, i.e., the two cutoffs at
0 and t > 0, the MVNN-based MILP has twice the number
of binary variables (yi,k and µi,k) than the MILP encoding of
a plain NN with ReLUs [Weissteiner and Seuken, 2020].

Figure 3 presents MILP runtimes of MVNNs vs plain
ReLU NNs for selected architectures. We observe two ef-
fects: First, even though the MVNN-based MILPs have twice
the number of binary variables, they can be solved faster than
the plain NN-based MILPs. Second, the deeper the architec-
ture or the more neurons, the larger this difference becomes.
One hypothesis to explain these effects is that (i) MVNNs are
more regular functions than plain NNs (due to their mono-
tonicity property) and (ii) the constraints on their parameters
yield structure that might be exploited by the MILP solver.

6 Conclusion
In this paper, we have introduced MVNNs, a new class of
NNs that is specifically designed to model normalized and
monotone value functions in combinatorial assignment prob-
lems. We have experimentally evaluated the performance of

Figure 3: MILP runtime (200s time limit) of MVNNs vs plain NNs
in MLCA on 10 LSVM instances for a selection of architectures.

MVNNs in four combinatorial spectrum auction domains and
shown that MVNNs outperform plain NNs with respect to
prediction performance, economic efficiency, and runtime.
Overall, our experiments suggest that MVNNs are the best
currently available model for preference elicitation in combi-
natorial assignment (also compared to FTs and SVRs). Thus,
incorporating important structural knowledge in the ML al-
gorithm plays an important role in combinatorial assignment.

MVNNs enable us to incorporate an informative prior into
a market mechanism. Future work could use such informa-
tive priors and enhance existing mechanisms (e.g., MLCA)
by also using the posterior estimates in a more principled
way than just the mean prediction. For example, one could
frame an ICA as a (combinatorial) Bayesian optimization task
and integrate a well-defined notion of posterior uncertainty to
foster exploration [Heiss et al., 2022].7 Finally, it would be
interesting to also evaluate the performance of MVNNs in
other combinatorial assignment problems such as course al-
location.8
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Appendix
A A Machine Learning-powered ICA
In this section, we present in detail the machine learning-
powered combinatorial auction (MLCA) by Brero et al.
[2021].

At the core of MLCA is a query module (Algorithm 1),
which, for each bidder i ∈ I ⊆ N , determines a new value
query qi. First, in the estimation step (Line 1), an ML algo-
rithmAi is used to learn bidder i’s valuation from reports Ri.
Next, in the optimization step (Line 2), an ML-based WDP is
solved to find a candidate q of value queries. In principle, any
ML algorithm Ai that allows for solving the corresponding
ML-based WDP in a fast way could be used. Finally, if qi
has already been queried before (Line 4), another, more re-
stricted NN-based WDP (Line 6) is solved and qi is updated
correspondingly. This ensures that all final queries q are new.

Algorithm 1: NEXTQUERIES(I,R) (Brero et al. 2021)

Inputs: Index set of bidders I and reported values R
1 foreach i ∈ I do Fit Ai on Ri: Ai[Ri] . Estimation step

2 Solve q ∈ argmax
a∈F

∑
i∈I
Ai[Ri](ai) . Optimization step

3 foreach i ∈ I do
4 if (qi, v̂i(qi)) ∈ Ri then . Bundle already queried

5 Define F ′ = {a ∈ F : ai 6= x,∀(x, v̂i(x)) ∈ Ri}
6 Re-solve q′ ∈ argmaxa∈F′

∑
l∈I Al[Rl](al)

7 Update qi = q′i
8 end
9 end

10 return Profile of new queries q = (q1, . . . , qn)

In Algorithm 2, we present MLCA. In the following, let
R−i = (R1, . . . , Ri−1, Ri+1, . . . , Rn). MLCA proceeds in
rounds until a maximum number of queries per bidderQmax is
reached. In each round, it calls Algorithm 1 (Qround− 1)n+1
times: for each bidder i ∈ N , Qround − 1 times excluding
a different bidder j 6= i (Lines 5–10, sampled marginal
economies) and once including all bidders (Line 11, main
economy). In total each bidder is queried Qround bundles per
round in MLCA. At the end of each round, the mechanism
receives reportsRnew from all bidders for the newly generated
queries qnew, and updates the overall elicited reports R (Lines
12–14). In Lines 16–17, MLCA computes an allocation a∗R
that maximizes the reported social welfare (see Equation (1))
and determines VCG payments p(R) based on the reported
values R (see Appendix Definition B.1).

B Incentives of MLCA
In this section, we briefly review the key arguments by Brero
et al. [2021] why MLCA has good incentives in practice.
First, we define VCG-payments given bidder’s reports.

Definition B.1. (VCG PAYMENTS FROM RE-
PORTS) Let R = (R1, . . . , Rn) denote an elicited
set of reported bundle-value pairs from each bid-
der obtained from MLCA (Algorithm 2) and let

Algorithm 2: MLCA(Qinit, Qmax, Qround) (Brero et al. 2021)

Params: Qinit, Qmax, Qround initial, max and #queries/round
1 foreach i ∈ N do
2 Receive reports Ri for Qinit randomly drawn bundles
3 end
4 for k = 1, ..., b(Qmax −Qinit)/Qroundc do .Round iterator

5 foreach i ∈ N do . Marginal economy queries

6 Draw uniformly without replacement (Qround−1)
bidders from N \ {i} and store them in Ñ

7 foreach j ∈ Ñ do
8 qnew = qnew∪ NextQueries(N \ {j}, R−j)
9 end

10 end
11 qnew = NextQueries(N,R) . Main economy queries

12 foreach i ∈ N do
13 Receive reports Rnew

i for qnew
i , set Ri = Ri ∪Rnew

i

14 end
15 end
16 Given elicited reports R compute a∗R as in Equation (1)
17 Given elicited reports R compute VCG-payments p(R)
18 return Final allocation a∗R and payments p(R)

R−i := (R1, . . . , Ri−1, Ri+1, . . . , Rn). We then calcu-
late the VCG payments p(R) = (p(R)1 . . . , p(R)n) ∈ Rn+ as
follows:

p(R)i :=
∑

j∈N\{i}
v̂j

((
a∗R−i

)
j

)
−
∑

j∈N\{i}
v̂j

(
(a∗R)j

)
.

(19)
where a∗R−i

maximizes the reported social welfare when ex-
cluding bidder i, i.e.,

a∗R−i
∈ argmax

a∈F
V̂ (a|R−i) = argmax

a∈F

∑

j∈N\{i}:
(aj ,v̂j(aj))∈Rj

v̂j(aj), (20)

and a∗R is a reported-social-welfare-maximizing allocation
(including all bidders), i.e,

a∗R ∈ argmax
a∈F

V̂ (a|R) = argmax
a∈F

∑

i∈N : (ai,v̂i(ai))∈Ri

v̂i(ai). (21)

Therefore, when using VCG, bidder i’s utility is:
ui=vi((a

∗
R)i)− p(R)i

=vi((a
∗
R)i) +

∑

j∈N\{i}
v̂j((a

∗
R)j)

︸ ︷︷ ︸
(a) Reported SW of main economy

−
∑

j∈N\{i}
v̂j((a

∗
R−i

)j).

︸ ︷︷ ︸
(b) Reported SW of marginal economy

Any beneficial misreport must increase the difference (a) −
(b).

MLCA has two features that mitigate manipulations. First,
MLCA explicitly queries each bidder’s marginal economy
(Algorithm 2, Line 5), which implies that (b) is practically in-
dependent of bidder i’s bid (Section 7.3 in [Brero et al., 2021]
provides experimental support for this). Second, MLCA en-
ables bidders to “push” information to the auction which they
deem useful. This mitigates certain manipulations that target
(a), as it allows bidders to increase (a) with truthful informa-
tion. Brero et al. [2021] argue that any remaining manipu-
lation would be implausible as it would require almost com-
plete information.
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If we are willing to make two assumptions, we also obtain
a theoretical incentive guarantee. Assumption 1 requires that,
if all bidders bid truthfully, then MLCA finds an efficient allo-
cation (we show in Appendix E.2 that in two of our domains:
GSVM, LSVM, we indeed find the efficient allocation in the
majority of cases). Assumption 2 requires that, for all bidders
i, if all other bidders report truthfully, then the social welfare
of bidder i’s marginal economy is independent of his value
reports. If both assumptions hold, then bidding truthfully is
an ex-post Nash equilibrium in MLCA.

C Monotone-Value Neural Networks
In this section, we provide proofs for all mathematical claims
made in Section 3.1 (Appendix C.1, C.3 and C.4), pro-
vide a toy example on MVNNs (Appendix C.2) and give an
overview of bounds tightening via interval arithmetic for the
MVNN-based MILP (Appendix C.5).

C.1 Proof of Lemma 1
Lemma 1. Let N θ

i : X → R+ be an MVNN from Defini-

tion 1. Then it holds that N (W i,bi)
i ∈ V for all W i ≥ 0 and

bi ≤ 0.

Proof.

1. Monotonicity (M):
This property immediately follows, since (component
wise) the weights W i,k ≥ 0 for all k ∈ {1 . . . ,Ki}
and ϕ0,t(z) is monotonically increasing.

2. Normalization (N):
Since ϕ0,t(z) = 0 for z ≤ 0 and the biases ful-
fill (component wise) bi,k ≤ 0, we can conclude that
N θ
i ((0, . . . , 0︸ ︷︷ ︸

m-times

)) = 0.

Remark C.1 (The role of the activation-function in
Lemma 1). For Lemma 1 it would be sufficient to only as-
sume that the activation function is monotonically increasing
to get (M) and maps negative numbers to zero to get (N). So
ReLU would also be a valid activation function for Lemma 1,
but not for Theorem 1 (see Remark C.2).

C.2 Example MVNNs
The following example illustrates how we can capture com-
plementarities, substitutabilities and independent items via an
MVNN.

Example C.1 (MVNN). Consider the set of items M =
{x1, x2, x3} and the associated (reported) value function v̂i
shown in Table 3 (where we use 001 as a shorthand notation
for (0, 0, 1)):

000 100 010 001 110 101 011 111

v̂i 0 1 1 1 1 3 2 4

Table 3: Example on flexibility of MVNNs.

In this example, x1 and x2 are substitutes, i.e., 2 =
v̂i({x1}) + v̂i({x2}) > v̂i({x1, x2}) = 1; x1 and x3
are complements, i.e., 2 = v̂i({x1}) + v̂i({x3}) <
v̂i({x1, x3}) = 3; and x2 and x3 are independent, i.e.,
2 = v̂i({x2}) + v̂i({x3}) = v̂i({x2, x3}) = 2. This re-
ported value function can be exactly captured by an MVNN
N θ
i (x) in the following way:

x1

x2

x3

0 ϕ

−1
ϕ

0

1

0.5

1

1

0.25

1

1

4

W i,1(·) + bi,1 W i,2(·)

Figure 4: MVNNN θ
i withN θ

i (x) = v̂i(x) ∀x ∈ X .

Biases are marked at the top of each neuron and weights
are marked above the corresponding connections. A missing
connection denotes a weight of 0. We see that the second kink
(at t = 1) of the bReLU together with the 0 bias of the top
neuron in the hidden layer implements the substitutability be-
tween x1 and x2. Furthermore, the complementarity between
x1 and x3 is implemented by the bottom neuron in the hidden
layer via the negative bias −1 and the first kink (at 0) of the
bReLU.

C.3 Proof of Theorem 1
Theorem 1 (Universality). Any value function v̂i : X → R+

that satisfies (N) and (M) can be represented exactly as an
MVNN N θ

i from Definition 1, i.e.,

V =
{
N (W i,bi)
i :W i ≥ 0, bi ≤ 0}

}
. (22)

Proof.

1. V ⊇
{
N (W i,bi)
i :W i,k ≥ 0, bi,k ≤ 0 ∀k ∈ {1, . . . ,Ki}

}

This direction follows immediately from Lemma 1.

2. V ⊆
{
N (W i,bi)
i :W i,k ≥ 0, bi,k ≤ 0 ∀k ∈ {1, . . . ,Ki}

}

Let (v̂i(x))x∈X ∈ V . For the reverse direction, we give
a constructive proof, i.e., we construct an MVNN N θ

i

with θ = (W i
v̂i
, biv̂i) such that N θ

i (x) = v̂i(x) for all
x ∈ X .
Let (wj)

2m

j=1 denote the values corresponding to
(v̂i(x))x∈X sorted in increasing order, i.e, let x1 =
(0, . . . , 0) with

w1 := v̂i(x1) = 0, (23)
let x2m = (1, . . . , 1) with

w2m := v̂i(x2m), (24)
and xj , xl ∈ X \ {x1, x2m} for 1 < l ≤ j ≤ 2m − 1
with

wj := v̂i(xj) ≤ wl := v̂i(xl). (25)
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In the following, we slightly abuse the notation and write
for xl, xj ∈ X xl ⊆ xj iff for the corresponding sets
Aj , Al ∈ 2M it holds that Aj ⊆ Al. Furthermore,
we denote by 〈·, ·〉 the Euclidean scalar product on Rm.
Then, for all x ∈ X :

v̂i(x) =

2m−1∑

l=1

(wl+1 − wl)1{∀j∈{1,...,l} : x 6⊆xj} (26)

=

2m−1∑

l=1

(wl+1 − wl)ϕ0,1

(
l∑

j=1

ϕ0,1 (〈1− xj , x〉)− (l − 1)

)
,

(27)

where the second equality follows since

x 6⊆ xj ⇐⇒ 〈1− xj , x〉 ≥ 1 (28)
⇐⇒ ϕ0,1 (〈1− xj , x〉) = 1, (29)

which implies that

∀j ∈ {1, . . . , l} : x 6⊆ xj ⇐⇒
l∑

j=1

ϕ0,1 (〈1− xj , x〉) = l,

(30)

and

1{∀j∈{1,...,l} : x 6⊆xj} = ϕ0,1

(
l∑

j=1

ϕ0,1 (〈1− xj , x〉)− (l − 1)

)

(31)

Finally, Equation (27) can be equivalently written in ma-
trix notation as




w2 − w1

w3 − w2

...
w2m − w2m−1




T

︸ ︷︷ ︸
(W i,3

v̂i
)T∈R2m−1

≥0

ϕ0,1




W i,2
v̂i
ϕ0,1







1− x1
1− x2

...
1− x2m−1




︸ ︷︷ ︸
W i,1

v̂i
∈R(2m−1)×m
≥0

x




+




0
−1

...
−(2m − 2)




︸ ︷︷ ︸
bi,2v̂i
∈R2m−1
≤0




with W i,2
v̂i
∈ R(2m−1)×(2m−1)

≥0 a lower triangular matrix
of ones, i.e.,

W
i,2
v̂i

:=




1 0 . . . 0

...
. . .

. . .
...

...
. . . 0

1 . . . . . . 1



.

From that, we can see that the last
term is indeed an MVNN N θ

i (x) =

W i,3
v̂i
ϕ0,1

(
W i,2
v̂i
ϕ0,1

(
W i,1
v̂i
x
)
+ bi,2v̂i

)
with four

layers in total (i.e., two hidden layers) and respective
dimensions [m, 2m − 1, 2m − 1, 1].

Remark C.2 (The role of the activation-function in Theo-
rem 1). If the classical ReLU-activation function was used,
we would not get universality, because of the non-negativity

constraints of the weights: A ReLU-network with non-
negative weights can only express convex functions.9 This
means that it could only express complementarities, but no
substitutabilities. For approximate universality any monoton-
ically increasing, bounded, non-constant activation-function
would be sufficient (e.g., bReLU or sigmoid). However, sig-
moid would not be a valid activation function for Theorem 1,
because it would not allow exact normalization for a non-
zero function. (Firstly, for an activation function such as
sigmoid that does not map negative number to zero, net-
works that fulfil the sign constraints for the weights and bi-
ases could be arbitrarily far away from being normalized.
Secondly, for universality, one could only approximate the
true function up to an arbitrarily small epsilon but never ex-
actly for a normalized non-constant true function.) While
these problems of sigmoid-activation-functions for Theorem 1
might be rather theoretical, what is more important in prac-
tice is that non-piecewise-linear activations functions are not
MILP-formalizable.
Remark C.3 (Why bReLU?). Every monotonically increas-
ing, non-constant, bounded activation function that maps
negative numbers to 0 would be a valid choice, since it
would fulfill Lemma 1 (see Remark C.1), Theorem 1 (see
Remark C.2) and be MILP-formalizable (cp. Theorem 2).
The complexity of the MILP grows with the number of kinks
in the activation function. In this sense, bReLU is the sim-
plest monotonically increasing, non-constant, bounded acti-
vation function that maps negative numbers to 0.10 In addi-
tion, bReLU shares many properties of ReLU and sigmoid,
which are both popular choices for activation-functions. Re-
mark C.2 explains why ReLU or sigmoid would not be valid
choices.
Corollary C.1. For every dataset ((xj), v̂i(xj))j∈{1...,q}
there exist an MVNN of dimensions [m, q, q, 1] that perfectly
fits the dataset, i.e. N θ

i (xj) = v̂i(xj) ∀j ∈ {1 . . . , q}.
Proof. This interpolating MVNN can be explicitly con-
structed such as the MVNN in the proof of Theorem 1 by
replacing the collection of all bundles and their values by the
dataset ((xj), v̂i(xj))j∈{0...,q}, where x0 is the empty bundle
and v̂i(x0) = 0, i.e., Equation (27) has to be replaced by:

N θ
i (x) =

q∑

l=1

(wl − wl−1)ϕ0,1

(
l−1∑

j=0

ϕ0,1 (〈1− xj , x〉)− (l − 1)

)
,

(32)

9A ReLU-MVNN could only express convex functions, since
ReLU is convex and non-decreasing, and linear combinations of
convex non-decreasing functions are convex and non-decreasing if
all the coefficients are non-negative, and compositions of convex
non-decreasing functions are convex (and non-decreasing). Thus
any ReLU-MVNN with our weight constraints could never express
any non-convex functions. However, agent’s value functions are
very often non-convex, i.e., they typically admit substitutabilities.
E.g. Example C.1 could not be expressed by a ReLU-MVNN.

10One can easily see that any bounded piece-wise linear non-
constant activation function has to have at least two kinks, so at least
3 linear segments. bReLU has two kinks (one at zero and one at the
cut-off t), so there is no other suitable activation function with less
kinks.
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where we again assume that the bundles are sorted by their
values and for 0 < l ≤ j ≤ q we define:

wj := v̂i(xj) ≤ wl := v̂i(xl). (33)

Remark C.4 (Number of neurons needed). [m, 2m−1, 2m−
1, 1] is just an upper bound for the size of the network to learn
the true value function exactly onX . For NNs on a continuous
domain no finite upper bound exist, but they are still widely
used in practice. Most value functions could be expressed
with significantly fewer nodes.

More importantly, in an ICA (e.g., MLCA) one doesn’t need
to learn the value function everywhere perfectly but only ap-
proximately where the precision mainly matters for relevant
bundles. Corollary C.1 states that for q queries, there is
an MVNN with size [m, q, q, 1] that can perfectly fit through
these q queries. So we have a mathematical guarantee that
the number of nodes only grows linearly with the number of
queries in the worst case. This is the much more relevant
growth rate in practice, because we will typically not be able
to do 2m − 1 queries anyway and thus the MILP will also
never be exponentially large. Thus, for MVNNs with size
[m, 100, 100, 1], we have a mathematical guarantee that we
can always get a perfect monotonic normalized interpolation
of all available 100 queries even in the worst cases. How-
ever, our experiments show that for data coming from realistic
value functions, significantly smaller architectures are suffi-
cient to (almost) perfectly interpolate the training data most
of the time and even often almost perfectly approximate the
true value function on X (see Tables 7 and 8) leading to bet-
ter than state-of-the-art performance in MLCA (see Tables 2
and 5). This allows very fast MILP-solving times in practice
(see Table 5, where the average run-times of full auctions are
given in hours or Figure 3, where the average run-times per
MILP are given in seconds).

C.4 Proof of Lemma 2
In this section, we proove Lemma 2 from Section 3.

Proof. For all j ∈ {1, . . . , di,k} we distinguish the following
three cases:

Case 1: oi,kj ∈ (−∞, 0]⇒ ϕ(oi,k)j = 0

(6) & (7)⇒ yi,kj = 1⇒ ηi,kj = 0

(8) & (9)⇒ µi,kj = 0⇒ zi,kj = ηi,kj = 0

Case 2: oi,kj ∈ (0, 1]⇒ ϕ(oi,k)j = oi,kj

(6) & (7)⇒ yi,kj = 0⇒ ηi,kj = oi,kj

(8) & (9)⇒ µi,kj = 0⇒ zi,kj = ηi,kj = oi,kj

Case 3: oi,kj ∈ (1,+∞]⇒ ϕ(oi,k)j = 1

(6) & (7)⇒ yi,kj = 0⇒ ηi,kj = oi,k

(8) & (9)⇒ µi,kj = 1⇒ zi,kj = 1

Thus, in total zi,k = ϕ(oi,k).

C.5 Interval Arithmetic Bounds Tightening for
MVNNs

In this section, we consider a bReLU ϕ0,t with cutoff t > 0
and mark it in red. This helps when implementing the MILP,
i.e. it particularly shows more clearly where the cutoff t prop-
agates in the respective equations. First, we recall Lemma 1
for a general cutoff t, where for the sake of readability we
remove the bidder index i ∈ N from all variables.
Lemma 2. Let k ∈ {1, . . . ,K − 1} and let the pre-activated
output of the kth layer be given as W kzk−1 + bk with W k ∈
Rdk×dk−1

, bk ∈ Rdk . Then the output of the kth layer zk :=
ϕ0,t(W

kzk−1 + bk) = min(t,max(0, (W kzk−1 + bk)) =
−max(−t,−ηk), with ηk := max(0,W kzk−1 + bk) can be
equivalently expressed by the following linear constraints:

W kzk−1 + bk ≤ ηk ≤W kzk−1 + bk + ykLk1 (34)

0 ≤ ηk ≤ (1− yk)Lk2 (35)

ηk − µkLk3 ≤ zk ≤ ηk (36)

t− (1− µk)Lk4 ≤ zk ≤ t (37)

where yk ∈ {0, 1}dk , µk ∈ {0, 1}dk , and Lk1 , L
k
2 , L

k
3 , L

k
4 ∈

R+ are large enough constants for the respective big-M con-
straints.

Interval Arithmetic (IA) for Single Neurons
For any k ∈ {1, . . . ,K − 1} let W k ≥ 0 and bk ≤ 0 be the
weights of its affine linear transformation. Furthermore, let
zk−1 be the output of the previous layer. and, let

zk = ϕ0,t

(
W kzk−1 + bk

)
(38)

be the output of the current layer.
Given already computed IA bounds for zk−1i , i.e.,

[L(zk−1l ), U(zk−1l )] ⊆ [0, t], we can then calculate the IA
bounds L(zkl ), U(zkl ) for zkl such that

zk ∈
dk∏

l=1

[L(zkl ), U(zkl )] (39)

as follows:
1. Upper bound (pre-activated):

U pre(zk) = (40)

= max
zk−1∈∏dk−1

l=1
[L(zk−1

l
),U(zk−1

l
)]

{
W kzk−1 + bk

}
(41)

=

(∑

l

W k
j,l · U(zk−1

l )

)dk

j=1

+ bk (42)

2. Upper bound:

U(zk) = ϕ0,t

(
U pre(zk)

)
(43)

3. Lower bound (pre-activated):
Lpre(zk) = (44)

= min
zk−1∈∏dk−1

l=1
[L(zk−1

l
),U(zk−1

l
)]

{
W kzk−1 + bk

}
(45)

=

(∑

l

W k
j,l · L(zk−1

l )

)dk

j=1

+ bk (46)
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Note, that the preactivated lower boundLpre(zk) is always
non-positive, i.e. Lpre(zk) ≤ 0. This can be seen as fol-
lows: start with a L(z1) = 0d1 . Then since all biases are
non-positive Lpre(z2) ≤ 0 =⇒ L(z2) = 0d2 , and so
forth. Thus, we get for the lower bounds:

4. Lower bound:

L(zk) = ϕ0,t

(
Lpre(zk)

)
= 0dk (47)

Removing Constraints with IA
In the following cases, we can remove the constraints and
corresponding variables in Lemma 2:

1. Case:
If U pre(zkl ) ≤ 0 =⇒ zkl = 0 and one can remove the lth
components from all constraints (34) – (37) and the corre-
sponding variables for layer k.

2. Case:
If Lpre(zkl ) ∈ [0, t) and U pre(zkl ) ∈ (0, t] =⇒ zkl =(
W kzk−1 + bk

)
l

and one and can remove the lth compo-
nents from all constraints (34) – (37) and the correspond-
ing variables for layer k.

3. Case:
If Lpre(zkl ) = 0 and U pre(zkl ) > t =⇒ ηkl =(
W kzk−1 + bk

)
l

and one and can remove the lth compo-
nents from all constraints (34) – (35) and the correspond-
ing variables for layer k.

4. Case:
If Lpre(zkl ) < 0 and U pre(zkl ) ∈ (0, t] =⇒ zkl = ηkl
and one and can remove the lth components from all con-
straints (36) – (37) and the corresponding variables for
layer k.11

Fact C.1. For a plain ReLU NN, the above calculated IA
bounds are not tight and calculating tighter bounds in a com-
putationally efficient manner is very challenging and an open
research question. However, for MVNNs, the IA bounds are
always perfectly tight, because of their encoded monotonic-
ity property. This is a big advantage of MVNN-based MILPs
compared to plain (ReLU) NN-based MILPs.

Interval Arithmetic for the Four Big-M Constraints
Recall, that L(zk) = 0dk for all k ∈ {1, . . . ,K − 1}. Let
m =: d0 denote the number of items to be allocated.

We present standard IA bounds where one starts for z0 ∈
{0, 1}m with L(z0) = 0m and U(z0) = 1m (per definition)
and iteratively for k ∈ {1, . . . ,K − 1} propagates through
the network for given bounds on zk−1, i.e., zk−1 ∈ Zk :=∏dk−1

l=1 [0, U(zk−1l )] ⊂ [0, t]d
k−1

.

1. Lk1 only appears when yk = 1, which implies that ηk = 0
and W kzk−1 + bk ≤ 0. Thus, Equation (34) implies that
Lk1 +minzk−1∈Zk−1

{
W kzk−1 + bk

}
≥ 0 and we get

11In all experiments presented in this paper, we have not taken
advantage of Case 3 and 4. We believe that we can further improve
the computational performance of MVNN by incorporating these
cases too.

Lk1 =max

{
0,− min

zk−1∈Zk−1

{
W kzk−1 + bk

}}
(48)

=max




0,




∑

l:Wk
j,l
<0

|W k
j,l| · U(zk−1

l )




dk

j=1

− bk





(49)

=max
{
0,−bk

}
(50)

where the last equality follows since per definition any
MVNN only has positive weights.

2. Lk2 only appears when yk = 0 which implies that ηk =
W kzk−1+bk ≥ 0. Thus, Equation (35) implies that Lk2 ≥
ηk =W kzk−1 + bk and we get

Lk2 = max
zk−1∈Zk−1

{
W kzk−1 + bk

}
(51)

=max




0,




∑

l:Wk
j,l
>0

W k
j,l · U(zk−1

l )




dk

j=1

+ bk





(52)

=max



0,

(∑

l

W k
j,l · U(zk−1

l )

)dk

j=1

+ bk



 , (53)

where the last equality follows since per definition any
MVNN only has positive weights.

3. Lk3 only appears when µk = 1 which implies that zk = t
and ηk =W kzk−1 + bk ≥ t. Thus, Equation (36) implies
that t = zk ≥ ηk − Lk3 ⇐⇒ Lk3 ≥ ηk − t ⇐⇒ Lk3 ≥
W kzk−1 + bk − t and we get

Lk3 = max
zk−1∈Zk−1

{
W kzk−1 + bk − t

}
(54)

= max
{
0, Lk2 − t

}
(55)

4. For Lk4 only appears when µk = 0. In this case, we get
from Equation (37) that t− Lk4 ≤ zk and we get

Lk4 = max
zk∈Zk

{t− zk} = t (56)

C.6 Implementation Details - MVNNs
Recall that the three key building blocks of MVNNs are the
bReLU ϕ, the (element-wise) non-negative weights W i, and
the (element-wise) non-positive biases bi. The bReLU ϕ
can be straightforwardly implemented as a custom activa-
tion function in PYTORCH 1.8.1. However, the constraints
on the weights and biases to be element-wise positive and
negative respectively, can be implemented in several different
ways. We first describe the method we call MVNN-RELU-
PROJECTED, which we have found experimentally to perform
best. Finally, we describe the other options we have explored
since they may be of independent interest to some readers.
MVNN-RELU-PROJECTED In this implementation, we
project W i and bi prior to every forward pass to be non-
negative and non-positive, respectively, using ReLU z 7→
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±max(0,±z). Thus, (in contrast to some of the other meth-
ods we explored), gradient descent (GD) updates are per-
formed on the already transformed weights and biases and
we do not differentiate through the ReLUs. After the last GD
step, we apply post-processing and project W i and bi again
via z 7→ ±max(0,±z).
MVNN-ABS and MVNN-RELU For these methods, we
add an additional node to the computational graph and
element-wisely transform the weights W i via the absolute
value z 7→ |z| or ReLU z 7→ max(0, z) to ensure non-
negativity. For the biases bi we analogously use z 7→ −|z|
or z 7→ −max(0,−z) to ensure non-positivity. Importantly,
we differentiate through z 7→ ±|z| or z 7→ ±max(0,±z)
in every gradient descent (GD) step. We refer to these im-
plementation variants as MVNN-ABS and MVNN-RELU.
After the last GD step we apply post-processing and project
W i and bi again via z 7→ ±|z| and z 7→ ±max(0,±z).
MVNN-ABS-PROJECTED We do not consider a MVNN-
ABS-PROJECTED implementation, since one can prove that
in the classic GD algorithm this version is mathematically
equivalent to MVNN-ABS.

D Details Prediction Performance
D.1 Data Generation - Prediction Performance
Train/Val/Test-Split For every domain, bidder type and
considered amount of training data T we create the data in
the following way: For each seed we let SATS create a value
function and uniformly at random select T different bundles
from the bidder-specific-feasible (using the SATS method
get uniform random bids) bundle space X (training set). We
measure the metrics of a method trained on the training data
of a seed based on randomly selected different bundles from
the same bundle space X (approx. 52 000 for the HPO seeds
(validation set) and approx. 210 000 for the test seeds (test
set)). We use HPO seeds 0-20 only for the HPO (validation
sets) and test seeds 21-50 only for reporting the values in this
paper (test sets).

D.2 HPO - Prediction Performance
Table 4 shows the hyperparameter ranges from our HPO. Co-
sine Annealing [Loshchilov and Hutter, 2017] was used to de-
cay the learning to zero within the number of training epochs.
Occasionally, the neural networks (both MVNNs and plain
NNs) diverged during training (determined if the Pearson cor-
relation coefficient rxy < 0.9 on the train set) hence we added
20 retries to the training to make sure that we obtain a valid
network.

Experimentally, we found that MVNNs need the training
data to be normalized to be within [0, 1], as a result of the
bReLU activation functions bounded output. On the other
hand, plain NNs worked better if the data was normalized to
be within [0, 500] for all considered SATS domains.

The computational budget of the HPO was 12 hours. All
experiments were conducted on a compute cluster running
Debian GNU/Linux 10 (buster) with Intel Xeon E5-2650 v4
2.20GHz processors with 24 cores and 128GB RAM and In-
tel E5 v2 2.80GHz processors with 20 cores and 128GB RAM
and Python 3.7.10.

Hyperparameters Type Range Scale
Optimizer Categorical [Adam, SGD]
Batch Size Integer [1, 4]
Num. Hidden Layers Integer [1, 3]
Total Num. Neurons Integer [1, 64]
L2 Float [1e-10, 1e-6] log
Learning Rate Float [1e-4, 1e-2] log
Epochs Integer [50, 400]
Loss Function Categorical [MSE, MAE]

Table 4: HPO space used in SMAC.

D.3 Detailed Results - Prediction Performance
Table 7 shows the detailed prediction performance results
including all optimized hyperparameters for the MVNN-
ABS and the MVNN-RELU-PROJECTED implementation of
MVNNs. The MVNN-RELU implementation led to similar
results as the MVNN-RELU-PROJECTED implementation,
and therefore we do not present them in this table.

In Table 8, we visualize for all other SATS domains the
prediction performance capabilities of MVNNs vs plain NNs.
Overall, Table 7 and 8 show that MVNNs have a superior gen-
eralization performance across all SATS domains and bidder
types.

E Details MVNN-based Iterative CA
E.1 Details Experimental Setup - MVNN-based

Iterative CA
We used 50 auction instances for evaluation with seeds (for
generating the SATS instances) 10001-10050 which do not
intersect with the seeds used in Appendix D.1 for prediction
performance. All experiments were conducted on the same
compute cluster as in Appendix D.2.

Following prior work [Brero et al., 2021] we set Qround =
4 (see Algorithm 2), i.e., in each iteration of MLCA we
ask each bidder 1 query in the main economy (including
all bidders) and 3 queries from randomly sampled marginal
economies (excluding one bidder). This choice ensures a
trade-off between efficiency (more main economy queries
decrease the efficiency loss) and revenue (more marginal
queries increase revenue). Note that we add the empty bundle
to the initial elicited bundles Qinit, as we know its value to be
0 a priori. This has no impact for MVNNs as they estimate
empty bundles to have zero value by definition but adds extra
prior information for plain NNs.

For all SATS domains we specified a minimum relative gap
of 1e-2 and a timeout of 300s.

E.2 Detailed Results - MVNN-based Iterative CA
In Table 5, we present detailed results of MLCA with
MVNNs vs MLCA with plain NNs. The revenue and run-
time should be considered with care. The revenue is influ-
enced by our choice to use early stopping whenever we al-
ready found an efficient allocation at an intermediary itera-
tion as discussed in the main paper. The shown runtime is not
comparable between MVNNs and NNs as they do not use the
same architecture, but the one found during HPO. See Sec-
tion 5.3 in the main paper for a fair runtime comparison.
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EFFICIENCY LOSS IN % ↓ REVENUE IN % ↑ RUNTIME IN HRS.
DOMAIN T QINIT QROUND QMAX MVNN NN MVNN NN MVNN NN

GSVM 10 40 4 100 00.00 ± 0.00 00.01 ± 0.02 60.11 ± 3.86 58.59 ± 4.35 00.14 ± 0.03 00.15 ± 0.05

20 40 4 100 00.00 ± 0.00 *00.00 ± 0.00 59.07 ± 3.84 55.71 ± 4.46 00.08 ± 0.01 00.06 ± 0.01

50 40 4 100 *00.00 ± 0.00 00.00 ± 0.00 52.77 ± 5.04 56.09 ± 4.57 00.06 ± 0.01 00.07 ± 0.01

LSVM 10 40 4 100 01.63 ± 0.75 03.19 ± 01.59 70.14 ± 4.23 65.23 ± 3.83 00.93 ± 0.36 01.16 ± 0.23

50 40 4 100 *00.70 ± 0.40 03.11 ± 01.52 70.70 ± 4.63 64.07 ± 4.24 00.54 ± 0.15 01.28 ± 0.32

100 40 4 100 01.27 ± 0.55 *02.91 ± 01.44 71.09 ± 4.35 65.10 ± 3.90 00.52 ± 0.12 00.44 ± 0.10

SRVM 10 40 4 100 00.67 ± 0.10 01.27 ± 0.23 50.86 ± 2.31 46.93 ± 2.07 01.86 ± 0.10 01.59 ± 0.09

50 40 4 100 00.49 ± 0.07 01.15 ± 0.31 50.70 ± 2.44 45.59 ± 2.72 20.72 ± 0.52 02.17 ± 0.21

100 40 4 100 *00.23 ± 0.06 *01.13 ± 0.22 51.18 ± 2.52 46.30 ± 2.87 20.12 ± 1.77 00.68 ± 0.06

MRVM 10 40 4 100 *08.16 ± 0.41 10.96 ± 0.76 34.45 ± 2.06 41.68 ± 1.34 02.59 ± 0.13 06.08 ± 0.40

100 40 4 100 08.67 ± 0.43 10.19 ± 0.89 35.04 ± 1.91 41.91 ± 1.39 01.96 ± 0.12 03.33 ± 0.37

300 40 4 100 09.96 ± 0.49 *09.05 ± 0.53 32.72 ± 2.17 39.66 ± 1.20 00.96 ± 0.04 01.84 ± 0.24

Table 5: Efficiency loss, relative revenue and runtime of MLCA with MVNNs vs MLCA with plain NNs. Shown are averages including
a 95% CI on a test set of 50 auction instances in all four SATS domains. The best MVNN and plain NN per domain based on the lowest
efficiency loss are marked with a star (if the final efficiency loss is the same for multiple incumbents we selected the incumbent that reached
0% with the fewest number of queries).

For the presentation in the main paper (i.e., Table 2 in the
main paper), we selected the best MVNN and plain NN per
domain, i.e. the ones marked with a star. In Figures 5, 6, 7
and 8 we present a detailed boxplot version of the efficiency
loss path plots for these best models per domain.

E.3 Detailed Revenue Analysis - MVNN-based
Iterative CA

Recall the VCG-payments from Definition B.1, i.e., for a set
of elicited reports R bidder i’s VCG-payment is given as:

pi(R) :=
∑

j∈N\{i}
v̂j

((
a∗R−i

)
j

)

︸ ︷︷ ︸
=:Marg−i

−
∑

j∈N\{i}
v̂j

(
(a∗R)j

)

︸ ︷︷ ︸
=:Main−i

,

where Marg−i is for a given set of reports R the optimal so-
cial welfare (SCW) in the marginal economy when exclud-
ing bidder i ∈ N and Main−i denotes the SCW of the main
economy when excluding bidder i. The larger the differences
Marg−i−Main−i, i ∈ N the more revenue is generated in the
auction. In Table 6, we print the normalized average marginal
SCW ( 1n

∑
i∈N Marg−i)/V (a∗) (AVG. MARG. SCWS
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Figure 5: Efficiency loss path of MVNN vs plain NN in GSVM with
the corresponding best MVNN (T = 50) and plain NN (T = 20)
from Table 5. Averages are shown as black dots. We use a semi-
logarithmic scale with linear range [0,1e-2].
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Figure 6: Efficiency loss path of MVNN vs plain NN in LSVM with
the corresponding best MVNN (T = 50) and plain NN (T = 100)
from Table 5. Averages are shown as black dots. We use a semi-
logarithmic scale with linear range [0,1e-1].

40 52 64 76 88 100
Number of Queries

0

10 1

100

101

E
ff
ic

ie
n
cy

 L
o
ss

 (
%

)

MVNN

40 52 64 76 88 100
Number of Queries

NN

Figure 7: Efficiency loss path of MVNN vs plain NN in SRVM with
the corresponding best MVNN (T = 100) and best plain NN (T =
100) from Table 5. Averages are shown as black dots. We use a
semi-logarithmic scale with linear range [0,1e-1].

(%)) and the normalized average main SCW when excluding
one bidder ( 1n

∑
i∈N Main−i)/V (a∗) (AVG. MAIN SCWS

(%)) averaged over the 50 auction instances corresponding to
Table 5. Using this notation, the average total relative revenue
of the auction is then the difference of the normalized average
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NUMBER OF QUERIES AVG. MARG. SCWS (%) AVG. MAIN SCWS (%) REVENUE IN % ↑

DOMAIN T MVNN NN RS MVNN NN RS MVNN NN RS MVNN NN RS

GSVM 10 59.1 52.6 100.0 94.31 94.09 67.05 85.71 85.71 59.90 60.11 ± 3.86 58.59 ± 4.35 52.19 ± 2.39

20 54.3 47.8 100.0 94.16 93.69 67.05 85.71 85.71 59.90 59.07 ± 3.84 55.71 ± 4.46 52.19 ± 2.39

50 47.2 48.3 100.0 93.25 93.74 67.05 85.71 85.71 59.90 52.77 ± 5.04 56.09 ± 4.57 52.19 ± 2.39

LSVM 10 74.2 75.5 100.0 93.58 91.41 64.57 81.95 80.62 55.67 70.14 ± 4.23 65.23 ± 3.83 53.58 ± 1.84

50 68.6 73.2 100.0 94.48 91.28 64.57 82.74 80.69 55.67 70.70 ± 4.63 64.07 ± 4.24 53.58 ± 1.84

100 73.2 73.0 100.0 94.04 91.63 64.57 82.26 80.86 55.67 71.09 ± 4.35 65.10 ± 3.90 53.58 ± 1.84

SRVM 10 100.0 100.0 100.0 92.53 91.34 69.43 85.13 84.62 62.12 50.86 ± 2.31 46.93 ± 2.07 51.56 ± 2.07

50 99.4 99.9 100.0 92.66 91.35 69.43 85.29 84.72 62.12 50.70 ± 2.44 45.59 ± 2.72 51.56 ± 2.07

100 98.9 99.8 100.0 92.98 91.47 69.43 85.52 84.74 62.12 51.18 ± 2.52 46.30 ± 2.87 51.56 ± 2.07

MRVM 10 100.0 100.0 100.0 86.12 84.39 50.39 82.68 80.22 46.03 34.45 ± 2.06 41.68 ± 1.34 43.58 ± 0.65

100 100.0 100.0 100.0 85.70 85.04 50.39 82.22 80.83 46.03 35.04 ± 1.91 41.91 ± 1.39 43.58 ± 0.65

300 100.0 100.0 100.0 84.29 85.86 50.39 81.03 81.87 46.03 32.72 ± 2.17 39.66 ± 1.20 43.58 ± 0.65

Table 6: Normalized average social welfare in the marginal economies and main economies when excluding one bidder for MVNNs, NNs
and random search (RS). Additionally, we print the average number of queries, that can differ between MVNN and NN incumbents due to
early termination of MLCA. Shown are averages over the same test set of 50 auction instances as in Table 5.
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Figure 8: Efficiency loss path of MVNN vs plain NN in MRVM with
the corresponding best MVNN (T = 10) and plain NN (T = 300)
from Table 5. Averages are shown as black dots. Only logarithmic
scale.

marginal SCW and the normalized average main SCW when
excluding one bidder times the number of bidders, i.e.,

n

(
(
1

n

∑

i∈N
Marg−i)/V (a∗)− (

1

n

∑

i∈N
Main−i)/V (a∗)

)
.

Recall, that we terminate MLCA in an intermediate itera-
tion, if it already found an efficient allocation (to save com-
putational costs), i.e., incurred no efficiency loss. Due to this
early termination the revenue can be worse off since fewer
bundles are elicited in the marginal economies. If one runs a
full auction without early termination, the revenue can only
improve after the efficient allocation was already found (be-
cause Main−i cannot increase anymore after the efficient al-
location was already found, but Marg−i can still improve).

In Table 6, we present a detailed revenue analysis for all
domains. Table 6 shows that overall the MVNN’s achieved
(normalized) SCWs are larger both in the marginal economies
as well as in the main economies when excluding one bidder.

In GSVM, we find the efficient allocation very early (see
Figure 5 or Table 6), so the revenue is mainly determined
by the number of queries. Without early determination, 60%
revenue should be easily achievable for MVNNs. For LSVM
and SRVM, we see that even with less queries MVNNs can

outperform plain NNs consistently in terms of revenue. With-
out early termination, we expect this margin to be even higher
(because this would add more queries for MVNNs).

In MRVM, we see that the best MVNN (T = 10) achieves
an average difference of 86.12 − 82.68 = 3.44 while the
best plain NN (T=300) achieves an average difference of
85.86 − 81.87 = 3.98. This implies the larger revenue
(≈ 5% = 10 · 0.5%) of plain NNs in MRVM from Table 2
in the main paper. A possible explanation for the larger rev-
enue of plain NNs in MRVM is that, with each query MVNNs
much more exploit the economy for that we solve the WDP,
while plain NNs are more random and thus the query that
solves the WDP for the main economy is not perfectly spe-
cialized for the main economy, but only slightly more helpful
for the main economy than for the other economies. Recall
that MLCA asks in each iteration each bidder Qround-many
queries: one main economy query and Qround − 1 marginal
economy queries. Thus, ifQround < n, MLCA generates more
queries for the main economy than for each marginal econ-
omy and MVNNs improve the main economy even more than
they improve the marginal economies, since their queries are
highly specialized and exploiting. This effect is the strongest
for MRVM as it has the largest ratio of the number of bidders
n and Qround.

However, if the objective would be to maximize revenue
rather than efficiency, MVNNs could achieve as good or bet-
ter revenue than plain NNs when we set Qround = n, since
then both main and marginal economies would be equally im-
proved by the advantages of MVNNs (again with Qround = 4
the main economy profits more from the advantages of the
MVNNs than the marginal economies; see Table 6).

As expected, for random search (RS) the (normalized)
SCWs in both the marginal economies and the main
economies when excluding one bidder are much lower com-
pared to MVNNs and NNs. However, since each economies’
SCW is bad, their differences and thus the revenue does not
have to be worse. Moreover, since RS treats all economies
equally and particularly is not specialized towards the main
economies (in contrast to MVNN-MLCA or NN-MLCA with
Qround < n), RS’s revenue can be even higher compared to
MVNNs and NNs (e.g., in SRVM and MRVM).
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REGIONAL BIDDER NATIONAL BIDDER LOCAL BIDDER HIGH FREQUENCY BIDDER

GSVM

LSVM

SRVM

MRVM

Table 8: Prediction performance comparison for selected MVNNs (MVNN-RELU-PROJECTED) and plain NNs from Table 1 across all domains and bidder types. The
top plots compare the quality of the prediction (training data as blue crosses), while the bottom plots focus on how well the models capture the overall value distribution.
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Abstract

We study the combinatorial assignment domain, which in-
cludes combinatorial auctions and course allocation. The
main challenge in this domain is that the bundle space grows
exponentially in the number of items. To address this, sev-
eral papers have recently proposed machine learning-based
preference elicitation algorithms that aim to elicit only the
most important information from agents. However, the main
shortcoming of this prior work is that it does not model a
mechanism’s uncertainty over values for not yet elicited bun-
dles. In this paper, we address this shortcoming by present-
ing a Bayesian optimization-based combinatorial assignment
(BOCA) mechanism. Our key technical contribution is to inte-
grate a method for capturing model uncertainty into an itera-
tive combinatorial auction mechanism. Concretely, we design
a new method for estimating an upper uncertainty bound that
can be used to define an acquisition function to determine
the next query to the agents. This enables the mechanism
to properly explore (and not just exploit) the bundle space
during its preference elicitation phase. We run computational
experiments in several spectrum auction domains to evaluate
BOCA’s performance. Our results show that BOCA achieves
higher allocative efficiency than state-of-the-art approaches.

1 Introduction
Many economic problems require finding an efficient com-
binatorial assignment of multiple indivisible items to mul-
tiple agents. Popular examples include combinatorial auc-
tions (CAs), combinatorial exchanges (CEs), and combina-
torial course allocation. In CAs, heterogeneous items are al-
located among a set of bidders, e.g., for the sale of spectrum
licenses (Cramton 2013). In CEs, items are allocated among
agents who can be sellers and buyers at the same time, e.g.,
for the reallocation of catch shares (Bichler, Fux, and Go-
eree 2019). In course allocation, course seats are allocated
among students at universities (Budish 2011).

In all these domains, agents have preferences over bun-
dles of items. In particular, agents’ preferences may ex-
hibit complementarities and substitutabilities among items.

*This paper is the full version of Weissteiner et al. (2023) pub-
lished at AAAI’23 including the appendix.

†These authors contributed equally.

A mechanism that allows agents to report values for bundles
rather than just for individual items can achieve significantly
higher efficiency. However, this also implies that agents’
preferences are exponentially-sized (i.e., for m items there
are 2m different bundles), which implies that agents cannot
report values for all bundles. Therefore, the key challenge in
combinatorial assignment is the design of a preference elic-
itation (PE) algorithm that is (i) practically feasible w.r.t.
elicitation costs and (ii) smart, i.e., it should elicit the infor-
mation that is “most useful” for achieving high efficiency.

1.1 Iterative Combinatorial Auctions (ICAs)
While the PE challenge is common to all combinatorial as-
signment problems, it has been studied most intensely in the
CA domain (Sandholm and Boutilier 2006). In CAs with
general valuations, the amount of communication needed
to guarantee full efficiency is exponential in the number
of items (Nisan and Segal 2006). Thus, practical CAs can-
not provide efficiency guarantees. In practice, iterative com-
binatorial auctions (ICAs) are therefore employed, where
the auctioneer interacts with bidders over rounds, eliciting
a limited (and thus practically feasible) amount of infor-
mation, aiming to find a highly efficient allocation. ICAs
are widely used; e.g., for the sale of licenses to build off-
shore wind farms (Ausubel and Cramton 2011). The provi-
sion of spectrum licenses via the combinatorial clock auc-
tion (CCA) (Ausubel, Cramton, and Milgrom 2006) has gen-
erated more than $20 billion in total revenue (Ausubel and
Baranov 2017). Thus, increasing the efficiency of such real-
world ICAs by only 1% point translates into monetary gains
of hundreds of millions of dollars.

1.2 ML-Powered Preference Elicitation
In recent years, researchers have used machine learning
(ML) to design smart PE algorithms. Most related to this pa-
per is the work by Brero, Lubin, and Seuken (2018, 2021),
who developed the first practical ML-powered ICA that out-
performs the CCA. The main idea of their mechanism is
two-fold: first, they train a separate support vector regres-
sion model to learn each bidder’s full value function from
a small set of bids; second, they solve an ML-based winner
determination problem (WDP) to determine the allocation
with the highest predicted social welfare, and they use this
allocation to generate the next set of queries to all bidders.
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This process repeats in an iterative fashion until a fixed num-
ber of queries has been asked. Thus, their ML-powered ICA
can be interpreted as a form of combinatorial Bayesian opti-
mization (BO) (see Appendix C).

In several follow-up papers, this work has been extended
by developing more sophisticated ML methods for this prob-
lem. Weissteiner and Seuken (2020) integrated neural net-
works (NN) in their ICA and further increased efficiency.
Weissteiner et al. (2022b) used Fourier transforms (FTs)
to leverage different notions of sparsity of value functions.
Finally, Weissteiner et al. (2022a) achieved state-of-the-art
(SOTA) performance using monotone-value NNs (MVNNs),
which incorporate important prior domain knowledge.

The main shortcoming of this prior work is that all of
these approaches are myopic in the sense that the result-
ing mechanisms simply query the allocation with the highest
predicted welfare. In particular, the mechanisms do not have
any model of uncertainty over bidders’ values for not yet
elicited bundles, although handling uncertainty in a princi-
pled manner is one of the key requirements of a smart PE
algorithm (Bonilla, Guo, and Sanner 2010). Thus, the mech-
anisms cannot properly control the exploration-exploitation
trade-off inherent to BO. For ML-based ICAs, this means
that the mechanisms may get stuck in local minima, repeat-
edly querying one part of the allocation space while not ex-
ploring other, potentially more efficient allocations.

1.3 Our Contributions
In this paper, we address this main shortcoming of prior
work and show how to integrate a notion of model uncer-
tainty (i.e., epistemic uncertainty) over agents’ preferences
into iterative combinatorial assignment. Concretely, we de-
sign a Bayesian optimization-based combinatorial assign-
ment (BOCA)1 mechanism that makes use of model uncer-
tainty in its query generation module. The main technical
challenge is to design a new method for estimating an upper
uncertainty bound that can be used to define an acquisition
function to determine the next query. For this we combine
MVNNs (Weissteiner et al. 2022a) with neural optimization-
based model uncertainty (NOMU) (Heiss et al. 2022), a re-
cently introduced method to estimate model uncertainty for
NNs. In detail, we make the following contributions:
1. We present a modified NOMU algorithm (Section 3.1),

tailored to CAs, exploiting monotonicity of agents’ pref-
erences and the discrete (finite) nature of this setting.

2. We show that generic parameter initialization for mono-
tone NNs can dramatically fail and propose a new initial-
ization method for MVNNs based on uniform mixture
distributions (Section 3.2).

3. We present a more succinct mixed integer linear program
for MVNNs to solve the ML-based WDP (Section 3.3).

4. We experimentally show that BOCA outperforms prior
approaches in terms of efficiency (Section 4).
Although our contribution applies to any combinatorial

assignment setting, we focus on CAs to simplify the notation

1The acronym BOCA has also been used for a different method,
namely for Bayesian optimisation with continuous approximations
by Kandasamy et al. (2017).

and because there exist well-studied preference generators
for CAs that we use for our experiments.

Our source code is publicly available on GitHub via:
https://github.com/marketdesignresearch/BOCA.

1.4 Related Work on Model Uncertainty
Estimating model uncertainty for NNs is an active area of
research in AI and ML, with a plethora of new methods
proposed every year. Classic methods can be broadly cat-
egorized into (i) ensemble methods: training multiple dif-
ferent NNs to estimate model uncertainty (Gal and Ghahra-
mani 2016; Lakshminarayanan, Pritzel, and Blundell 2017;
Wenzel et al. 2020) and (ii) Bayesian NNs (BNNs): assum-
ing a prior distribution over parameters and then estimating
model uncertainty by approximating the intractable poste-
rior (Graves 2011; Blundell et al. 2015; Hernández-Lobato
and Adams 2015; Ober and Rasmussen 2019). However, for
ML-based iterative combinatorial assignment, a key require-
ment is to be able to efficiently solve the ML-based WDP
based on these uncertainty estimates. As there is no known
computationally tractable method to perform combinatorial
optimization over ensembles or BNNs, we cannot use these
approaches for ML-based ICAs. In contrast, NOMU (Heiss
et al. 2022) enables the computationally efficient optimiza-
tion over its uncertainty predictions, which is why we use it
as a building block for BOCA.

2 Preliminaries
In this section, we present our formal model (Section 2.1),
review the ML-based ICA by Brero, Lubin, and Seuken
(2021) (Section 2.2), briefly review Bayesian optimization
(BO) (Section 2.3), and review monotone-value neural net-
works (MVNNs) by Weissteiner et al. (2022a) (Section 2.4)
as well as neural optimization-based model uncertainty
(NOMU) by Heiss et al. (2022) (Section 2.5).

2.1 Formal Model for ICAs
We consider a CA with n bidders and m indivisible items.
Let N = {1, . . . , n} and M = {1, . . . ,m} denote the set
of bidders and items. We denote by x ∈ X = {0, 1}m a
bundle of items represented as an indicator vector, where
xj = 1 iff item j ∈ M is contained in x. Bidders’ true
preferences over bundles are represented by their (private)
value functions vi : X → R+, i ∈ N , i.e., vi(x) represents
bidder i’s true value for bundle x ∈ X .

By a = (a1, . . . , an) ∈ Xn we denote an allocation
of bundles to bidders, where ai is the bundle bidder i ob-
tains. We denote the set of feasible allocations by F ={
a ∈ Xn :

∑
i∈N aij ≤ 1, ∀j ∈M

}
. We let p ∈ Rn

+ de-
note the bidders’ payments. We assume that bidders have
quasilinear utility functions ui of the form ui(a, p) =
vi(ai) − pi. This implies that the (true) social welfare
V (a) of an allocation a is equal to the sum of all bidders’
values

∑
i∈N vi(ai). We let a∗ ∈ argmaxa∈F V (a) de-

note a social-welfare maximizing, i.e., efficient, allocation.
The efficiency of any allocation a ∈ F is determined as
V (a)/V (a∗).
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An ICA mechanism defines how the bidders interact with
the auctioneer and how the allocation and payments are
determined. We denote a bidder’s (possibly untruthful) re-
ported value function by v̂i : X → R+. In this paper, we
consider ICAs that ask bidders to iteratively report their val-
ues v̂i(x) for bundles x selected by the mechanism. A finite
set of reported bundle-value pairs of bidder i is denoted as
Ri =

{(
x(l), v̂i(x

(l))
)}

, x(l) ∈ X . Let R = (R1, . . . , Rn)
be the tuple of reported bundle-value pairs obtained from all
bidders. We define the reported social welfare of an allo-
cation a given R as V̂ (a|R) :=

∑
i∈N : (ai,v̂i(ai))∈Ri

v̂i(ai),

where (ai, v̂i(ai)) ∈ Ri ensures that only values for reported
bundles contribute. The ICA’s optimal allocation a∗R ∈ F
and payments p(R) ∈ Rn

+ are computed based on the
elicited reports R only. More formally, a∗R ∈ F given re-
ports R is defined as

a∗R ∈ argmax
a∈F

V̂ (a|R). (1)

As the auctioneer can only query a limited number of bun-
dles |Ri| ≤ Qmax (e.g., Qmax = 100), an ICA needs a practi-
cally feasible and smart PE algorithm.

2.2 A Machine Learning-Powered ICA
We now provide a high-level review of the machine
learning-powered combinatorial auction (MLCA) by Brero,
Lubin, and Seuken (2021) (please see Appendix A for fur-
ther details). MLCA proceeds in rounds until a maximum
number of value queries per bidder Qmax is reached. In each
round, for every bidder i, an ML model Ai is trained on the
bidder’s reports Ri to learn an approximation of bidders’
value functions. Next, MLCA generates new value queries
by computing the allocation with the highest predicted so-
cial welfare. Concretely, it computes qnew = (qnew

i )ni=1 with
qnew
i ∈ X \Ri by solving an ML-based WDP:

qnew ∈ argmax
a∈F

∑

i∈N

Ai(ai) (2)

The idea is the following: if the Ai’s are good surrogate
models of the bidders’ value functions, then the efficiency of
qnew is likely to be high as well. Thus, in each round, bidders
are providing value reports on bundles that are guaranteed to
fit into a feasible allocation and that together are predicted
to have high social welfare. Additionally, bidders are also
allowed to submit “push-bids,” enabling them to submit in-
formation to the auctioneer that they deem useful, even if
they are not explicitly queried about it. At the end of each
round, MLCA receives reports Rnew from all bidders for the
newly generated queries qnew, and updates the overall elicited
reports R. When Qmax is reached, MLCA computes an allo-
cation a∗R that maximizes the reported social welfare (Equa-
tion (1)) and determines VCG payments p(R) based on all
reports (see Appendix Definition B.1).
Remark 1 (IR, No-Deficit, and Incentives of MLCA).
Brero, Lubin, and Seuken (2021) showed that MLCA sat-
isfies individual rationality (IR) and no-deficit, with any ML
algorithm. They also studied MLCA’s incentive properties;
this is important, since manipulations may lower efficiency.

Like all deployed ICAs (including the CCA), MLCA is not
strategyproof. However, they argued that it has good incen-
tives in practice; and given two additional assumptions, bid-
ding truthfully is an ex-post Nash equilibrium. We present a
detailed summary of their incentive analysis in Appendix B.

2.3 Bayesian Optimization Background
In this section, we briefly review Bayesian optimization
(BO). BO refers to a class of machine learning-based
gradient-free optimization methods, which, for a given
black-box objective function f : X → R, aim to solve

max
x∈X

f(x) (3)

in an iterative manner. Specifically, given a budget of T
queries (i.e., function evaluations of f ), a BO algorithm gen-
erates queries {x(1), . . . , x(T )} with the aim that

max
x∈{x(1),...,x(T )}

f(x) ≈ max
x∈X

f(x). (4)

In each BO step t, the algorithm selects a new input point
x(t) ∈ X and observes a (potentially noisy) output

y(t) = f(x(t)) + ε(t), (5)

where ε(t) is typically assumed to be i.i.d. Gaussian, i.e.,
ε(t) ∼ N (0, σ2).2 The BO algorithm’s decision rule for se-
lecting the query x(t) is based on

1. A probabilistic model representing an (approximate)
posterior distribution over f (e.g., Gaussian processes,
NOMU, ensembles, BNNs, etc.).

2. An acquisition function A : X → R that uses this
probabilistic model to determine the next query x(t) ∈
argmaxx∈X A(x) by properly trading off exploration
and exploitation. See Appendix C.3 for popular exam-
ples of acquisition functions including:

• Upper uncertainty bound (uUB) (aka upper confidence
bound (UCB)) (Srinivas et al. 2012)

• Expected improvement (Frazier 2018, Section 4.1)
• Thompson sampling (Chapelle and Li 2011)

Remark 2. MLCA (Section 2.2) can be seen as a combi-
natorial BO algorithm with acquisition function A(a) :=∑

i∈N Ai(ai) (see Appendix C for a discussion).

2.4 MVNNs: Monotone-Value Neural Networks
MVNNs (Weissteiner et al. 2022a) are a new class of NNs
specifically designed to represent monotone combinatorial
valuations. First, we reprint the definition of MVNNs and
then discuss their desirable properties.

Definition 1 (MVNN, Weissteiner et al. (2022a)). An
MVNNMθ

i : X → R+ for bidder i ∈ N is defined as

Mθ
i (x) := W i,Kiφ0,ti,Ki−1

(
. . . φ0,ti,1(W

i,1x+ bi,1) . . .
)

(6)
• Ki+1 ∈ N is the number of layers (Ki−1 hidden layers),

2In this paper, we assume that σ2 = 0.
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• {φ0,ti,k}Ki−1
k=1 are the MVNN-specific activation functions

with cutoff ti,k > 0, called bounded ReLU (bReLU):

φ0,ti,k(·) := min(ti,k,max(0, ·)) (7)

• W i := (W i,k)Ki

k=1 with W i,k ≥ 0 and bi := (bi,k)Ki−1
k=1

with bi,k ≤ 0 are the non-negative weights and non-
positive biases of dimensions di,k×di,k−1 and di,k, whose
parameters are stored in θ = (W i, bi).

MVNNs are particularly well suited for the design of
combinatorial assignment mechanism for two reasons. First,
MVNNs are universal in the set of monotone and normal-
ized value functions (Weissteiner et al. 2022a, Theorem 1),
i.e., any v̂i : X → R+ that satisfies the following two prop-
erties can be represented exactly as an MVNNMθ

i :
1. Monotonicity (M) (“additional items increase value”):

For A,B ∈ 2M : if A ⊆ B it holds that v̂i(A) ≤ v̂i(B)

2. Normalization (N) (”no value for empty bundle”):
v̂i(∅) = v̂i((0, . . . , 0)) := 0,

Second, Weissteiner et al. (2022a) showed that an MVNN-
based WDP, i.e., argmax

a∈F

∑
i∈NMθ

i (ai), can be succinctly

encoded as a MILP, which is key for the design of MVNN-
based iterative combinatorial assignment mechanisms. Fi-
nally, Weissteiner et al. (2022a) experimentally showed that
using MVNNs asAi in MLCA leads to SOTA performance.

2.5 NOMU
Recently, Heiss et al. (2022) introduced a novel method to
estimate model uncertainty for NNs: neural optimization-
based model uncertainty (NOMU). In contrast to other meth-
ods (e.g., ensembles), NOMU represents an upper uncer-
tainty bound (uUB) as a single and MILP-formalizable NN.
Thus, NOMU is particularly well suited for iterative com-
binatorial assignment, where uUB-based winner determina-
tion problems (WDPs) need to be solved hundreds of times
to generate new informative queries. This, together with
NOMU’s strong performance in noiseless BO, is the reason
why we build on it and define a modified NOMU algorithm
tailored to iterative combinatorial assignment (Section 3.1).

3 Bayesian Optimization-Based ICA
In this section, we describe the design of our Bayesian
optimization-based combinatorial assignment (BOCA)
mechanism. While the design is general, we here present it
for the CA setting, leading to a BO-based ICA. Recall that
MLCA generates new value queries by solving the ML-
based WDP qnew ∈ argmax

a∈F

∑
i∈N

Ai(ai) (see Section 2.2).

For the design of BOCA, we integrate a proper notion of
uncertainty into MLCA by using a bidder-specific upper un-
certainty bound (uUB), taking the role of the ML model Ai,
to define our acquisition function A(a) :=

∑
i∈N Ai(ai).

To define our uUB and make it amenable to MLCA,
we proceed in three steps: First, we combine MVNNs
with a modified NOMU algorithm that is tailored to the
characteristics of combinatorial assignment (Section 3.1).
Second, we highlight the importance of proper parameter

initialization for MVNNs and propose a more robust method
(Section 3.2). Third, we present a more succinct MILP for
MVNNs (Section 3.3). In the remainder of the paper, we
make the following assumption:

Assumption 1. For all agents i ∈ N , the true and reported
value functions vi and v̂i fulfill the Monotonicity (M) and
Normalization (N) property (see Section 2.4).

3.1 Model Uncertainty for Monotone NNs
We propose a modified NOMU architecture and loss that
is specifically tailored to combinatorial assignment. Con-
cretely, our algorithm is based on the following two key
characteristics of combinatorial assignment: (i) since agents’
value functions are monotonically increasing, the uUBs
need to be monotonically increasing too, and (ii) due to the
(finite) discrete input space, one can derive a closed-form ex-
pression of the 100%-uUB as an MVNN. Before we present
our modified NOMU architecture and loss, we introduce the
MVNN-based 100%-uUB.

Let H denote a hypothesis class of functions f : X → R
for some input space X and let HDtrain := {f ∈ H :
f(x(l)) = y(l), l = 1, . . . , ntrain} denote the set of all
functions from H that fit exactly through training points

Dtrain =
{(

x(l), f(x(l))
)}ntrain

l=1
.

Definition 2 (100%-uUB). For a hypothesis class H
and a training set Dtrain, we define the 100%-uUB as
f 100%-uUB(x) := supf∈HDtrain

f(x) for every x ∈ X .

In the following, let

V := {v̂ : X → R+| satisfy (N) and (M)} (8)

denote the set of all value functions that satisfy the nor-
malization and monotonicity property. Next, we define the
100%-uUB. In Theorem 1, we show that for H = V the
100%-uUB can be explicitly represented as an MVNN.

Theorem 1 (MVNN-based 100%-uUB). Let
((1, . . . , 1), v̂i(1, . . . , 1)) ∈ Dtrain. Then for H = V it
holds that f 100%-uUB(x) = maxf∈VDtrain f(x) for all x ∈ X
and f 100%-uUB ∈ VDtrain can be represented as a two hidden
layer MVNN with ntrain neurons per layer, which we denote
asM100%-uUB

i going forward.3

Proof. The proof for Theorem 1 is provided in Ap-
pendix D.1. It follows a similar idea as the universality proof
in (Weissteiner et al. 2022a, Theorem 1). In particular, Equa-
tion (27) in Appendix D.1 provides the closed-form expres-
sion of f 100%-uUB as MVNNM100%-uUB

i .

Using the MVNN-based 100%-uUBM100%-uUB
i , we can

now define our modified NOMU architecture and loss.

The Architecture. Towards defining the architecture, we
first observe that if the true function is monotonically in-
creasing, the corresponding uUB needs to be monotonically
increasing as well (Propositions 1 and 2 in Appendix D.2).

3Note thatM100%-uUB
i (·) depends on a training set Dtrain, but we

omit this dependency in our notation to improve readability.
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Figure 1: MNOMU
i : a modification of NOMU’s original ar-

chitecture for the combinatorial assignment domain.

Given that bidders’ value functions are monotone (Assump-
tion 1), this implies that our uUB must also be monotoni-
cally increasing. Thus, instead of the original NOMU archi-
tecture that outputs the (raw) uncertainty (i.e., an estimate
of the posterior standard deviation) which is not monotone,
we can modify NOMU’s architecture and directly output the
monotone uUB. Given this, we propose the following ar-
chitecture MNOMU

i to estimate the uUB for bidder i ∈ N .
MNOMU

i consists of two sub-MVNNs with two outputs: the
mean prediction Mmean

i : X → R and the estimated uUB
MuUB

i : X → R. In Figure 1, we provide a schematic repre-
sentation ofMNOMU

i (see Appendix D.2 for details).

The Loss. Next, we formulate a new NOMU loss func-
tion Lπ tailored to combinatorial assignment. Since we
have a closed-form expression of the 100%-uUB as MVNN
M100%-uUB

i (Theorem 1), we are able to enforce that
Mmean

i ≤ MuUB
i ≤ M100%-uUB

i via the design of our new
loss function. Let Mmean

i be a trained mean-MVNN with
a standard loss (e.g., MAE and L2-regularization). Using
Mmean

i and M100%-uUB
i , we then only train the parameters

θ of MuUB
i with loss Lπ and L2-regularization parameter

λ > 0, i.e., minimizing Lπ(MuUB
i ) + λ ∥θ∥22 via gradi-

ent descent. In particular, the parameters ofM100%-uUB
i and

Mmean
i are not influenced by the training ofMuUB

i (see Ap-
pendix D.3 for details on the loss and training procedure).

Definition 3 (NOMU Loss Tailored to Combinatorial
Assignment). Let π = (πsqr, πexp, cexp, π, π) ∈ R5

+

be a tuple of hyperparameters and let s(MuUB
i , x) :=

min{MuUB
i (x),M100%-uUB

i (x)} −Mmean
i (x) for all x ∈ X .

For a training set Dtrain, Lπ is defined as

Lπ(MuUB
i ) := πsqr

ntrain∑

l=1

Lβ
1

(
MuUB

i (x(l)), y(l)
)

(9a)

+ πexp

∫

[0,1]m
g
(
−cexps(MuUB

i , x)
)
dx (9b)

+ πexpcexpπ

∫

[0,1]m
Lβ
1

(
(MuUB

i (x)−M100%-uUB
i (x))+

)
dx

(9c)

+ πexpcexpπ

∫

[0,1]m
Lβ
1

(
(Mmean

i (x)−MuUB
i (x))+

)
dx ,

(9d)

where Lβ
1 is the smooth L1-loss with threshold β (see Ap-

pendix Definition D.1), (·)+ the positive part, and g := 1 +
ELU4 is convex monotonically increasing with ELU being
the exponential linear unit (see Appendix Definition D.2).

The interpretations of the four terms are as follows:

(9a) enforces thatMuUB
i fits through the training data.

(9b) pushesMuUB
i up as long as it is below the 100%-uUB

M100%-uUB
i . This force gets weaker the furtherMuUB

i is
above the mean Mmean

i (especially if cexp is large). πexp
controls the overall strength of (9b) and cexp controls how
fast this force increases when MuUB

i → Mmean
i . Thus,

increasing πexp increases the uUB and increasing cexp in-
creases the uUBs in regions where it is close toMmean

i .
Weakening (9b) (i.e., πexpcexp → 0) leads to MuUB

i ≈
Mmean

i . Strengthening (9b) by increasing πexpcexp in re-
lation to regularization5 leads toMuUB

i ≈M100%-uUB
i .

(9c) enforces thatMuUB
i ≤M100%-uUB

i . The strength of this
term is determined by π · (πexpcexp), where π is the (9c)-
specific hyperparameter and πexpcexp adjusts the strength
of (9c) to (9b).

(9d) enforcesMuUB
i ≥ Mmean

i . The interpretation of π and
πexpcexp is analogous to (9c).

As in (Heiss et al. 2022), in the implementation of
Lπ , we approximate Equations (9b) to (9d) via Monte
Carlo integration using additional, artificial input points

Dart :=
{
x(l)

}nart

l=1

i.i.d.∼ Unif([0, 1]m).

Visualization of the uUB. In Figure 2, we present a visu-
alization of the output ofMNOMU

i (i.e.,Mmean
i andMuUB

i )
and M100%-uUB

i for the national bidder in the LSVM do-
main of the spectrum auction test suite (SATS) (Weiss, Lu-
bin, and Seuken 2017). In noiseless regression, uncertainty
should vanish at observed training points, but (model) un-
certainty should remain about value predictions for bundles
that are very different from the bundles observed in train-
ing. Figure 2 shows that our uUBMuUB

i nicely fulfills this.
Moreover, we have shown in Appendix D.2 that MuUB

i is
monotonically increasing, since we assume that value func-
tions fulfill the monotonicity property. This implies that once
we observe a value for the full bundle, we obtain a glob-
ally bounded 100%-uUB, i.e., see M100%-uUB

i in Figure 2.
Furthermore, we see thatM100%-uUB

i jumps to a high value
when only a single item is added to an already queried bun-
dle, but then often stays constant (e.g., |x| = 12, . . . , 18
in Figure 2). Thus, using such a 100%-uUB in our acqui-
sition function, BOCA would only add a single item to an
already queried bundle to have more items left for the other
bidders instead of properly exploring the bundle space. Our
uUBMuUB

i circumvents this via implicit and explicit regu-
larization and yields a useful uUB.

4In our notation, g(·) is the analog of the function e(·) used in
the original NOMU loss in (Heiss et al. 2022).

5Regularization can be early stopping or a small number of neu-
rons (implicit) or L2-regularization on the parameters (explicit).
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Figure 2:Mmean
i ,MuUB

i andM100%-uUB
i along an increasing

1D subset-path (i.e., for all bundles x(j), x(k) on the x-axis
it holds that for j ≤ k : x(j) ⊂ x(k)).

3.2 Parameter Initialization for MVNNs
We now discuss how to properly initialize parameters for
MVNNs. Importantly, the MVNN-based uUBs MuUB

i are
MVNNs. As we will show next, to achieve the best perfor-
mance of BOCA (in fact of any MVNN training), an ad-
justed, non-generic parameter initialization is important.

Generic Initialization. For standard NNs, it is most
common to use a parameter initialization with zero
mean µk := E

[
W i,k

j,l

]
= 0 and non-zero variance

σ2
k := V

[
W i,k

j,l

]
̸= 0. Then the mean of each pre-

activated neuron of the first hidden layer is zero and

the variance V
[(
W i,1x

)
j

]
= di,0σ2

1x
2, if

(
W i,1

j,l

)di,0

l=1

are i.i.d., where x2 = 1
di,0

∑di,0

l=1 x
2
l .6 Analogously,

one can compute the conditional mean and the condi-
tional variance of a pre-activated neuron in any layer
k by replacing x by the output zi,k−1 of the pre-
vious layer, i.e., E

[(
W i,kzi,k−1

)
j

∣∣∣zi,k−1
]

= 0 and

V
[(
W i,kzi,k−1

)
j

∣∣∣zi,k−1
]
= di,k−1σ2

k(z
i,k−1)

2 . For σk ∝
1√

di,k−1
, the conditional mean and variance do not depend

on the layer dimensions di,k, which is why generic initializa-
tion methods scale the initial distribution by sk ∝ 1√

di,k−1
.

Problem. Unfortunately, this generic initialization ap-
proach can dramatically fail for MVNNs: For any non-zero
initialization, the non-negativity constraint of the weights
implies that the mean µk > 0. This implies that the
mean of a pre-activated neuron in the first hidden layer
is E

[(
W i,1x

)
j

]
= di,0µ1x̄. For a generic scaling sk

one would obtain µk ∝ 1√
di,k−1

and thus the mean

6We assume that the biases bi,k = 0 are all initialized to zero
throughout Section 3.2 to keep the notation simpler, while we for-
mulate everything for the general case including random biases in
Appendix E and in our code.

Figure 3: In contrast to our proposed initialization (see Fig-
ure 2), training fails with generic initialization already for
relatively small [64,64]-architectures that were used here.

E
[(
W i,1x

)
j

]
∝ di,0 1√

di,0
x̄ =

√
di,0x̄ of the pre-activated

neurons diverges to infinity with a rate of
√
di,0 as di,0 →

∞. Analogously, the pre-activated neurons of every layer di-
verge to infinity as di,k−1 → ∞. This is particularly prob-
lematic for bReLUs (as used in MVNNs) as their gradient is
zero on [0, ti,k]c. Figure 3 shows that both MVNNsMmean

i
andMuUB

i get “stuck.” This happens because already at ini-
tialization, every neuron in the first hidden layer has a pre-
activation that is larger than ti,1 for every training point.

This could be solved by scaling down the initial weights
even more, e.g., W i,k

j,l ∼ Unif[0, 2
di,k−1 ] resulting in µk =

1
di,k−1 . However, since for W i,k

j,l ∼ Unif[0, 2
di,k−1 ] it holds

that σ2
k ∝ 1

(di,k−1)2
, this induces a new problem of van-

ishing conditional variance V
[(
W i,kzi,k−1

)
j

∣∣∣zi,k−1
]

with

a rate of O( 1
di,k−1 ) for wide (i.e., di,k−1 large) MVNNs.

Overall, it is impossible to simultaneously solve both
problems by just scaling the distribution by a factor sk,
because the conditional mean E

[(
W i,kzi,k−1

)
j

∣∣∣zi,k−1
]

scales with sk · di,k−1 and the conditional variance
V
[(
W i,kzi,k−1

)
j

∣∣∣zi,k−1
]

scales with s2k · di,k−1. Thus, for
wide MVNNs, one of those two problems (i.e., either diverg-
ing expectation or vanishing variance) would persist.

Solution. We introduce a new initialization method that
solves both problems at the same time. For this, we pro-
pose a mixture distribution of two different uniform distri-
butions (see Appendix Definition E.1). For each layer k, we
independently sample all weights W i,k

jl i.i.d. with probabil-
ity (1− pk) from Unif[0, Ak], and with probability pk from
Unif[0, Bk]. If we choose pk and Ak small enough, we can
get arbitrarily small µk while not reducing σk too much. In
Appendix E, we provide formulas for how to choose Ak, Bk

and pk depending on di,k−1. In Theorem 3 in Appendix E,
we prove that, if the parameters are chosen in this way, then
the conditional mean and conditional variance neither ex-
plode nor vanish with increasing di,k−1 but rather stay con-
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stant for large di,k−1. Note that, in Figure 2, forMmean
i and

MuUB
i , we used our proposed initialization method for suit-

able Ak, Bk and pk, such that the problem induced by a
generic initialization from Figure 3 is resolved.

3.3 Mixed Integer Linear Program (MILP)
A key step in ML-powered iterative combinatorial assign-
ment mechanisms is finding the (predicted) social welfare-
maximizing allocation, i.e., solving the ML-based WDP.
Thus, a key requirement posed on any acquisition func-
tion A in such a mechanism is to be able to efficiently
solve max

a∈F
A(a). Recall that, to define our acquisition func-

tion A, we use A(a) =
∑

i∈N Ai(ai) where the Ai’s are
bidder-specific upper uncertainty bounds. Thus, the ML-
based WDP becomes

max
a∈F

∑

i∈N

Ai(ai). (10)

Weissteiner et al. (2022a) proposed a MILP for MVNNs
withAi :=Mθ

i to efficiently solve eq. (10). Their MILP was
based on a reformulation of the min(·, ·) and max(·, ·) in the
bReLU activation min(max(·, 0), t). Thus, it required twice
the number of binary variables and linear constraints as for a
plain ReLU-NN. Since we use an MVNN-based uUBAi :=
MuUB

i to define our acquisition function, we could directly
use their MILP formulation. However, instead, we propose
a new MILP, which is significantly more succinct. For this,
let oi,k := W i,kzi,k−1 + bi,k be the pre-activated output
and zi,k := φ0,ti,k(o

i,k) be the output of the kth layer with
li,k ≤ oi,k ≤ ui,k, where the tight lower (upper) bound
li,k (ui,k) is derived by forward-propagating the empty (full)
bundle (Weissteiner et al. 2022a, Fact 1). In Theorem 2, we
state our new MILP (see Appendix F.1 for the proof).7

Theorem 2 (MVNN MILP Tailored to Combinatorial As-
signment). Let Ai = MuUB

i be our MVNN-based uUBs.
The ML-based WDP (10) can be formulated as the following
MILP:

max
a∈F,zi,k,αi,k,βi,k

{∑

i∈N

W i,Kizi,Ki−1

}
(11)

s.t. for i ∈ N and k ∈ {1, . . . ,Ki − 1}
zi,0 = ai (12)

zi,k ≤ αi,k · ti,k (13)

zi,k ≤ oi,k − li,k · (1− αi,k) (14)

zi,k ≥ βi,k · ti,k (15)

zi,k ≥ oi,k + (ti,k − u)βi,k (16)

αi,k ∈ {0, 1}di,k

, βi,k ∈ {0, 1}di,k

(17)

Note that for each neuron of Ai =MuUB
i , our new MILP

has only 4 linear constraints, i.e., respective components
of eqs. (13) to (16), compared to 8 in (Weissteiner et al.
2022a). Moreover, in contrast to the MILP in (Weissteiner
et al. 2022a), our MILP does not make use of any “big-M”
constraints, which are known to be numerically unstable.

7All vector inequalities should be understood component-wise.

4 Experiments
In this section, we experimentally evaluate the performance
of BOCA in CAs. To this end, we equip the MLCA mech-
anism (see Section 2.2) with our new acquisition function
A(a) =

∑
i∈NMuUB

i (ai). We compare the efficiency of
BOCA against the previously proposed MVNN-based and
NN-based MLCA from (Weissteiner et al. 2022a) which do
not explicitly model the mechanism’s uncertainty over val-
ues for not yet elicited bundles.8 We use our new parameter
initialization method (Section 3.2) for MuUB

i , and we use
our new MILP (Theorem 2) for solving the WDPs.

Experiment Setup. To generate synthetic CA instances,
we use the following three domains from the spectrum auc-
tion test suite (SATS) (Weiss, Lubin, and Seuken 2017):
LSVM, SRVM, and MRVM (see Appendix G.1 for de-
tails).9 SATS gives us access to the true optimal alloca-
tion a∗, which we use to measure the efficiency loss, i.e.,
1− V (a∗R)/V (a∗) when eliciting reports R via MLCA. We
report efficiency loss (and not revenue), as spectrum auc-
tions are government-run, with a mandate to maximize wel-
fare (Cramton 2013). See Appendix G.6 for a discussion
of the corresponding results on revenue. To enable a fair
comparison against prior work, for each domain, we use
Qinit = 40 initial random queries (including the full bundle
for the calculation ofM100%-uUB

i ) and set the query budget
to Qmax = 100 (see Appendix G.8 for results for Qinit = 20).
We terminate any mechanism in an intermediate iteration if
it already found an allocation with 0% efficiency loss.

Hyperparameter Optimization (HPO). We use random
search (RS) (Bergstra and Bengio 2012) to optimize the
hyperparameters of the mean MVNN Mmean

i and of our
MVNN-based uUB MuUB

i . The HPO includes the NN-
architecture parameters, training parameters, NOMU pa-
rameters, and initialization parameters (see Section 3.2).
RS was carried out independently for each bidder type and
SATS domain with a budget of 500 configurations, where
each configuration was evaluated on 100 SATS instances.
For each instance, the MVNNs Mmean

i and MuUB
i were

trained on uniformly at random chosen bundle-value pairs
Dtrain and evaluated on a disjoint test set of different bundle-
value pairs Dtest. To select the winner configuration, we con-
sider as evaluation metric the quantile-loss on the test set and
the MAE on the training set, i.e., for each configuration and
instance we calculate

1

|Dtest|
∑

(x,y)∈Dtest

max{(y−MuUB
i (x))q, (MuUB

i (x)−y)(1−q)}

+ MAE(Dtrain), (18)

which we then average over all 100 instances. We used four
quantile parameters q ∈ {0.6, 0.75, 0.9, 0.95} in eq. (18)

8In these methods, uncertainty over not yet elicited bundles is
only modeled via the retraining of the (MV)NNs in each round,
i.e., the random parameter initialization of the (MV)NNs. This can
be seen as simple form of Thompson sampling (see last paragraph
in Appendix C).

9We do not use GSVM, as Weissteiner et al. (2022a) already
achieved 0% efficiency loss in GSVM via MVNN-based MLCA.

7



EFFICIENCY LOSS IN % ↓ T-TEST FOR EFFICIENCY:

DOMAIN QMAX BOCA MVNN-MLCA NN-MLCA FT-MLCA RS H0 : µMVNN-MLCA ≤ µBOCA H0 : µNN-MLCA ≤ µBOCA

LSVM 100 0.39±0.30 00.70±0.40 02.91±1.44 01.54 ±0.65 31.73±2.15 pVAL = 9e−2 pVAL = 3e−4
SRVM 100 0.06±0.02 00.23±0.06 01.13±0.22 00.72±0.16 28.56±1.74 pVAL = 5e−6 pVAL = 2e−13
MRVM 100 7.77±0.34 08.16±0.41 09.05±0.53 10.37±0.57 48.79±1.13 pVAL = 8e−2 pVAL = 2e−5

Table 1: BOCA vs MVNN-MLCA, NN-MLCA, Fourier transform (FT)-MLCA and random search (RS). Shown are averages
and a 95% CI on a test set of 50 instances. Winners based on a t-test with significance level of 1% are marked in grey.

Figure 4: Efficiency loss paths (i.e., regret plots) of BOCA compared to the results from Weissteiner et al. (2022a) of MVNN-
MLCA and NN-MLCA without any notion of uncertainty. Shown are averages with 95% CIs over 50 CA instances.

to achieve different levels of exploration (i.e., the resulting
uUBs become larger the more we increase q in eq. (18)).
This evaluation metric simultaneously measures the quality
of the uUB on the test data (via the quantile-loss) as well as
the quality of the uUB predictions on the training data (via
the MAE). For each quantile q and SATS domain, we then
proceed with the winner configuration ofMuUB

i and evaluate
the efficiency of BOCA on a separate set of 50 instances.
Details on hyperparameter ranges and the training procedure
are provided in Appendices G.2 and G.3.

Results. In Table 1, we show the average efficiency loss of
each approach after Qmax = 100 queries (see Appendix G.5
for details). We see that BOCA significantly outperforms
MVNN-MLCA (Weissteiner et al. 2022a) in SRVM, and it
performs on-par in LSVM and MRVM, with a better aver-
age performance. Since MVNNs previously achieved SOTA
performance, BOCA also outperforms the other benchmarks
(i.e., NN (Weissteiner and Seuken 2020) and FT-MLCA
(Weissteiner et al. 2022b)). RS’s poor performance high-
lights the intrinsic difficulty of this task. The amount of ex-
ploration needed is domain dependent (e.g., multi-modality
of the objective), which explains why the significance of
BOCA’s improvement varies across domains. However, our
results also show that using an uUB (as in BOCA) instead of
just a mean prediction (as in MVNN-MLCA) never hurts.

Figure 4 shows the efficiency loss path for all domains.
We see that the superior (average) performance of MuUB

i
does not only hold at the end of the auction (at Qmax = 100),
but also for a large range of queries: in LSVM, BOCA is

better for [70,100]; in SRVM, BOCA is significantly better
for [70,100]; in MRVM, BOCA is better for [50,100]. See
Appendix G.6 for results on revenue where BOCA signifi-
cantly outperforms MVNN-MLCA also for MRVM. In Ap-
pendix G.7, we study to what degree BOCA’s performance
increase is due to (a) our uncertainty model (Section 3.1)
versus (b) our new parameter initialization method (Sec-
tion 3.2). Finally, in Appendix G.8, we provide further ex-
periments for a reduced number of Qinit = 20 initial queries,
which lead to similar results as shown in Table 1.

5 Conclusion

In this paper, we have proposed a Bayesian optimization-
based combinatorial assignment (BOCA) mechanism. On
a conceptual level, our main contribution was the integra-
tion of model uncertainty over agents’ preferences into ML-
based preference elicitation. On a technical level, we have
designed a new method for estimating an upper uncertainty
bound that exploits the monotonicity of agents’ preferences
in the combinatorial assignment domain and the finite na-
ture of this setting. Our experiments have shown that BOCA
performs as good or better than the SOTA in terms of effi-
ciency. An interesting direction for future work is the evalu-
ation of BOCA in other combinatorial assignment domains,
such as combinatorial exchanges or course allocation (e.g.,
see (Soumalias et al. 2023)). Finally, it would also be inter-
esting to apply BOCA’s conceptual idea in the combinatorial
BO settings outside of combinatorial assignment.
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Püschel, M. 2022b. Fourier Analysis-based Iterative Com-
binatorial Auctions. In Proceedings of the Thirty-First Inter-
national Joint Conference on Artificial Intelligence, IJCAI-
22, 549–556. International Joint Conferences on Artificial
Intelligence Organization. Main Track. 2, 8
Wenzel, F.; Snoek, J.; Tran, D.; and Jenatton, R. 2020.
Hyperparameter ensembles for robustness and uncertainty
quantification. arXiv preprint arXiv:2006.13570. 2

10



Appendix

A A Machine Learning-Powered ICA
In this section, we present in detail the machine learning-
powered combinatorial auction (MLCA) by Brero, Lubin,
and Seuken (2021).

At the core of MLCA is a query module (Algorithm 1),
which, for each bidder i ∈ I ⊆ N , determines a new value
query qi. First, in the estimation step (Line 1), an ML algo-
rithm Ai is used to learn bidder i’s valuation from reports
Ri. Next, in the optimization step (Line 2), an ML-based
WDP is solved to find a candidate q of value queries. In prin-
ciple, any ML algorithm Ai that allows for solving the cor-
responding ML-based WDP in a fast way could be used. Fi-
nally, if qi has already been queried before (Line 4), another,
more restricted ML-based WDP (Line 6) is solved and qi is
updated correspondingly. This ensures that all final queries
q are new.

Algorithm 1: NEXTQUERIES(I,R) (Brero et al. 2021)

Inputs: Index set of bidders I and reported values R
1 foreach i ∈ I do Fit Ai on Ri: Ai[Ri] ▷ Estimation step

2 Solve q ∈ argmax
a∈F

∑
i∈I

Ai[Ri](ai) ▷ Optimization step

3 foreach i ∈ I do
4 if (qi, v̂i(qi)) ∈ Ri then ▷ Bundle already queried

5 Define F ′ = {a ∈ F : ai ̸= x, ∀(x, v̂i(x)) ∈ Ri}
6 Re-solve q′ ∈ argmaxa∈F′

∑
l∈I Al[Rl](al)

7 Update qi = q′i
8 end
9 end

10 return Profile of new queries q = (q1, . . . , qn)

In Algorithm 2, we present MLCA. In the following, let
R−i = (R1, . . . , Ri−1, Ri+1, . . . , Rn). MLCA proceeds in
rounds until a maximum number of queries per bidder Qmax

is reached. In each round, it calls Algorithm 1 (Qround−1)n+
1 times: for each bidder i ∈ N , Qround − 1 times exclud-
ing a different bidder j ̸= i (Lines 5–10, sampled marginal
economies) and once including all bidders (Line 11, main
economy). In total each bidder is queried Qround bundles per
round in MLCA. At the end of each round, the mechanism
receives reports Rnew from all bidders for the newly gener-
ated queries qnew and updates the overall elicited reports R
(Lines 12–14). In Lines 16–17, MLCA computes an allo-
cation a∗R that maximizes the reported social welfare (see
Equation (1)) and determines VCG payments p(R) based
on the reported values R (see Appendix Definition B.1).

In this paper, we consider the following two minor adap-
tations of the generic MLCA mechanism described above:

1. Balanced and global marginal economies: In Lines 5–
6 of Algorithm 2, MLCA draws for each bidder i ∈ N
uniformly at random a set of marginal economies Ñ to
generate queries in this marginal economy. However, this
implies that at the end of the auction it only holds on
average that the same number of queries is asked from
each bidder in each marginal economy. Moreover, since

Algorithm 2: MLCA(Qinit, Qmax, Qround) (Brero et al. 2021)

Params: Qinit, Qmax, Qround initial, max and #queries/round
1 foreach i ∈ N do
2 Receive reports Ri for Qinit randomly drawn bundles
3 end
4 for k = 1, ..., ⌊(Qmax −Qinit)/Qround⌋ do ▷Round iterator

5 foreach i ∈ N do ▷ Marginal economy queries

6 Draw uniformly without replacement (Qround−1)
bidders from N \ {i} and store them in Ñ

7 foreach j ∈ Ñ do
8 qnew = qnew∪ NextQueries(N \ {j}, R−j)
9 end

10 end
11 qnew = NextQueries(N,R) ▷ Main economy queries

12 foreach i ∈ N do
13 Receive reports Rnew

i for qnew
i , set Ri = Ri ∪Rnew

i

14 end
15 end
16 Given elicited reports R compute a∗

R as in Equation (1)
17 Given elicited reports R compute VCG-payments p(R)
18 return Final allocation a∗

R and payments p(R)

Ñ is re-drawn for each bidder this creates an computa-
tional overhead, since typically the WDPs in Line 8 in
NextQueries needs to be solved more often. For example
consider the case N = {1, 2, 3, 4, 5, 6}, Qround = 3 and
that for bidder 1 the Qround − 1 = 2 sampled marginal
economies were given as Ñ = {3, 4}, whilst for bidder
2, Ñ = {5, 6}, and for bidder 3, Ñ = {1, 2}. In this
case, the WDPs in NextQueries would need to be solved
6 times, which is the maximum possible. In our imple-
mentation, we change the following two things: First,
we reduce the computational overhead by once glob-
ally selecting Qround marginal economies in each iteration,
i.e., we select a set Ñglobal consisting of Qround marginal
economies before Line 5, and then select Ñ for each bid-
der i ∈ N in the loop in Line 5 as admissible subset
of size Qround − 1 of Ñglobal. In the above example, if
Ñglobal = {3, 4, 1}, then this ensures that only Qround = 3
WDPs in the marginal economies are solved in one iter-
ation. Second, we do not determine Ñglobal uniformly at
random, but ensure that at the end of the auction each
marginal economy was selected equally often up to a dif-
ference in counts of at most one.

2. Single training per iteration: To further reduce compu-
tational overhead, we train each bidder’s ML algorithm
Ai once at the beginning of each iteration, and then only
select in NextQueries the trainedAi corresponding to the
active set of bidders I . This reduces the amount of total
training procedures per iteration from (worst case) n2 to
n.

B Incentives of MLCA

In this section, we review the key arguments by Brero, Lu-
bin, and Seuken (2021) why MLCA has good incentives in
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practice. First, we define VCG-payments10 given bidder’s
reports.
Definition B.1. (VCG PAYMENTS FROM RE-
PORTS) Let R = (R1, . . . , Rn) denote an elicited
set of reported bundle-value pairs from each bid-
der obtained from MLCA (Algorithm 2) and let
R−i := (R1, . . . , Ri−1, Ri+1, . . . , Rn). We then calculate
the VCG payments p(R) = (p(R)1 . . . , p(R)n) ∈ Rn

+ as
follows:

p(R)i :=
∑

j∈N\{i}
v̂j

((
a∗R−i

)
j

)
−

∑

j∈N\{i}
v̂j

(
(a∗R)j

)
.

(19)

where a∗R−i
maximizes the reported social welfare (SW)

when excluding bidder i, i.e.,

a∗R−i
∈ argmax

a∈F
V̂ (a|R−i) = argmax

a∈F

∑

j∈N\{i}:
(aj ,v̂j(aj))∈Rj

v̂j(aj),

(20)

and a∗R is a reported-social-welfare-maximizing allocation
(including all bidders), i.e,

a∗R ∈ argmax
a∈F

V̂ (a|R) = argmax
a∈F

∑

i∈N : (ai,v̂i(ai))∈Ri

v̂i(ai). (21)

Therefore, when using VCG, bidder i’s utility is:

ui=vi((a
∗
R)i)− p(R)i

=vi((a
∗
R)i) +

∑

j∈N\{i}
v̂j((a

∗
R)j)

︸ ︷︷ ︸
(a) Reported SW of main economy

−
∑

j∈N\{i}
v̂j((a

∗
R−i

)j).

︸ ︷︷ ︸
(b) Reported SW of marginal economy

Any beneficial misreport must increase the difference (a) −
(b).

MLCA has two features that mitigate manipulations.
First, MLCA explicitly queries each bidder’s marginal econ-
omy (Algorithm 2, Line 5), which implies that (b) is prac-
tically independent of bidder i’s bid (Section 7.3 in (Brero,
Lubin, and Seuken 2021) provides experimental support for
this). Second, MLCA enables bidders to “push” informa-
tion to the auction which they deem useful. This mitigates
certain manipulations that target (a), as it allows bidders
to increase (a) with truthful information. Brero, Lubin, and
Seuken (2021) argue that any remaining manipulation would
be implausible as it would require almost complete informa-
tion.11

If we are willing to make further assumptions, we also
obtain two theoretical incentive guarantees:

10VCG is an abbreviation for “Vickrey–Clarke–Groves”. For the
VCG-mechanism (which can be seen as a generalization of the sec-
ond prize auction) it is always optimal for the bidders to report the
truth.

11In this paper, we propose a new method that uses a notion
of epistemic uncertainty to actively explore regions of the bundle
space with high uncertainty. Intuitively, this makes manipulation
even harder, since additional exploration makes it more difficult
for a bidder to prevent other bidders from getting queries in certain
regions.

• Assumption 1 requires that, for all bidders i ∈ N , if all
other bidders report truthfully, then the reported social
welfare of bidder i’s marginal economy (i.e., term (b)) is
independent of her value reports.

• Assumption 2 requires that, if all bidders i ∈ N bid truth-
fully, then MLCA finds an efficient allocation.

Result 1: Social Welfare Alignment If Assumption 1
holds, and if all other bidders are truthful, then MLCA is so-
cial welfare aligned, i.e., increasing the reported social wel-
fare of a∗R in the main economy (i.e., term (a)), which in this
case equals the true social welfare of a∗R, is the only way
for a bidder to increase her true utility (Brero, Lubin, and
Seuken 2021, Proposition 3).

Result 2: Ex-Post Nash Equilibrium Moreover, if As-
sumption 1 and Assumption 2 hold, then bidding truthfully
is an ex-post Nash equilibrium in MLCA (Brero, Lubin, and
Seuken 2021, Proposition 4).

C BO Perspective of ICAs
In this section, we discuss the Bayesian optimization (BO)
perspective of iterative combinatorial assignment (see Sec-
tion 2.3). Specifically, we analyze the MLCA mechanism
(see Section 2.2 for an overview or Appendix A for a de-
tailed description) in the light of BO.

Iterative combinatorial assignment can be seen as a com-
binatorial BO task with an expensive-to-evaluate function:
• The objective (e.g., social welfare) in general lacks

known structure and when evaluating it (e.g., value
queries) one only observes the objective at a single in-
put point and no derivatives such that gradient-based op-
timization cannot be used.

• Typically one can only query a very limited amount of
information to find an approximately optimal allocation,
For example, in a real-world spectrum auction, the auc-
tioneer can only ask each bidder to answer on the order
of 100 value queries for different bundles of items, even
though the space of possible bundles is exponential in the
number of items m, i.e., there are 2m possible bundles
and (n+ 1)m possible allocations.

C.1 BO Perspective of MLCA
In this paper, we extend prior work on MLCA with a notion
of uncertainty that makes MLCA more similar to classic BO.
Specifically, we now use an MVNN-based upper uncertainty
bound (uUB) to define our acquisition function. This allows
MLCA to trade-off exploration and exploitation making it
more likely to find optimal allocations.

However, in addition to the challenges that arise in BO,
combinatorial assignment adds their own set of challenges.
For example, Gaussian process-based BO often does not ex-
tend beyond 10-20 input dimensions, which is problematic
as in combinatorial assignment the input space can be much
larger, e.g., for m = 98 items and n = 10 bidder the input
space would be 980 dimensional (MRVM). In addition, in-
tegrality constraints to obtain only whole items (i.e., combi-
natorial assignment deals with assigning m indivisible items
to agents) and feasibility constraints that ensure each item is
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only allocated once to a single agent are often only incorpo-
rated via rounding or randomization.

Our work addresses both problems by combining
(MV)NN-based MLCA by (Weissteiner and Seuken 2020;
Weissteiner et al. 2022a) with the recently introduced
NOMU (Heiss et al. 2022), an optimization-based method
to obtain uncertainty estimates for the predictions of NNs.
Importantly, NOMU enables to represent an uUB as a sin-
gle NN in contrast to other more expensive methods such as
ensembles (Lakshminarayanan, Pritzel, and Blundell 2017).
Thus, NOMU is particularly suited for iterative combinato-
rial assignment, where uUB-based WDPs are solved hun-
dreds of times to generate informative queries.

C.2 How does BOCA Differ from Classical BO?
There are two main differences that set BOCA from classical
BO apart.

1. More information per query: In classical BO, one
would obtain only one number f(x) per query, which
would correspond to f(x) =

∑
i∈N v̂i(ai) in the case of

ICA. However, we obtain all the individual values v̂i(ai)
instead of only obtaining their sum. This additional infor-
mation is very valuable for MLCAs such as BOCA. We
benefit from this additional information by representing
our acquisition function A(a) =

∑
i∈N Ai(ai) as sum

of functions Ai, which are trained based on their indi-
vidual values. The benefits of this additional information
are even more valuable because of our very strong prior
knowledge on the individual value functions v̂i (e.g.,
monotonicity) compared to rather vague prior on their
sum. Also our notion of uncertainty incorporates this ad-
ditional information.
In classical BO argmaxx∈{x(1),...,x(T )} f(x) is outputted
as an approximation for argmaxx∈X f(x). However, the
fact that we revive the individual values v̂i(ai), allows us
to output the solution a∗R of (1) instead of just outputting
the best allocation that we have queried. In other words
(1) allows us to recombine queried bundles potentially
differently than in any queried allocation.

2. Multiple objectives: In classical BO there is only one
objective function f . In the case of MLCA, this corre-
sponds to the primary objective f(x) =

∑
i∈N v̂i(ai).

However, besides social welfare, we also have the sec-
ondary objective of achieving a high revenue in the
case of MLCA. The revenue depends on the payments
p(R) from Definition B.1. In order to compute the pay-
ments p(R), we need to approximate n further max-
imization problems (i.e., the n marginal economies∑

j∈N\{i} v̂j(aj), see Appendices A and B). Since all
this n+1 objectives are different sub-sums of the same n
unknown functions v̂i each bundle-value-pair (ai, v̂i(ai))
can provide useful information for a better approxima-
tion of n objectives. Intuitively speaking, we think that
in a multi-objective setting, exploration is particularly
useful (compared to exploitation), since the uncertainty
of the individual value functions are independent of the
different objectives. If a bundle of high uncertainty is
queried one gains plenty of new information which can

be very helpful for the better approximation of n objec-
tives. Whereas, very specialized queries that seem to be
optimal with respect to one specific objective might not
be as helpful for the other objectives in general.

C.3 Choice of Acquisition Function
Recall that in BOCA we use as acquisition functionA(a) =∑

i∈N Ai(ai) where the Ai’s are bidder-specific MVNN-
based upper uncertainty bounds (uUBs). Thus, the WDP
maxa∈F A(a), which we solve to generate new informative
queries, decomposes to

max
a∈F
A(a) = max

a∈F

∑

i∈N

Ai(ai). (22)

The key design choice to make solving this WDP practi-
cally feasible, is that we were able to encode each uUB
Ai as a succinct MILP such that the acquisition function
A(a) =

∑
i∈N Ai(ai) as a whole is also MILP-encodable

and thus the WDP can be reformulated itself as a MILP. Im-
portantly, our acquisition function A was carefully chosen
to make solving this WDP practically feasible for moderate-
sized MVNNs. In the following, we briefly discuss the usage
(i.e., advantages and disadvantages) of other popular acqui-
sition functions in the combinatorial assignment setting.

Popular examples of acquisition functions in classical BO
from the literature include:
• Upper uncertainty bound (uUB) (aka upper confidence

bound or upper credible bound (UCB)) (e.g., see (Srini-
vas et al. 2012)),

• Expected improvement (e.g., see (Frazier 2018, Section
4.1)),

• Thompson sampling (e.g., see (Chapelle and Li 2011)),
• Probability of improvement (e.g., see (De Ath et al. 2021,

Section 2.2.4)),
• Expected value of information (e.g., see (Bonilla, Guo,

and Sanner 2010)).

Upper Uncertainty Bound (uUB) We decided to use an
UCB-type acquisition function since this enables a succinct
MILP formulation of the acquisition function optimization
(i.e., the WDP). Moreover, this also offers good performance
in practice and good intuitive and theoretical motivation
(Srinivas et al. 2012).

Expected improvement (EI) While it would be theoreti-
cally optimal to use EI for the very last query, it is neither
theoretically nor empirically clear if EI is better or worse
than the uUB for all other queries. We are not aware of any
practically feasible solver in the combinatorial assignment
domain of the corresponding WDP based on EI and on a
monotonic regression technique. Moreover, we do not see
any straightforward practically feasible implementation and
we do not expect any significant improvement from EI over
uUB.

Thompson Sampling Recently, Papalexopoulos et al.
(2022) also proposed a MILP-based BO method using a
ReLU NN as surrogate model and Thompson sampling
as acquisition function. Concretely, Papalexopoulos et al.
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(2022) approximate Thompson sampling via retraining of
the NN from scratch with a new random initialization. Sub-
sequently, they determine the next query by solving an NN-
based MILP. However, unlike our proposal, Papalexopou-
los et al. (2022) do only implicitly integrate a very lim-
ited notion of uncertainty, i.e., via a random parameter ini-
tialization of the NN, making their approach conceptually
equivalent to the (MV)NN-based MLCA by Weissteiner and
Seuken (2020); Weissteiner et al. (2022a). In particular, this
approximation of Thompson sampling only achieves suffi-
cient exploration if the diversity induced by different ran-
dom initialization seeds is large enough. However, Heiss
et al. (2022, Remark B.5) showed that the diversity of an
NN ensemble (in noiseless settings) is rather small and in
(Heiss et al. 2022, Remark B.5) the ensemble’s uncertainty
needed to be scaled up by a factor of ∼10 to make its un-
certainty competitive. However, in Thompson sampling the
desired amount of uncertainty/exploration cannot be eas-
ily calibrated/scaled. Moreover, our experimental results in
spectrum auctions suggests that indeed the method by Weis-
steiner et al. (2022a), which uses conceptually the same no-
tion of uncertainty as in (Papalexopoulos et al. 2022), is out-
performed by our proposal.

Probability of Improvement (PI) Intuitively we believe
that PI is inferior to EI and uUB. We are not aware of any
theoretical or empirical results that suggest significant ad-
vantages of PI. We are not aware of any practically feasi-
ble solver of the corresponding WDP based on PI and on a
monotonic regression technique.

Expected Value of Information (EVOI) All previously
mentioned acquisition functions are still to some extend my-
opic/greedy, as they do not optimize explicitly for multi-
ple queries ahead (while still being significantly less my-
opic than just using the mean prediction as acquisition func-
tion). E.g., as mentioned above, EI is only optimal for the
last query. The other acquisition functions are not mathe-
matically optimal in any provable sense. In theory, EVOI
is optimal for a horizon of two BO-steps. In principle, one
could adapt it recursively to be optimal also for longer hori-
zons, i.e. multiple BO-steps. While this approach would be
the most appealing from a purely theoretical point of view, it
would also be by far the hardest from a computational point
of view (because of the nested EI-like optimization prob-
lems). We are not aware of any practically feasible solver of
the corresponding WDP based on EVOI and on a monotonic
regression technique. We believe this would be a very excit-
ing direction for long-term future research. For example, a
very weak approximation of an EVOI-WDP could outper-
form a good approximation of our uUB-WDP, especially if
compute power significantly increases in the future.

D NOMU for Monotone NNs

In this section, we give more details regarding our un-
certainty estimates for monotonically increasing functions
based on NOMU (see Section 3.1).

D.1 Proof of Theorem 1
The 100%- uUB f 100%-uUB(x) := supf∈HDtrain

f(x) is de-
fined via a 2m-dimensional optimization problem with ntrain

constraints. In the following proof, we analytically derive
the explicit closed-form joint solution of 2m such optimiza-
tion problems (one for each x), which we can represent as
an MVNN that does not require any optimization algorithm.

Proof of Theorem 1. In the 1st part of the proof (which is
based on the proof of Weissteiner et al. (2022a, Theo-
rem 1)), we explicitly construct M100%-uUB

i and show that
M100%-uUB

i ∈ VDtrain . Equation (27) gives our explicit (fast
to evaluate) closed-form formula forM100%-uUB

i , which can
be directly written down without any training algorithm.

The 2nd part of the proof (which is new) shows that
M100%-uUB

i is indeed the 100%-uUB by showing that it is
maximal (and thus the supremum is actually a maximum).

1. Let v̂i ∈ V and let Dtrain = {(x(l), v̂i(x
(l)))}ntrain

l=1

be a set of ntrain observed training points correspond-
ing to v̂i. First, given Dtrain, we construct an MVNN
M100%-uUB

i with weights θ = (W i
Dtrain , b

i
Dtrain) such that

M100%-uUB
i (x) = f 100%-uUB(x) for all x ∈ X .

Recall, that by definition v̂i((0, . . . , 0)) = 0 and that
we assume that ((1 . . . , 1), v̂i((1 . . . , 1))) ∈ Dtrain. Now
let (wl)

ntrain

l=0 denote the observed/known values corre-
sponding to v̂i sorted in increasing order, i.e, let x(0) =
(0, . . . , 0) with

w0 := v̂i(x
(0)) = 0, (23)

let x(ntrain) = (1, . . . , 1) with

wntrain := v̂i(x
(ntrain)), (24)

and x(j), x(k) ∈ X \ {x(0), x(ntrain)} for 0 < j < k ≤
ntrain − 1 with

wj := v̂i(x
(j)) ≤ wk := v̂i(x

(k)). (25)

In the following, we slightly abuse the notation and write
for x(j), x(k) ∈ X , x(j) ⊆ x(k) iff for the correspond-
ing sets Aj , Ak ∈ 2M it holds that Aj ⊆ Ak. Fur-
thermore, we denote by ⟨·, ·⟩ the Euclidean scalar prod-
uct on Rm. Before we show that our construction fulfills
M100%-uUB

i ∈ VDtrain , we define it as

M100%-uUB
i (x) :=

ntrain−1∑

k=0

(wk+1 − wk)1{∀j∈{0,...,k} : x ̸⊆x(j)}
(26)

=

ntrain−1∑

k=0

(wk+1 − wk)φ0,1

(
k∑

j=0

φ0,1

(〈
1− x(j), x

〉)
− k

)
,

(27)

where the second equality follows since

x ̸⊆ x(j) ⇐⇒
〈
1− x(j), x

〉
≥ 1 (28)

⇐⇒ φ0,1

(〈
1− x(j), x

〉)
= 1, (29)
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which implies that

∀j ∈ {0, . . . , k} : x ̸⊆ x(j) (30)

⇐⇒
k∑

j=0

φ0,1

(〈
1− x(j), x

〉)
= k + 1, (31)

and

1{∀j∈{0,...,k} : x̸⊆x(j)} = φ0,1

(
k∑

j=0

φ0,1

(〈
1− x(j), x

〉)
− k

)
.

(32)

We now show that M100%-uUB
i is actually an MVNN.

Equation (27) can be equivalently written in matrix nota-
tion as




w1 − w0

w2 − w1

...
wntrain − wntrain−1




⊤

︸ ︷︷ ︸
(W i,3

Dtrain )
⊤∈Rntrain

≥0

φ0,1




W i,2
Dtrainφ0,1







1− x(0)

1− x(1)

...
1− x(ntrain−1)




︸ ︷︷ ︸
W i,1

Dtrain∈R(ntrain)×m
≥0

x




+




0
−1

...
−(ntrain − 1)




︸ ︷︷ ︸
bi,2
Dtrain∈Rntrain

≤0




with W i,2
Dtrain ∈ R(ntrain)×(ntrain)

≥0 a lower triangular matrix of
ones, i.e.,

W
i,2

Dtrain :=




1 0 . . . 0

...
. . .

. . .
...

...
. . . 0

1 . . . . . . 1



.

From that, we can see that M100%-uUB
i is indeed an

MVNN with four layers in total (i.e., two hidden lay-
ers) and respective dimensions [m,ntrain, ntrain, 1]. From
Equation (26) we can see that for all l = 0, . . . , ntrain :
M100%-uUB

i (x(l)) = v̂i(x
(l)) and thereforeM100%-uUB

i ∈
VDtrain .

2. Now we have to check what happens for x ∈ X :
(x, v̂i(x)) ̸∈ Dtrain. Therefore, let x ∈ X : (x, v̂i(x)) ̸∈
Dtrain. Then, by definition we get that M100%-uUB

i (x) =
wk, where k ∈ {0, . . . , ntrain} is the smallest integer such
that x ⊆ x(k). Assume there exists an h ∈ VDtrain with
h(x) >M100%-uUB

i (x) = wk = h(x(k)). However, since
x ⊆ x(k) this is a contradiction to h fulfilling the mono-
tonicity property. Thus, we get that M100%-uUB

i (x) =
maxf∈VDtrain f(x). Since x was chosen arbitrarily, we fi-
nally get thatM100%-uUB

i (x) = maxf∈VDtrain f(x) for all
x ∈ X which concludes the proof.

D.2 ICA-Based New NOMU Architecture
In this section, we provide more details on our carefully
chosen ICA-based new NOMU architecture. The original
NOMU architecture from (Heiss et al. 2022) outputs a mean
prediction f̂ , which is in our case the mean-MVNNMmean

i
and a model uncertainty prediction σ̂f . Then uUBs in the
original NOMU algorithm at an input point x are defined as
f̂(x) + c · σ̂f (x) for c > 0.

Monotone uUBs and Non-Monotone σ̂f

Monotone Value Functions Imply Monotone uUBs.
Knowing that the unknown ground truth function is mono-
tonically increasing12 means that the support of the prior
in function space only contains monotonically increasing
functions in Bayesian language. In frequentist language this
means that the hypothesis class H only contains monotoni-
cally increasing functions. In both cases the resulting uUBs
are monotonically increasing too, which we next prove in
Propositions 1 and 2.
Proposition 1. Let P [f is monotonically increasing] = 1
according to the prior and let uUBα(x) := inf{y ∈ R :
P
[
f(x) ≤ y|Dtrain

]
≥ α} ∀x ∈ X be the α-credible up-

per bound (i.e., the α-quantile of the posterior distribution
of f(x)).13 Then it holds that uUBα(x) is monotonically in-
creasing (i.e., x ≤ x̃ =⇒ uUBα(x) ≤ uUBα(x̃)).

Proof. Let x ≤ x̃. For a shorter notation we write “f is (M)”
instead of “f is monotonically increasing” and we define
Ṽ := {f ∈ RX : f is (M)}. Then, from the definition of
monotonicity, it follows for every y ∈ R that14

{f : f(x) > y, f is (M)} ⊆ {f : f(x̃) > y, f is (M)}
⇐⇒ {f : f(x) > y} \ Ṽc ⊆ {f : f(x̃) > y} \ Ṽc

⇐⇒ P
[
{f : f(x) > y}|Dtrain] ≤ P

[
{f : f(x̃) > y|Dtrain}

]

⇐⇒ P
[
{f : f(x) ≤ y}|Dtrain] ≥ P

[
{f : f(x̃) ≤ y|Dtrain}

]

Since uUBα(x) is the infimum, we know that for every y <
uUBα(x):

P
[
{f : f(x̃) ≤ y|Dtrain}

]
≤ P

[
{f : f(x) ≤ y}|Dtrain] < α.

This means that every y < uUBα(x) is too small to be equal
to uUBα(x̃), thus uUBα(x) ≤ uUBα(x̃).

Proposition 2. Let H be a hypothesis class that
only contains monotonically increasing functions and let
uUBH(x) := sup{f(x) : f ∈ HDtrain} be an uUB, then
uUBH is monotonically increasing (i.e., x ≤ x̃ =⇒
uUBH(x) ≤ uUBH(x̃)).

Proof. Let x ≤ x̃, then sup{f(x) : f ∈ HDtrain} ≤
sup{f(x̃) : f ∈ HDtrain}, since ∀f ∈ HDtrain : f(x) ≤
f(x̃).

Monotone Value Functions Do Not Imply Monotone Un-
certainty. However, the model uncertainty σ̂f (defining
the width of the UBs) is not monotonic at all. For already ob-
served training input points there is zero model uncertainty
while smaller unobserved input points can have much bigger
model uncertainty.

12Within this paper “monotonically increasing” should always
be interpreted as “monotonically non-decreasing”.

13In the literature, P
[
f(x) ≤ y|Dtrain, x

]
is often used instead

of P
[
f(x) ≤ y|Dtrain] which is equal for every given x ∈ X . In

both notations, f is seen as a random variable in function space.
14For the second equivalence we use that for every measurable

set A, we obtain P [A]−0 = P [A]−P [Vc] ≤ P [A \ Vc] ≤ P [A],
thus P [A \ Vc] = P [A].
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If one would simply use the prior knowledge about the
monotonicity to improve the mean prediction (by assur-
ing its monotonicity) but then estimate the uUB by simply
adding a standard (e.g., original NOMU or Gaussian pro-
cesses) estimator for the (scaled) model uncertainty c · σ̂f

to the mean prediction to obtain an uUB, one would obtain
non-monotonic uUBs violating Propositions 1 and 2.

If one would simply use ensemble methods (Lakshmi-
narayanan, Pritzel, and Blundell 2017; Gal and Ghahra-
mani 2016) with MVNNs as ensemble members the uUBs
obtained from the formula given in (Lakshminarayanan,
Pritzel, and Blundell 2017; Gal and Ghahramani 2016) (re-
stated in (Heiss et al. 2022) for the noiseless case) would
also lead to non-monotonic uUBs violating Propositions 1
and 2. In theory, this problem could be circumvented by
directly using a certain quantile of the ensembles as uUB
instead of calculating uUBs based on empirical mean and
variance of the ensemble. However, even the 100%-quantile
of the ensemble (the point-wise maximum of the ensem-
ble predictions) would often not sufficiently capture enough
uncertainty, since Heiss et al. (2022, Remark B.5) empiri-
cally showed that the uncertainty of ensemble methods of-
ten needs to be scaled up by a very big factor to capture
enough uncertainty. Moreover, Kuleshov, Fenner, and Er-
mon (2018) empirically showed that the uncertainty needs
to be calibrated to achieve good results. To summarize, en-
semble methods of monotonic functions have the problem
that their calibration is limited or calibrating them results
in non-monotonic uUBs. Note that the calibration method
from Kuleshov, Fenner, and Ermon (2018) cannot solve this
problem. Furthermore, in the ICA setting of this paper, op-
timizing the acquisition function (i.e., the ML-based WDP)
based on the uUBs obtained from deep ensembles (Laksh-
minarayanan, Pritzel, and Blundell 2017) would be compu-
tationally too expensive.

However, for our proposed uUB MuUB
i the uncertainty

can be calibrated by varying πexp without sacrificing mono-
tonicity of the uUB. In the limit πexp → 0 one would just
obtain the mean prediction and in the limit πexp → ∞ in
relation to explicit and implicit regularization one would ob-
tain the 100%-uUB as solution to our optimization problem.

Linear Skip Connections We have a hyper-parameter
(that is part of our HPO) that decides whether we add a train-
able linear connection directly from the input to the output
forMuUB

i andMmean
i as formally defined in Definition F.1.

No Connections Between the Two Sub-Architectures
The architecture suggested in Heiss et al. (2022) con-
tains connections from the mean-sub-architecture to the
uncertainty-sub-architecture (the dashed lines in (Heiss et al.
2022, Figure 2)). In our architecture (see Figure 1) we do not
use such connections for two reasons:

1. Solving the WDP via the MILP given in Theorem 2 is
computationally much faster because we can completely
ignoreMmean

i for the MILP formulation.
2. In the case of Heiss et al. (2022), without these connec-

tions, the uncertainty would be completely independent
from the mean prediction (or from the labels ytrain), pro-

hibiting (Heiss et al. 2022, Desiderata D4). However, our
architecture directly outputs the uUB instead of the un-
certainty σ̂f , thus MuUB

i is automatically not indepen-
dent from the labels y(l) = v̂i(x

(l)).

D.3 ICA-Based New NOMU Loss

Definition D.1 (Smooth L1 Loss). The smooth L1 loss Lβ
1 :

R × R → R with threshold parameter β ≥ 0 is defined as
follows:

Lβ
1 (x, y) =

{
0.5
β · (x− y)2, |x− y| ≤ β

|x− y| − 0.5 · β, otherwise.
(33)

Definition D.2 (Exponential Linear Unit (ELU)). The ELU
function ELU : R → R (with default parameter α = 1) is
defined as follows:

ELU(x) =

{
x, x ≥ 0

1 · (exp(x)− 1), x < 0.
(34)

Definition D.3 (Detailed ICA-based New NOMU Loss). Let
π = (πsqr, πexp, cexp, π, π) ∈ R5

+ be a tuple of hyperparame-
ters. For a training set Dtrain, Lπ is defined as

Lπ(MuUB
i ) := πsqr

ntrain∑

l=1

Lβ
1

(
MuUB

i (x(l)), y(l)
)

(35a)

+ πexp

∫

[0,1]m
g
(
0.01− cexp

(
min{MuUB

i (x),M100%-uUB
i (x)} −Mmean

i (x)
))

dx

(35b)

+ πexpcexpπ

∫

[0,1]m
Lβ
1

(
(MuUB

i (x)−M100%-uUB
i (x))+

)
dx (35c)

+ πexpcexpπ

∫

[0,1]m
Lβ
1

(
(Mmean

i (x)−MuUB
i (x))+

)
dx (35d)

+ πsqr

ntrain∑

l=1

0.001
(
MuUB

i (x(l))− y(l)
)+

+ 0.5Lβ
1

(
(MuUB

i (x(l))− y(l))+, 0
))

(35e)

where Lβ
1 is the smooth L1-loss with threshold β (see Defini-

tion D.1), (·)+ the positive part, and g := 1+ELU is convex
monotonically increasing with ELU being the exponential
linear unit (ELU) (see Definition D.2).

Detailed interpretations of all five terms (including (35e)
which was added to slightly improve the numerical stability)
are as follows:

(35a) enforces thatMuUB
i fits through the training data.

(35b) pushesMuUB
i up as long as it is below the 100%-uUB

M100%-uUB
i . This force gets weaker the furtherMuUB

i is
above the mean Mmean

i (especially if cexp is large). πexp
controls the overall strength of (9b) and cexp controls how
fast this force increases when MuUB

i → Mmean
i . Thus,

increasing πexp increases the uUB and increasing cexp in-
creases the uUB in regions where it is close to the mean.
Weakening (9b) (i.e., πexpcexp → 0) leads MuUB

i ≈
Mmean

i . Strengthening (9b) by increasing πexpcexp in re-
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lation to regularization15 leads MuUB
i ≈ M100%-uUB

i . In
practice, we obtain reasonable approximations to α%-
uUB with α ∈ [50, 100] depending on the value of
πexpcexp in relation to regularization.

(35c) enforces that MuUB
i ≤ M100%-uUB

i . In theory, (9c)
would be redundant in the limit πsqr → ∞, because
MuUB

i ∈ VDtrain . The strength of this term is determined
by π ·(πexpcexp), where π is the (9c)-specific hyperparam-
eter and πexpcexp adjusts the strength of (9c) to (9b).

(35d) enforcesMuUB
i ≥ Mmean

i . In theory, one should take
the limit π → ∞. However, in practice, a moderate
value of π is numerically more stable and typically en-
forces thatMuUB

i ≥ Mmean
i . The interpretation of π and

πexpcexp is analogous to (9c).
(35e) is an asymmetric version of (35a) for numerical sta-

bility. Since (35b) pushes MuUB
i for all x ∈ X up-

wards,MuUB
i would have a tendency to give slightly too

high predictions for training data points, but (35e) com-
pensates this effect for slightly improved numerical sta-
bility. In theory (35e) would be redundant in the limit
πsqr →∞.

As in (Heiss et al. 2022), in the implementation of Lπ ,
we approximate Equations (35b) to (35d) (in the main paper
Equations (9b) to (9d)) via MC-integration using additional,

artificial input points Dart :=
{
x(l)

}nart

l=1

i.i.d.∼ Unif([0, 1]m),
where we sample new artificial input points for each batch
of our mini-batch gradient descent based training algorithm.

Furthermore, note that in practice we train Mmean
i and

MuUB
i simultaneously but whereMmean

i is detached (using
torch.tensor.detach()) in the loss Lπ such that Lπ

does not influence the mean MVNNMmean
i .

E Parameter Initialization for MVNNs
In this section, we provide more details on our new pa-
rameter initialization method for MVNNs (see Section 3.2).
Specifically, we give recommendations on how to set the hy-
perparameters of our proposed mixture distribution depend-
ing on the architecture size of the considered MVNN.

E.1 Theoretical Results
Definition E.1 (Uniform Mixture Distribution). We define
the probability density gAk,Bk,pk

of an initial weight W i,k
j,l

corresponding to an MVNN as16

gAk,Bk,pk
(w) =

1− pk
Ak

1[0,Ak](w) +
pk
Bk

1[0,Bk](w),

(36)

15Regularization can be early stopping or a small number of neu-
rons (implicit) or L2-regularization on the parameters (explicit).
The same principle would also hold true if one uses other forms of
regularization such as L1-regularization or dropout.

16The bidder index i is not relevant in this section and we
assume that each bidder i has the same architecture. If bidders
would have different layer widths di,k−1, then all the values
Ak, Bk, Pk, µk, σk would depend on the bidder index i too, i.e.,
Ai,k, Bi,k, Pi,k, µi,k, σi,k.

which corresponds to a mixture distribution of Unif[0, Ak]
and Unif[0, Bk].

We assume that for each layer k, we independently sam-
ple all weights W i,k

jl i.i.d. according to the distribution in
Definition E.1.

We then obtain that

µk = E
[
W i,k

j,l

]
= (1− pk)

Ak

2
+ pk

Bk

2
. (37)

Moreover, by using that the variance of an Unif[0, c]-
distributed random variable is c2

12 we get that

σ2
k = V

[
W i,k

j,l

]
= (1− pk)

A2
k

3
+ pk

B2
k

3
− µ2

k. (38)

In the following, we provide a rule how to set for each
layer k, Ak, Bk and pk depending on the dimension di,k−1

of the previous (k − 1)st layer.
This rule ensures that the conditional expectation and the

conditional variance are equal to two constants Einit, and
Vinit, which are independent of the dimension of the pre-
vious layer di,k−1. More formally, let zi,k−1 ∈ Rdi,k−1

be
the output of the neurons in the (k − 1)st layer, then we set
Ak, Bk and pk such that17

E
[(
W i,kzi,k−1

)
j
+ bi,kj

∣∣∣zi,k−1 = (1, . . . , 1)⊤
]
= Einit

(39a)

V
[(
W i,kzi,k−1

)
j

∣∣∣zi,k−1 = (1, . . . , 1)⊤
]
= Vinit.

(39b)

Lemma 1. Equivalent formulations of (39a) are

(39a)⇔ E
[(
W i,k(1, . . . , 1)⊤

)
j
+ bi,kj

]
= Einit

⇔ E
[(
W i,kzi,k−1

)
j
+ bi,kj

∣∣∣zi,k−1 = 1
]
= Einit,

where zi,k−1 = 1
di,k−1

∑di,k−1

l=1 zi,k−1
l . And equivalent for-

mulations of (39b) are

(39b)⇔ V
[(
W i,k(1, . . . , 1)⊤

)
j

]
= Vinit

⇔ V
[(
W i,kzi,k−1

)
j

∣∣∣zi,k−1
]
= Vinit(zi,k−1)

2
,

where (zi,k−1)
2
= 1

di,k−1

∑di,k−1

l=1

(
zi,k−1
l

)2

.

Proof. The first and the third equivalence are trivial. The
second equivalence can be seen as:

E
[(

W i,kzi,k−1
)
j
+ bi,kj

∣∣∣∣zi,k−1 = 1

]
=

=
di,k−1∑

l=1

E
[
W i,k

jl zi,k−1
l

∣∣∣zi,k−1 = 1
]
+ E

[
bi,kj

]

17Note that Einit = (39a) (init E in our code) includes already
the bias, while Vinit = (39b) (init V in our code) does not in-
clude the bias. But this is a simple additive term that could easily
be adjusted. One could easily include the bias in both or in none of
them to make it more consistent.
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Using that W i,k
jl and zi,k are independent, we can further simplify

this term as

=
di,k−1∑

l=1

E
[
zi,k−1
l

∣∣∣zi,k−1 = 1
]
E
[
W i,k

jl

]
+ E

[
bi,kj

]

= E
[
W i,k

j1

] di,k−1∑

l=1

E
[
zi,k−1
l

∣∣∣zi,k−1 = 1
]
+ E

[
bi,kj

]

= E
[
W i,k

j1

]
E




di,k−1∑

l=1

zi,k−1
l

∣∣∣∣∣∣
zi,k−1 = 1


+ E

[
bi,kj

]

= E
[
W i,k

j1

]
di,k−1 + E

[
bi,kj

]

= E
[(

W i,k(1, . . . , 1)⊤
)
j
+ bi,kj

]
.

Finally, the last equivalence can be seen as

V
[(
W i,kzi,k−1

)
j

∣∣∣zi,k−1
]
=

=

di,k−1∑

l=1

V
[
W i,k

jl zi,k−1
l

∣∣∣zi,k−1
]

=
di,k−1∑

l=1

V
[
W i,k

jl

] (
zi,k−1
l

)2

= di,k−1V
[
W i,k

j1

] 1

di,k−1

di,k−1∑

l=1

(
zi,k−1
l

)2

= V
[(
W i,k(1, . . . , 1)⊤

)
j

]
(zi,k−1)

2
.

The solution to problem (39) is not unique, but we pro-
pose three hyperparameters Binit, binit, ϵ ∈ R+ to charac-
terize one specific solution that has multiple nice properties
(see Theorem 3).
Definition E.2 (Scaling Rule). For any choice of hyperpa-
rameters Einit,Vinit, Binit, binit, ϵ ∈ R+ we propose the fol-
lowing values for Bk, Ak and pk (for a shorter notation we
write d instead of di,k−1 ∈ N+):

Bk =

{
max

(
3M2

k+3dVinit

2Mkd
+ ϵ

d , B
init
)

, d >
M2

k

3Vinit

2
dMk , else

(40)

pk =

{
1− B2

kd
2−4BkMkd+4M2

k

B2
kd

2−4BkMkd+3M2
k+3dVinit , d >

M2
k

3Vinit

1 , else
(41)

Ak =

{
2Mk−Bkdpk

d(1−pk)
, d >

M2
k

3Vinit

0 , else,
(42)

W i,k
j,l

i.i.d.∼ gAk,Bk,pk
(43)

bi,kj
i.i.d.∼ Unif[−binit, 0] (44)

where Mk = Einit + binit

2 and where gAk,Bk,pk
is the mix-

ture distribution described in Definition E.1 and where all
weights and biases are sampled independently.

Finally, when using the scaling rule from Definition E.2,
we can prove the following theorem.

Theorem 3. For any choice of hyperparameters
Einit,Vinit, Binit, binit, ϵ ∈ R+, for every k ∈ {1, . . . ,Ki},
for every dimension di,k−1 ∈ N+ it holds that if we sample
according to the distribution described in Definition E.2, we
obtain that:18

1. (39a) holds,

2. V
[(
W i,kzi,k−1

)
j

∣∣∣zi,k−1 = (1, . . . , 1)⊤
]
≥ Vinit holds,

3. (39b) holds if di,k−1 >
M2

k

3Vinit ,

4. P
[
W i,k

j,l = 0
]
= 0 if ϵ > 0,

5. P
[
W i,k

j,l = 0
]
= 1− pk if ϵ = 0 and Binit < Bk,

6. P
[
W i,k

j,l < 0
]
= 0,

7. P
[
W i,k

j,l > Bk

]
= 0,

8. Bk ≥ 3Vinit

2Mk
,

9. limdi,k−1→∞ Bk = max
{

3Vinit

2Mk
, Binit

}
.

Proof. First, note that by Lemma 1

(39a)⇔ E
[(
W i,k(1, . . . , 1)⊤

)
j
+ bi,kj

]
= Einit

⇔ E
[(
W i,k(1, . . . , 1)⊤

)
j

]
= Einit − E

[
bi,kj

]

⇔ di,k−1E
[
W i,k

j,l

]
= Einit +

binit

2

⇔ E
[
W i,k

j,l

]
=
Mk

di,k−1
.

We prove this in section “Proof of item 1” of the MATHE-
MATICA SCRIPT19, where we use the notation d := di,k−1,
M := Mk, V := Vinit, epsilon := ϵ, Binit := Binit,
Bchoice := Bk given in (40), pchoice := pk given in
(41), Achoice := Ak given in (42) and EofW := E

[
W i,k

j,l

]

computed in (37). This proves item 1.

18We assume that Einit,Vinit and d are strictly positive. However,
Binit, binit and ϵ could in theory also be set to 0 and Theorem 3
is formulated such that it would still hold true for Binit, binit, ϵ ∈
R+ ∪ {0}.

19You can open the MATHEMATICA SCRIPT including the re-
sults in your web-browser (https://www.wolframcloud.com/obj/
jakob.heiss/Published/MVNN initialization V1 4.nb) without the
need to install anything on your computer. (The interactive plot
might only work if you open the script with an installed version of
Mathematica, but it is not necessary for the proof.) We use a com-
puter algebra system to make it much more convenient to check the
correctness of our proof. Some of the terms that appear in this proof
are already very long as one can see for example in section “Proof
of item 2 and 3” in our MATHEMATICA SCRIPT. Simplifying these
terms by hand would take multiple pages of very tedious calcula-
tions, which would be highly prone to typos and other mistakes.
Within our MATHEMATICA SCRIPT we only use exact symbolic
methods and no numerical approximations (except for the visual-
izations).
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We manipulate using Lemma 1

(39b)⇔ V
[(
W i,k(1, . . . , 1)⊤

)
j

]
= Vinit

⇔ di,k−1V
[
W i,k

j,l

]
= Vinit

⇔ V
[
W i,k

j,l

]
=

Vinit

di,k−1
.

We prove this in section “Proof of item 2 and 3” of
the MATHEMATICA SCRIPT with the additional notation
VofW := V

[
W i,k

j,l

]
computed in (38). This section proves

items 2 and 3.
To show item 4 it is sufficient to show Ak > 0 (because

of Ak ≤ Bk, as shown in section “Proof of item 7: (A≤B)”)
or (pk = 1 and Bk > 0). If di,k−1 >

M2
k

3Vinit , we show Ak > 0
in section “Proof of item 4” of the MATHEMATICA SCRIPT.
In the other case pk = 1 and Bk > 0 as one can directly see
from (40) and (41).

To show item 5, it is sufficient to show that Ak = 0.
Section “Proof of item 5” of the MATHEMATICA SCRIPT

shows in the case d >
M2

k

3Vinit that Ak = 0 ⇐⇒ (ϵ = 0 and

Binit ≤ 3M2
k+3dVinit

2Mkd
). By definition this statement is equiv-

alent to Ak = 0 ⇐⇒ Bk =
3M2

k+3dVinit

2Mkd
. Finally, since

(ϵ = 0 and Binit < Bk) =⇒ Bk =
3M2

k+3dVinit

2Mkd
, item 5

holds true. In the case di,k−1 ≤ M2
k

3Vinit , Ak = 0 (i.e., item 5)
follows directly from (42). Note that Bk > 0 always holds
true, since we always assumeMk > 0 and d > 0.

Item 6 follows directly from Definition E.1 and the fact
that Ak ≥ 0 and Bk ≥ 0 (see section “Proof of item 6” in
the MATHEMATICA SCRIPT).

Item 7 follows directly from Definition E.1 and Ak ≤ Bk

(see section “Proof of item 7: (A≤B)” in the MATHEMATICA
SCRIPT).

Item 8 is shown for the two cases in section “Proof of item
8” of the MATHEMATICA SCRIPT.

Item 9 is shown in section “Proof of item 9” in our MATH-
EMATICA SCRIPT.

Discussion of Theorem 3. Items 1 and 3 in Theorem 3
tell us that our initialization scheme actually solves prob-
lem (39) if di,k−1 >

M2
k

3Vinit . Note that problem (39) does not

have any solution for for di,k−1 ≤ M2
k

3Vinit (as can be seen
in the first 5 lines of our MATHEMATICA SCRIPT with the
notation explained in the proof of Theorem 3). However,
items 1 and 2 in Theorem 3 tell us that we still have a rea-
sonable initialization scheme for di,k−1 ≤ M2

k

3Vinit that solves
the relaxed problem of items 1 and 2. In practice solutions
to this relaxed problem are still fine, since it also prevents
us from exploding expectation or vanishing variance. Too
much variance in the initialization is less of a problem.20

20Alternatively one could consider to relax problem (39) in the
other direction by allowing smaller expectation instead of bigger
variance, which would also be fine in practice. A solution to this
alternative relaxed problem could be simply achieved by changing
the definition of Bk in the “else”-case of (40).

Items 4 and 5 motivate to choose ϵ > 0 to prevent weights
being initialized to zero, which can lead to bad local minima.

Item 6 guarantees that our network is actually a valid
MVNN at initialization fulfilling the non-negativity con-
straints of the weights at initialization.21

Items 7 to 9 give us guarantees on the upper bound of the
weights.

E.2 Recommended Hyperparameter Choices
In this section, we provide intuition about each hyperparam-
eter Einit,Vinit, Binit, binit, ϵ ∈ R+ and recommendations on
how to set them in practice.

1. Parameter Einit: (init E in our code) gives the con-
ditional expectation (39a) of a pre-activated neuron (in-
cluding bias) conditioned on zi,k−1 = 1 (see item 1
in Theorem 3 and Lemma 1). This corresponds to
an upper bound of the expected value of the MVNN
E
[
Mθ

i ((1, ..., 1))
]

(i.e., the predicted value of the full
bundle) at initialization of the network, if all cutoffs ti,k
of the bReLU activation function are equal to 1. Einit is
approximately equal to E

[
Mθ

i ((1, ..., 1))
]

if Einit ≥ 1.
If you normalize the data such that the full bundle has
always value 1 (i.e., v̂i((1, ..., 1)) = 1), setting Einit = 1
is our recommended choice. If you choose to initialize
the bReLU cutoffs ti,k i.i.d. uniformly at random, i.e.,
ti,k ∼ Unif(0, 1), then Einit ∈ [1, 2] is recommended,
because in this case Einit

2 is an upper bound for the expec-
tation of the pre-activated values22 oi,kj of any neuron in
the MVNN at initialization for k > 1. This can be seen
as follows:

E
[
oi,kj

]
Lemma 1
= (Einit − E

[
bi,kj

]
)E

[
zi,k−1
1

]
+ E

[
bi,kj

]

(45)

≤ (Einit − E
[
bi,kj

]
)E

[
ti,k−1

]
+ E

[
bi,kj

]

(46)

=
Einit + binit

2

2
− binit

2
(47)

=
Einit

2
− binit

4
<

Einit

2
, (48)

where the second inequality follows from the definition
of the bRelu activation function. Specifically, this also
shows for j = 1 and k = Ki that Einit

2 is an upper bound

21Note that if we would initialize our network with a weight-
distribution that solves problem (39), but does not fulfill Item 6
(e.g., a generic initialization with µk = 0 and σk ∝ 1√

di,k−1
),

we would get a valid MVNN after the first gradient step, which
projects all the negative weights to zero. However, this almost ini-
tial network would have exploding conditional expectations, i.e.,
almost all neurons would have pre-activations oi,kj > 1 indepen-
dent of the input training data point and thus one would end up
with an almost constant function and zero gradients as shown in
Figure 5.

22Recall, that oi,kj is the pre-activated value of the j-th neuron in
the k-th layer (of the i-th bidder) including biases.
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Figure 5:Mmean
i ,MuUB

i andM100%-uUB
i along an increasing 1D subset-path in LSVM for the national bidder. Left: [64,64]-

architecture with generic initialization fails. Middle: [64,64]-architecture with our initialization works. Right: even larger
[256,256]-architecture with our initialization still works.

for E
[
Mθ

i ((1, ..., 1))
]
= oi,Ki

1 ((1, ..., 1)) at initializa-
tion.23 If the values of your MVNN are in a different or-
der of magnitude, you should scale your data in a pre-
processing step to [0, 1].

2. Parameter Vinit: (init V in our code) gives the condi-
tional variance (39b) of a pre-activated neuron (without
bias) conditional on zi,k−1 = (1, . . . , 1)⊤, if di,k−1 >
M2

k

3Vinit (see item 3 in Theorem 3). In any case, Vinit is a
lower bound for this conditional variance (see item 2 in
Theorem 3). Typically, we select Vinit ∈ [1/50, 1]. Choos-
ing Vinit too small yields an almost deterministic net-
work initialization. Since we prefer initial weights that
are smaller than one, Vinit should not be chosen too large
(i.e., preferably 3Vinit

2Mk
≤ 1 because of items 7 to 9 in The-

orem 3).
3. Parameter binit: (init bias in our code24) All the bi-

ases of the MVNN bi,kj are sampled uniformly at random
from [−binit, 0] as given in eq. (44). Setting binit = 0.05
is our recommendation, although any other small values
would be sufficient. We discourage zero to avoid numer-
ical issues during training.

4. Parameter Binit: (init b in our code24) Binit gives a
lower bound for Bk in the case of large number of neu-
rons (see item 9 in Theorem 3 and eq. (40)). The ”big”
weights are sampled from Unif(0, Bk), i.e., Bk is an up-
per bound for the weights (see item 7 in Theorem 3).
Usually, we prefer Bk that are not unnecessary big, but
too small Bk leads to almost vanishing Ak (in the case
of d >

M2
k

3Vinit ).25 Thus, setting Binit = 0.05 is our recom-
mendation (but one could also use any other small value

23On the other hand one could argue that one wants the condi-
tional expectation of pre-activated neurons to be smaller because of
the smaller cut-offs. However, note especially for small values of
Einit, the actual expectation E

[
Mθ

i ((1, ..., 1))
]

at initialization de-
creases with increasing depth of the network, since the upper bound
can loose its tightness as depth increases especially for Einit < 1.

24Be careful, when translating the notation of our paper into the
notation of our code. Bk is b in our code and the biases b are de-
noted by bias in our code. binit does not translate to init b.

25Section “Proof of item 5” in the MATHEMATICA SCRIPT

shows that Ak = 0 iff ϵ = 0 and Binit ≤ 3M2
k+3dVinit

2Mkd
. This state-

including zero).
5. Parameter ϵ: (init little const in our code) pre-

vents weights from being initialized to zero, i.e., ϵ > 0
guarantees that no initial weight will be exactly zero, see
item 4 in Theorem 3. Conversely setting ϵ = 0 leads
weights to be zero with probability (1 − pk) (see item 5
in Theorem 3). If one chooses ϵ too large Bk can become
too large (see eq. (40)). Thus, setting ϵ = 0.1 is our rec-
ommendation (similarly to binit any other small value is
also admissible).

In the last section of our MATHEMATICA SCRIPT
we provide an interactive plot that shows how
Bk, Ak, pk,V

[
oi,kj − bi,kj

∣∣∣zi,k−1 = (1, . . . , 1)⊤
]

and

E
[
oi,kj

∣∣∣zi,k−1 = (1, . . . , 1)⊤
]

depend on di,k−1 for
different choices of our hyperparameters.

E.3 Visualization for Wider MVNNs
In this section, we provide an additional visualization for
a wider MVNN that uses our proposed new initialization
method.

In Figure 5, we present the results. Figure 5 confirms that
our initialization method also properly works for an even
larger MVNN-architecture with two hidden layers with 256
neurons per hidden layer. While the problems of the generic
initialization methods described in Section 3.2 increase as
the number of neurons increase, our initialization method
can deal with an arbitrarily large number of neurons.

F MILP
In this section, we provide more details on Section 3.3.

F.1 Proof of Theorem 2
In this section, we provide the proof of Theorem 2.

ment is equivalent to Ak = 0 iff Bk =
3M2

k+3dVinit

2Mkd
, which is the

minimal possible choice for Bk ∈ [
3M2

k+3dVinit

2Mkd
,∞). By continu-

ity Bk ≈ 3M2
k+3dVinit

2Mkd
=⇒ Ak ≈ 0. Note that in the other

case d ≤ M2
k

3Vinit , pk = 1 and thus Ak is irrelevant for the mixture
distribution from Definition E.1.
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Figure 6: Schematic representation of the jth neuron in
the kth layer. Shown are the output zi,k−1 of the previ-
ous (k − 1)st layer, the pre-activated output oi,kj of the
jth neuron in the kth layer, and the output of the jth neu-
ron of the kth layer after applying bRELU φ0,ti,kj

(oi,kj ) =

min(ti,kj ,max(0, oi,kj )) .

First, we show in Lemma 2 how to encode an arbitrary
single hidden MVNN layer into multiple linear constraints.
For this fix a bidder i ∈ N and an arbitrary layer k ∈
{1, . . . ,Ki − 1}. Recall, that zi,k−1 ∈ Rdi,k−1

denotes the
output of the previous layer (with zi,0 being equal to the in-
put x ∈ Rdi,0

= Rm) and that oi,k := W i,kzi,k−1 + bi,k

denotes the pre-activated output of the kth layer with li,k ≤
oi,k ≤ ui,k, where the tight lower/upper bound li,k/ ui,k can
be computed by forward-propagating the empty/full bundle.
Then the following Lemma holds:26

Lemma 2. Consider the following set of linear constraints:

zi,k ≤ αi,k · ti,k (49)

zi,k ≤ oi,k − li,k · (1− αi,k) (50)

zi,k ≥ βi,k · ti,k (51)

zi,k ≥ oi,k + (ti,k − ui,k) · βi,k (52)

αi,k ∈ {0, 1}di,k

, βi,k ∈ {0, 1}di,k

. (53)

Then it holds for the output of the kth layer φ0,ti,k(o
i,k) =

zi,k.

Proof. Recall, that oi,k := W i,kzi,k−1 + bi,k denotes the
pre-activated output of the kth layer. Let j ∈ {1, . . . , di,k}
denote the jth neuron of that layer and let li,kj ≤ oi,kj ≤ ui,k

j ,
where li,kj and ui,k

j are the tight box bounds computed
by forward propagating the empty, i.e., x = (0, . . . , 0),
and the full, i.e., x = (1, . . . , 1) bundle (see (Weissteiner
et al. 2022a, Appendix C.5 and Fact C.1)). Moreover, let
φ0,ti,kj

(oi,kj ) = min(ti,kj ,max(0, oi,kj )) with ti,kj ≥ 0 be the

output of the jth neuron in the kth layer. In Figure 6, we
present a schematic representation for a single neuron. In
Figure 7, we present an example of the bReLU activation
function.

26All vector inequalities should be understood component-wise.

-2 -1 0 1 t i, k
j =2 3 4

oi, k
j

0

1

2

0,
ti,k j

(o
i,k j

)

Figure 7: Example plot for agent i, layer k and neu-
ron j of the bReLU activation function φ0,ti,kj

(·) :=

min(ti,kj ,max(0, ·)) (Weissteiner et al. 2022a) with cutoff
ti,kj = 2 in the interval [−2, 4]. Shown are the pre-activated
output oi,kj of the jth neuron in the kth layer (x-axis) and
the output of the jth neuron in the kth layer after applying
bRELU (y-axis).

We distinguish the following three exclusive cases:

• Case 1: oi,kj < 0, i.e., the red line segment in Figure 7.
Per definition it follows that φ0,ti,kj

(oi,kj ) = 0. Setting

αi,k
j = βi,k

j = 0 in Equations (49) to (53) implies that
zi,kj = 0.

• Case 2: oi,kj ∈ [0, ti,kj ], i.e., the blue line segment in Fig-
ure 7. Per definition it follows that φ0,ti,kj

(oi,kj ) = oi,kj .

Setting αi,k
j = 1 and βi,k

j = 0 in Equations (49) to (53)
implies that zi,kj = oi,kj .

• Case 3: oi,kj > ti,kj , i.e., the green line segment in Fig-
ure 7. Per definition it follows that φ0,ti,kj

(oi,kj ) = ti,kj

Setting αi,k
j = βi,k

j = 1 in Equations (49) to (53) im-
plies that zi,kj = ti,kj .

Thus, in total zi,k = φ0,ti,kj
(oi,kj ).

Using Lemma 2, we can now proof Theorem 2 which pro-
vides our new and more succinct MILP formulation.

Proof. Consider the ML-based WDP from Equation (10).
For each bidder i ∈ N , we first set zi,0 equal to the input
bundle ai. Then we proceed by using Lemma 2 for k = 1,
i.e., we reformulate the output of the 1st layer as the linear
Equations (49) to (52). We iterate this procedure until we
have reformulated the last hidden layer, i.e, layer k = Ki−1.
Doing so for each bidder i ∈ N yields the desired MILP
formulation from Theorem 2.

F.2 Removing Constraints via Box Bounds
Let li,kj ≤ oi,kj ≤ ui,k

j , where li,kj and ui,k
j are the tight

box bounds computed by forward propagating the empty,
i.e., x = (0, . . . , 0), and the full, i.e., x = (1, . . . , 1) bundle
(see (Weissteiner et al. 2022a, Appendix C.5 and Fact C.1)).
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In the following cases one can remove the constraints and
corresponding variables in Lemma 2 and thus also in Theo-
rem 2.

• Case 1: 0 ≤ ti,kj < li,kj ≤ ui,k
j . Then one can simply set

zi,kj := ti,kj (54)

and remove the jth components from Equations (49)
to (53) of the corresponding layer k (oi,kj lies for sure in
the green line segment in Figure 7).

• Case 2: li,kj ≤ ui,k
j < 0 ≤ ti,kj . Then one can simply set

zi,kj := 0 (55)

and remove the jth components from Equations (49)
to (53) of the corresponding layer k (oi,kj lies for sure in
the red line segment in Figure 7).

• Case 3: 0 ≤ li,kj ≤ ui,k
j ≤ ti,kj . Then one can simply set

zi,kj := oi,kj (56)

and remove the jth components from Equations (49)
to (53) of the corresponding layer k (oi,kj lies for sure in
the blue line segment in Figure 7).

• Case 4: 0 ≤ li,kj ≤ ti,kj < ui,k
j . Then one can set

αi,k
j := 1 (57)

and only one binary decision variable for the jth neuron of
the kth layer remains. (oi,kj lies for sure in the union of the
blue and green line segment in Figure 7).

• Case 5: li,kj ≤ 0 < ui,k
j ≤ ti,kj . Then one can set

βi,k
j := 0 (58)

and only one binary decision variable for the jth neuron of
the kth layer remains. (oi,kj lies for sure in the union of the
red and blue line segment in Figure 7).

F.3 MILP for MVNNs with Linear Skip
Connection

In this section, we provide a simple extension of the MILP in
Theorem 2 for MVNNs with a linear skip connection. First,
we define MVNNs with a linear skip connection.
Definition F.1 (MVNN with Linear Skip Connection). An
MVNN with linear skip connectionMlskip,θ

i : X → R+ for
agent i ∈ N is defined as

Mlskip,θ
i (x) = W i,Kiφ0,ti,Ki

(
. . . φ0,ti,1(W

i,1x+ bi,1) . . .
)

(59)

+W i,0x,

• Ki+1 ∈ N is the number of layers (Ki−1 hidden layers),
• {φ0,ti,k}Ki−1

k=1 are the MVNN-specific activation functions
with cutoff ti,k > 0, called bounded ReLU (bReLU):

φ0,ti,k(·) := min(ti,k,max(0, ·)) (60)

• W i := (W i,k)Ki

k=0 with W i,k ≥ 0 and bi := (bi,k)Ki−1
k=1

with bi,k ≤ 0 are the non-negative weights and non-
positive biases of dimensions di,k × di,k−1 (except W i,0

which is of dimension di,Ki×di,0) and di,k, whose param-
eters are stored in θ = (W i, bi), where W i,0 represents
the linear skip connection.
For the MILP of an MVNN with linear skip connection

the only thing that changes is the objective, i.e., one needs
to replace Equation (11) in Theorem 2 with

max
a∈F,zi,k,αi,k,βi,k

{∑

i∈N

W i,Kizi,Ki−1 +W i,0zi,0

}
(61)

G Experiment Details
In this section, we present all details of our experiments from
Section 4.

G.1 SATS Domains
In this section, we provide a more detailed overview of the
three SATS domains27, which we use to experimentally eval-
uate BOCA:
• Local Synergy Value Model (LSVM) (Scheffel, Ziegler,

and Bichler 2012) has 18 items, 5 regional and 1 national
bidder. Complementarities arise from spatial proximity of
items.

• Single-Region Value Model (SRVM) (Weiss, Lubin, and
Seuken 2017) has 29 items and 7 bidders (categorized as
local, high frequency regional, or national) and models
large UK 4G spectrum auctions.

• Multi-Region Value Model (MRVM) (Weiss, Lubin, and
Seuken 2017) has 98 items and 10 bidders (local, regional,
or national) and models large Canadian 4G spectrum auc-
tions.

In the efficiency experiments in this paper (i.e., Table 1, Ta-
ble 3, Table 4, Table 5, and Table 6), we instantiated for each
SATS domain the 50 synthetic CA instances with the seeds
{10001, . . . , 10050}. We used SATS version 0.8.0. All ex-
periments were conducted on a compute cluster running De-
bian GNU/Linux 10 with Intel Xeon E5-2650 v4 2.20GHz
processors with 24 cores and 128GB RAM and Intel E5 v2
2.80GHz processors with 20 cores and 128GB RAM and
Python 3.7.10.

G.2 Hyperparameter Optimization
In this section, we provide details on the exact hyperparame-
ter ranges that we used in our HPO. Table 2 shows all hyper-
parameter ranges that we used. In the following, we explain
selected hyperparameters:
• DROPOUT PROBABILITY DECAY FACTOR: After each

epoch t the dropout probability for the next epoch t + 1
pt+1

drop is updated as: pt+1
drop = ptdrop ·κ, where κ denotes this

factor.
27We do not consider the simplest of all SATS domains, i.e.,

the Global Synergy Value Model (GSVM) (Goeree and Holt 2010),
since prior work already achieves 0% efficiency loss without in-
tegrating any notion of uncertainty (Weissteiner et al. 2022a), and
thus GSVM can be seen as already “solved”.
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CATEGORY HYPERPARAMETER RANGE LOG-UNIFORM SAMPLING

DATA NUMBER OF TRAINING DATA POINTS: |DTRAIN|
LSVM: 50
SRVM: 100
MRVM: 100

NUMBER OF TEST DATA POINTS: |DTEST|
LSVM: 210

SRVM: 213

MRVM: 213

NUMBER OF SATS INSTANCES 100

GENERIC MVNN ARCHITECTURE: (#NEURONS PER HIDDEN LAYER, #HIDDEN LAYERS)
LSVM: {(96, 1), (32, 2), (16, 3)}
SRVM: {(32, 2), (16, 3)}
MRVM: {(96, 1), (64, 1), (20, 2)}

LINEAR SKIP CONNECTION (SEE DEFINITION F.1) {TRUE, FALSE}
BATCH SIZE {|DTRAIN|/4, |DTRAIN|/2, |DTRAIN|}
EPOCHS {4000BATCH SIZE

|DTRAIN| , 4500BATCH SIZE
|DTRAIN| , 5000BATCH SIZE

|DTRAIN| , . . . , 8000BATCH SIZE
|DTRAIN| }

DROPOUT PROBABILITY [0, 0.8]

DROPOUT PROBABILITY DECAY FACTOR [0.75, 1.0]

GENERIC LOSS OPTIMIZER ADAM

LEARNING RATE

GSVM: [0.0002, 0.002]
LSVM: [0.001, 0.01]
SRVM: [0.0008, 0.006]
MRVM: [0.0007, 0.004]

YES

L2-REGULARIZATION: λ (SEE EQUATION (9)) [1E-10, 1E-3] YES

SMOOTH L1-LOSS β (SEE DEFINITION D.1) {1/32, 1/64, 1/128}
CLIP GRAD NORM [1E-6, 1] YES

NEW NOMU LOSS NUMBER OF ARTIFICIAL INPUT DATA POINTS: |DART| (SEE SECTION 3.1) {64,80,96,. . . ,512}
πSQR (SEE EQUATION (9)) 1

πEXP (SEE EQUATION (9)) [1E-6, 5E-1] YES

π (SEE EQUATION (9)) [64, 256] YES

π (SEE EQUATION (9)) 0.25

cEXP (SEE EQUATION (9)) [64, 256] YES

MVNN INITIALIZATION RANDOM INITIALIZED TS UNIF([0,1])

TRAINABLE TS {TRUE, FALSE}
INITIAL EXPECTATION: EINIT (SEE APPENDIX E.2) [1, 2]

INITIAL VARIANCE: VINIT (SEE APPENDIX E.2) [0.02, 0.16] YES

INITIAL BIAS: bINIT (SEE APPENDIX E.2) 0.05

INITIAL “B” CONSTANT: B INIT (SEE APPENDIX E.2) 0.05

INITIAL “LITTLE” CONSTANT: ϵ (SEE APPENDIX E.2) 0.1

Table 2: Hyperparameter ranges used in our HPO for random search. If not explicitly stated otherwise, the ranges apply to all
considered SATS domains.
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• CLIP GRAD NORM: Parameter for gradient clipping in
PYTORCH via torch.nn.utils.clip grad norm ().

• RANDOM INITIALIZED TS: Uniform distribution, which
is used to initialize the bReLU cutoffs ti,k i.i.d. uniformly
at random, i.e. ti,k ∼ Unif(A,B) (setting A = B makes
those cutoffs deterministic).

• TRAINABLE TS: If set to TRUE, the cutoffs of the
bReLU activation function {ti,k}Ki−1

k=1 are learned (i.e.,
trained) during the training procedure of the correspond-
ing MVNN.

Evaluation Metric HPO We motivate our choice of the
two terms in our evaluation metric Equation (18) in the fol-
lowing way:
1. The first term

|Dtest|−1
∑

(x,y)∈Dtest

max{(y−MuUB
i (x))q, (MuUB

i (x)−y)(1−q)}

of Equation (18) is the standard quantile-loss applied on
the test data set. Achieving a low value in this evaluation
metric is intuitively desirable since for values q > 0.5
we penalize predictions that are too low more severely
than predictions that are too high. It is also theoreti-
cally well motivated, since the true28 posterior q-credible
bound uUBα(x) := inf{y ∈ R : P

[
v̂i(x) ≤ y|Dtrain

]
≥

α} ∀x ∈ X would minimize this evaluation metric in
expectation. As we average this term over 100 different
value functions and as we use a large test data set for each
of them, this is a good approximation for the expectation.

2. The second term MAE(Dtrain) of Equation (18) might
appear to be counter-intuitive, because we are using the
training data set. However, in BO it is particularly im-
portant to fit well through the noiseless training data
points. First, the training data points in BO have already
been chosen to lie in a region of potential maximizers.
Second, in BO, relative uncertainty (Heiss et al. 2022,
Appendix A.2.1.) and particularly Desiderata D2 from
(Heiss et al. 2022) are more important than calibration as
discussed in (Heiss et al. 2022, Appendix D.2.3). Adding
a constant value to MuUB

i would calibrate them but
would not change the argmax Equation (2) (i.e., would
not change the selected queries). However, the 1st term of
our evaluation metric Equation (18) alone would assign
quite low values to MuUB

i of the form Mmean
i + c. For-

tunately, the second term MAE(Dtrain) prevents Equa-
tion (18) from assigning low values toMuUB

i of the form
Mmean

i + c.

G.3 Details MVNN Training
Both for the HPO as well as when running our efficiency
experiments, we use the following two techniques to achieve
numerically more robust results.
1. At the end of the training procedure we use the best

weights from all epochs, and not the ones from the last
epoch.

28By “true posterior” we denote the posterior coming from the
“true prior” that we sample our value functions v̂i from.

2. If at the end of the training procedure the R2 (coefficient
of determination) was below 0.9 on the training set, we
retrain once and finally select the model with the best
performance across these two attempts.

G.4 Details MILP Parameters
In our experiments we use for all MILPs CPLEX version
20.1.0. Furthermore, we set the following MILP parame-
ters: time limit = 600 sec, relative gap = 0.005,
integrality tol = 1e − 06, feasibility tol =
1e−09. Thus, the MILP solver stops as soon as it has found
a feasible integer solution proved to be within 0.5% of op-
timality and otherwise stops after 600 seconds. CPLEX is
automatically proving upper bounds for the relative gap (us-
ing duality) while approximating the solution for the MILP.
Thus, when CPLEX finds a solution with a relative gap of
at most 0.5%, we have a guarantee that the solution found
by CPLEX is at most 0.5% worse than the unknown true
solution. However, we have no a priori theoretical guaran-
tee that CPLEX is always able to find such a solution and
such a bound within 600 sec. Note that we set the time limit
to 600 sec to allow researchers with a limited budget to re-
produce our results hundreds of times with different seeds,
while achieving already SOTA. For an actual spectrum auc-
tion the additional costs for increasing the computational
budget by a factor of 10 would be negligible compared to
the statistical significant increase of 200 million USD of rev-
enue gained from using BOCA instead of MVNN in the case
of MRVM for example (see Appendix G.6). In our exper-
iments, the median relative gaps29 across all runs per do-
main in Table 1 were: LSVM=0.004987, SRVM=0.005000,
MRVM=0.004991, indicating that in most of the runs the
MILP solver found within the time limit an optimal solution
within tolerance.

G.5 Details BOCA Results
In this section, we provide detailed efficiency loss results of
BOCA. Specifically, we present in Table 3 efficiency loss
results for all four HPO winner configurations (with respect
to the evaluation metric based on the four different quan-
tile parameters q ∈ {0.6, 0.75, 0.9, 0.95}). Furthermore, we
present the relative revenue

∑
i∈N p(R)i/V (a∗) of an al-

location a∗R ∈ F and payments p(R) ∈ Rn
+ determined

by BOCA when eliciting reports R as well as the aver-
age runtime in hours for a single instance (i.e, how long
it would take to run a single auction). Note that since we
stop BOCA when we have already found an allocation with
0% efficiency loss, the relative revenue numbers (in LSVM
and SRVM) are pessimistic and typically increase if we let
BOCA run until Qmax is reached. For the runtime results the
opposite holds.

G.6 Revenue
Comparing the revenue of BOCA (see Table 3) to the rev-
enue of MVNN-MLCA and NN-MLCA in (Weissteiner
et al. 2022a, Table 6), we see that overall the mean relative

29In CPLEX, the “relative gap” always refers to the proven upper
bound of the relative gap.
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DOMAIN QUANTILE PARAMETER Q QINIT QROUND QMAX EFFICIENCY LOSS IN % ↓ REVENUE IN % ↑ RUNTIME IN HOURS

LSVM 0.60 40 4 100 0.69± 0.41 74.73± 3.68 4.90
0.75 40 4 100 0.69± 0.44 75.07± 3.71 5.53
0.90 40 4 100 0.39± 0.30 73.53± 3.72 15.64
0.95 40 4 100 0.40± 0.35 73.88± 3.93 15.58

SRVM 0.60 40 4 100 0.16± 0.04 54.34± 1.48 24.67
0.75 40 4 100 0.06± 0.02 54.22± 1.46 18.80
0.90 40 4 100 0.54± 0.08 53.89± 1.44 33.90
0.95 40 4 100 0.62± 0.11 54.25± 1.54 33.26

MRVM 0.60 40 4 100 7.88± 0.43 41.81± 1.06 61.48
0.75 40 4 100 8.44± 0.43 41.89± 0.93 34.91
0.90 40 4 100 7.77± 0.34 42.04± 0.89 28.15
0.95 40 4 100 7.98± 0.34 42.28± 1.00 27.92

Table 3: Detailed BOCA results. We present efficiency loss, relative revenue and runtime with our MVNN-based uUBMuUB
i

as Ai. Shown are averages including a 95%-normal-CI on a test set of 50 instances in all three considered SATS domains. The
best MVNN-based uUBs per domain (w.r.t. the quantile parameter q based on the lowest efficiency loss are marked in grey.

revenue is as good or better than SOTA. For LSVM (and
SRVM) this comparison could be flawed because we stop
computing further queries when reaching 0% efficiency loss
as described above.

However, for MRVM, we always compute all 100 queries
as can be seen in (Weissteiner et al. 2022a, Table 6). Thus
MRVM allows for a fair comparison of the relative rev-
enue. In MRVM, BOCA’s average relative revenue is 7.58%
points higher than the one of MVNN-MLCA , which cor-
responds to ∼ 400 million USD in this domain.30 A pair-
wise t-test with null hypothesis of equal means resulted in
pVAL = 5e−10. Moreover, with high statistical significance
(pVAL = 2e−4), BOCA achieves on average more than 200
million USD more than MVNN-MLCA. The comparison of
BOCA to NN-MLCA is also in favour of BOCA, but much
closer (and BOCA outperforms NN-MLCA in terms of so-
cial welfare with a pVAL = 2e−5, see Table 1).

The strength of BOCA with respect to revenue is quite
intuitive since each query that explores regions of high un-
certainty in the bundle space is beneficial for all economies,
while “exploiting” an allocation which leads to high effi-
ciency in one certain economy is mainly beneficial for this
certain economy (see Appendix A for the definition of main
and marginal economies). As discussed in (Weissteiner et al.
2022a, Appendix E.3), MLCA queries the main economy
more often than any other economy and revenue is high if
the social welfare in the marginal economies is high rela-
tive to the social welfare in the main economy. Thus, explo-
ration favours high revenue in settings (such as ours) where
the main economy is queried more often than the marginal
economies.

30The revenue of the 2014 Canadian 4G auction was 5.27 billion
USD (Ausubel and Baranov 2017). If one accumulates the revenue
of all spectrum auctions, one would obtain significantly larger val-
ues.

G.7 Understanding BOCA’s Performance
Increase

In this section, we present further efficiency loss results
when using only the mean MVNN Mmean

i of MNOMU
i in

MLCA as Ai. We call this method OUR-MVNN-MLCA.
Note that OUR-MVNN-MLCA does not integrate any ex-
plicit notion of uncertainty and is thus the same method
as MVNN-MLCA from Weissteiner et al. (2022a), but now
with our new proposed parameter initialization method (see
Section 3.2) and optimized with our HPO. Thus, this ex-
periment investigates how much of the performance gain
is attributed to the integration of our notion of uncertainty
compared to the other changes we made (i.e., our parameter
initialization method and our HPO).

In Figure 8, we present the efficiency loss path plots for
OUR-MVNN-MLCA (yellow) compared to the results pre-
sented in Figure 4 in the main paper. For each domain we
use for OUR-MVNN-MLCA (yellow) the best mean mod-
els Mmean

i from MNOMU
i based on the smallest efficiency

loss (i.e., the grey-marked winners from Table 4).
As expected, we see that BOCA, i.e., integrating a no-

tion of uncertainty, is as good or better than OUR-MVNN-
MLCA, i.e., only using the mean model. This effect is sta-
tistically significant in SRVM, while in LSVM and MRVM
both lead to results that are statistically on par. The degree
to which exploration via a notion of uncertainty is benefi-
cial depends on intrinsic characteristics of the domain (e.g.,
the dimensionality or multi-modality of the objective func-
tion). Specifically, in MRVM where the query budget of
Qmax = 100 is extremely small compared to the dimension-
ality of the domain (i.e., MRVM has m = 98 items and
n = 10 bidders thus the dimensionality is 980 = 98 · 10),
it appears that exploitation might be beneficial compared to
adding exploration (De Ath et al. 2021) and the power of
adding exploration may reveal itself only when increasing
the query budget. However, in LSVM and SRVM (m = 18
and m = 29), we see that adding exploration with an uUB
MuUB

i decreases the efficiency loss. Finally, these results
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Figure 8: Efficiency loss paths (i.e., regret plots) for Qinit = 40 of OUR-MVNN-MLCA winners (yellow) from Table 4 compared
to BOCA winners (green) from Table 3 and to the results presented in (Weissteiner et al. 2022a) of MVNNs (blue) and plain
NNs (red). Shown are averages with 95% CIs over 50 instances.

also suggest that our proposed new parameter initialization
method for MVNNs discussed in Section 3.2 tends to be bet-
ter than a simple generic one, i.e, OUR-MVNN-MLCA is in
every domain on average better than MVNN-MLCA.

Finally, in Table 4 we present the complete results of this
experiment for all quantile parameters q per domain.

We refer to Appendix G.8 for an additional comparison
of BOCA and OUR-MVNN-MLCA for a reduced number
of initial queries.

G.8 Reduced Number of Initial Queries

In this section, we present results of BOCA and OUR-
MVNN-MLCA for a reduced number of initial random
queries. Specifically, we chose Qinit = 20 initial random
queries (instead of Qinit = 40 that were selected in the main
set of experiments following prior work; see Table 3 and Ta-
ble 4). All other parameters are left untouched.

Note that the previous literature used only Qinit = 40,
since batching reduces the cost per queries in practice, i.e.,
not only the queries are costly but also the rounds are costly.
Reducing Qinit from 40 to 20 increases the number of rounds
from 15 to 20 (given that Qround = 4 queries, i.e., 3 marginal
economy queries and 1 main economy query, are asked per
round). Furthermore, the experiments get computationally
more costly as we reduce Qinit, because we need to perform
more (MV)NN trainings and solve more MILPs.

Because of this, we only compare BOCA vs. OUR-
MVNN-MLCA in this section (as in Appendix G.7). Thus,
in this section, we do not study the benefits of our new ini-
tialization method (Section 3.2), and only focus on studying
the benefits of incorporating our proposed uncertainty model
(Section 3.1).

In Table 5, we present the BOCA results for Qinit = 20. To
isolate the effect of the integrated uncertainty in BOCA, we
present the corresponding results for OUR-MVNN-MLCA
for Qinit = 20 in Table 6, (see Appendix G.7 for a description
of this experiment setting).

Effect of Qinit Parameter Comparing Table 5 to Table 3,
we see that by reducing the randomly sampled initial queries
from Qinit = 40 to Qinit = 20, BOCA’ efficiency loss tends to
be on average smaller for LSVM and MRVM and, perhaps
surprisingly, larger for SRVM. However, by comparing the
grey-marked winner models in each domain, we see that it
does not make a statistically significant difference whether
Qinit is chosen to be 20 or 40.

BOCA vs. OUR-MVNN-MLCA for Qinit = 20 Also
when comparing BOCA to OUR-MVNN-MLCA for a re-
duced number of Qinit = 20 initial queries, i.e., comparing
Table 5 to Table 6, we find that in each domain the BOCA
winner model and the OUR-MVNN-MLCA winner model
perform statistically on par (even though the average effi-
ciency loss of the BOCA winner model is always better than
that of the OUR-MVNN-MLCA winner model). This can
also be seen in the efficiency loss paths (i.e., regret plots)
shown in Figure 9. Furthermore, Figure 9 suggests that for
a small query budget of Qmax < 60, exploitation might be
more important, while for query budgets larger than 80, i.e.,
Qmax > 80, exploration might pay off more.
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DOMAIN QUANTILE PARAMETER Q QINIT QROUND QMAX EFFICIENCY LOSS IN % ↓ REVENUE IN % ↑ RUNTIME IN HOURS

LSVM 0.60 40 4 100 0.66± 0.44 74.93± 3.48 4.62
0.75 40 4 100 0.61± 0.42 75.14± 3.53 4.16
0.90 40 4 100 0.53± 0.41 73.80± 3.88 10.44
0.95 40 4 100 0.56± 0.40 74.83± 3.67 10.31

SRVM 0.60 40 4 100 0.22± 0.04 54.24± 1.51 21.18
0.75 40 4 100 0.21± 0.05 54.47± 1.51 17.81
0.90 40 4 100 0.36± 0.06 54.51± 1.49 20.03
0.95 40 4 100 0.35± 0.05 54.51± 1.48 19.14

MRVM 0.60 40 4 100 7.86± 0.42 41.91± 0.91 41.51
0.75 40 4 100 8.41± 0.40 40.28± 0.92 6.89
0.90 40 4 100 7.51± 0.47 40.22± 0.96 4.91
0.95 40 4 100 8.01± 0.48 40.62± 1.08 9.03

Table 4: Detailed OUR-MVNN-MLCA results. We present efficiency loss, relative revenue and runtime of OUR-MVNN-
MLCA, i.e., MLCA with our MVNN-based meanMmean

i as Ai. Shown are averages including a 95%-normal-CI on a test set
of 50 instances in all three considered SATS domains. The bestMmean

i per domain (w.r.t. the quantile parameter q) based on
the lowest efficiency loss is marked in grey.

DOMAIN QUANTILE PARAMETER Q QINIT QROUND QMAX EFFICIENCY LOSS IN % ↓ REVENUE IN % ↑ RUNTIME IN HOURS

LSVM 0.60 20 4 100 0.79± 0.47 73.74± 3.65 5.93
0.75 20 4 100 0.61± 0.42 73.99± 3.56 7.31
0.90 20 4 100 0.37± 0.24 73.18± 3.60 23.99
0.95 20 4 100 0.16± 0.20 72.84± 3.45 22.21

SRVM 0.60 20 4 100 0.14± 0.04 53.86± 1.44 32.07
0.75 20 4 100 0.12± 0.09 53.87± 1.55 25.89
0.90 20 4 100 0.72± 0.11 53.94± 1.59 45.20
0.95 20 4 100 0.75± 0.11 54.09± 1.55 45.09

MRVM 0.60 20 4 100 7.94± 0.36 42.14± 0.98 68.84
0.75 20 4 100 8.31± 0.31 40.92± 0.73 27.09
0.90 20 4 100 7.92± 0.33 42.61± 0.89 21.70
0.95 20 4 100 7.45± 0.37 41.19± 0.86 21.51

Table 5: Detailed BOCA results for a reduced number of Qinit = 20 initial random queries. We present efficiency loss, relative
revenue and runtime of MLCA with our MVNN-based uUBMuUB

i as Ai. Shown are averages including a 95%-normal-CI on
a test set of 50 instances in all three considered SATS domains. The best MVNN-based uUBs per domain (w.r.t. the quantile
parameter q) based on the lowest efficiency loss are marked in grey.

DOMAIN QUANTILE PARAMETER Q QINIT QROUND QMAX EFFICIENCY LOSS IN % ↓ REVENUE IN % ↑ RUNTIME IN HOURS

LSVM 0.60 20 4 100 0.71± 0.43 73.73± 3.57 4.87
0.75 20 4 100 0.71± 0.45 74.71± 3.32 5.11
0.90 20 4 100 0.58± 0.38 74.81± 3.51 12.76
0.95 20 4 100 0.59± 0.34 73.88± 3.64 14.11

SRVM 0.60 20 4 100 0.18± 0.04 54.13± 1.45 30.47
0.75 20 4 100 0.16± 0.04 54.32± 1.49 28.62
0.90 20 4 100 0.29± 0.06 54.55± 1.51 31.74
0.95 20 4 100 0.30± 0.05 54.35± 1.58 30.39

MRVM 0.60 20 4 100 7.73± 0.43 42.51± 0.75 25.39
0.75 20 4 100 8.14± 0.40 41.46± 0.85 7.70
0.90 20 4 100 7.73± 0.41 41.42± 0.85 10.06
0.95 20 4 100 7.52± 0.36 41.33± 1.11 9.44

Table 6: Detailed OUR-MVNN-MLCA results for a reduced number of Qinit = 20 initial random queries. We present efficiency
loss, relative revenue and runtime of OUR-MVNN-MLCA, i.e., MLCA with our MVNN-based meanMmean

i as Ai. Shown are
averages including a 95%-normal-CI on a test set of 50 instances in all three considered SATS domains.
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instances.
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We introduce a machine learning-powered course allocation mechanism. Concretely, we extend the state-
of-the-art Course Match mechanism with a machine learning-based preference elicitation module. In an
iterative, asynchronous manner, this module generates pairwise comparison queries that are tailored to each
individual student. Regarding incentives, our machine learning-powered course match (MLCM) mechanism
retains the attractive strategyproofness in the large property of Course Match. Regarding welfare, we perform
computational experiments using a simulator that was fitted to real-world data. Our results show that,
compared to Course Match, MLCM increases average student utility by 4%-9% and minimum student utility
by 10%-21%, even with only ten comparison queries. Finally, we highlight the practicability of MLCM and the
ease of piloting it for universities currently using Course Match.
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1 INTRODUCTION
The course allocation problem arises when educational institutions assign bundles of courses to
students [Budish and Cantillon, 2012]. Each course has a limited number of indivisible seats and
monetary transfers are prohibited for fairness reasons. What makes this problem particularly
challenging is the combinatorial structure of the students’ preferences, as students may view
certain courses as complements or substitutes [Budish and Kessler, 2022].

1.1 Course Match
The state-of-the-art practical solution to the course allocation problem is the Course Match (CM)
mechanism by Budish et al. [2017], which provides a good trade-off between efficiency, fairness,
and incentives. CM has now been adopted in many universities such as the Wharton School at the
University of Pennsylvania and Columbia Business School.
CM uses a simple reporting language to elicit students’ preferences over schedules (i.e., course

bundles). Concretely, CM offers students a graphical user interface (GUI) to enter a base value
between 0 and 100 for each course, and an adjustment value between −200 and 200 for each pair of
courses. Adjustments allow students to report complementarities and substitutabilities between
courses, up to pairwise interactions. The total value of a schedule is then the sum of the base values
reported for each course in that schedule plus any adjustments (if both courses are in the schedule).
Prior to the adoption of CM in practice, Budish and Kessler [2022] performed a lab experiment

to evaluate CM. Regarding efficiency, they found that, on average, students were happier with CM
compared to the Bidding Points Auction [Sönmez and Ünver, 2010], the previously used mechanism.
Regarding fairness, students also found CM fairer. Regarding the reporting language, they found
that students were able to report their preferences “accurately enough to realize CM’s theoretical
benefits.” Given these positive findings, Wharton was then the first school to switch to CM.

1.2 Preference Elicitation Shortcomings of Course Match
However, Budish et al. [2017] were already concerned that the CM language may not be able to
fully capture all students’ preferences. Furthermore, they mentioned that some students might find
it non-trivial to use the CM language and might therefore make mistakes when reporting their
preferences. Indeed, the lab experiment by Budish and Kessler [2022] revealed several shortcomings
of CM in this regard.
First, students made very limited use of the CM language: on average, students only reported

a base value for half of the 25 courses in the experiment. Furthermore, the average number of
pairwise adjustments was only 1.08 (out of 300), and the median was 0. This suggests that cognitive
limitations negatively affect how well students can report their preferences using the CM language.
Second, in addition to not reporting part of their preferences, Budish and Kessler [2022] provided
evidence that students are also inaccurate when they do report their preferences.
Budish and Kessler [2022] found that both of these reporting mistakes negatively affected the

welfare of CM. In their experiment, about 16% of students would have preferred another schedule
of courses, with a median utility difference for these schedules of 13%. Thus, preference elicitation
in course allocation still remains an important challenge.

1.3 Machine Learning-powered Preference Elicitation
To address this challenge, we turn tomachine learning (ML). The high-level idea is to train a separate
ML model for each student based on that student’s reports after using the CM language (i.e., the
GUI). These ML models can then be used in anML-powered preference elicitation algorithm that asks
each student a sequence of carefully selected queries (thus, enabling them to correct the reporting
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mistakes they made in the GUI). Based on those queries, the student’s ML model is updated in
real-time and the next query is generated. At the end, the mechanism allocates schedules to students
based on their trained ML models.

With our approach, we build on the ideas developed in a recent stream of papers on ML-powered
preference elicitation. Lahaie and Parkes [2004] and Blum et al. [2004] were the first to combine ML
and mechanism design, studying the relation between learning theory and preference elicitation.
Brero et al. [2017, 2018] were the first to integrate an ML-powered preference elicitation component
into a practical combinatorial auction mechanism. They used support vector regression (SVR) to
learn bidders’ value functions and to iteratively generate new queries in each auction round. In
[Brero et al., 2021], the authors proposed the MLCA mechanism and showed that it achieves higher
allocative efficiency than the widely-used combinatorial clock auction [Ausubel et al., 2006]. In
recent years, there has been a stream of papers further improving the ML capability of the MLCA
mechanism, which we discuss in Section 2.

While these works are important pre-cursors to the present paper, there are several noteworthy
differences. First, these papers used value queries as the interaction paradigm (i.e., asking agents a
query of the form “What is your value for bundle {XYZ}”), which would be unnatural in course
allocation. Instead, we use pairwise comparison queries (i.e., asking students “Do you prefer course
schedule A or B?”). Importantly, a pairwise comparison query is a simpler type of query, known to
have low cognitive load [Chajewska et al., 2000, Conitzer, 2009]. Second, our goal is to build on top
of the CM language; thus, we must be able to handle the cardinal input that students provide via
the CM reporting language as well as the ordinal feedback from answering comparison queries.
Third, while an auctioneer can require bidders in an auction to participate in a synchronous way
(i.e., submitting a bid in every round), we must allow students to interact with the mechanism
in an asynchronous manner (i.e., allowing students to answer a sequence of comparison queries
without having to wait on other students). Finally, MLCA could only use the ML models to elicit
information, but it could not use them to determine the final outcome, as that would often lead to
an individual rationality violation. In contrast, in our setting (without monetary transfers), we can
also use the ML models to determine the final allocation, which leads to additional efficiency gains.1

1.4 Overview of Contributions
In this paper, we introduce themachine-learning based course match (MLCM) mechanism (Section 4).
MLCM builds on top of CM by improving its preference elicitation component. Importantly, our
design makes the process of upgrading from CM to MLCM particularly simple for the universities
and seamless for their students.
First, students use the CM reporting language (i.e., via the same GUI). As in CM, this input is

required from all students. Second, MLCM uses these initial reports to train a separate ML model
for each student so that it can predict each student’s utility for any possible course schedule. Third,
MLCM uses an ML-powered preference elicitation algorithm to generate pairwise comparison
queries that are tailored to each student, and students simply answer which schedule they prefer.
Based on this feedback, the ML model is retrained and the next query is generated. Importantly,
this phase is optional – each student can answer as many such queries as she wants (including
none). However, the more queries she answers, the better the ML model will typically approximate
her true preferences, which will benefit her in the last phase, where MLCM computes the final
allocation based on all ML models (in case a student has answered no queries, then only her GUI
reports will be used for the final allocation calculation).

1An alternative approach would be to only use the trained ML models to update the student’s GUI reports, and to then run
the original CM mechanism on the updated GUI reports. See Section 8 for a discussion on this approach.
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To understand the theoretical properties of MLCM, we extend the theoretical guarantees of CM
to MLCM (Section 4.3). Importantly, we explain why MLCM is also strategyproof in the large.2
To evaluate MLCM, we introduce a new course allocation simulation framework (Section 5).

The first component is a realistic student preference generator, which is designed such that each
student’s complete preferences can be encoded in a succinctMixed Integer Program (MIP). This allows
computing a benchmark allocation given the students’ true preferences. The second component
models the students’ reporting mistakes when interacting with the CM language. We calibrate the
framework’s parameters based on real-world data from Budish and Kessler [2022].
In Section 6, we instantiate the ML model used by MLCM. We show experimentally that the

recently introduced monotone-value neural networks (MVNNs) [Weissteiner et al., 2022a] exhibit the
best generalization performance in our domain, while also being MIP-formalizable, such that the
corresponding utility maximization problem can be solved fast enough in practice. Furthermore, we
show how the cardinal input from the CM language and the ordinal feedback from the comparison
queries can be combined when training neural networks.

In Section 7, we empirically evaluate the performance of MLCM.We find that MLCM significantly
outperforms CM in terms of average student utility as well as minimum student utility, even with
only five comparison queries (Section 7.2). Furthermore, we show that these results are robust to
changes in students’ reporting mistakes (Section 7.3), we show the expected benefit of an individual
student unilaterally opting into MLCM (Section 7.4), we show that MLCM also outperforms CM
when students have simple additive preferences (Section 7.5), and we show that the runtime of our
mechanism scales gracefully in the number of courses (Section 7.6).
In Section 8, we put our results into perspective and discuss alternative approaches one could

have taken. Finally, we conclude in Section 9 and discuss interesting avenues for future work.

2 RELATEDWORK
Our work is related to the research on course allocation and ML-based preference elicitation.

2.1 Course Allocation
The course allocation problem is an instance of the combinatorial assignment problem, for which
several impossibility results establish a tension between welfare, incentives, and fairness. For
example, it is known that the only mechanisms for this problem that are ex-post Pareto efficient
and strategyproof are dictatorships [Hatfield, 2009, Pápai, 2001].

Multiple empirical studies have pointed out design flaws of course allocation mechanisms used
in practice. Budish and Cantillon [2012] showed that the Harvard Business School (HBS) draft
mechanism [Brams and Straffin Jr, 1979] creates significant incentives for students to misreport,
leading to large welfare losses. Similarly, the commonly used Bidding Points Auction [Sönmez and
Ünver, 2010] implicitly assumes that students have positive value for left-over virtual currency,
which harms incentives and ultimately leads to allocations that are neither efficient nor fair.

Motivated by these design flaws, Budish [2011] proposed a new mechanism for the combinatorial
assignment problem called approximate competitive equilibrium from equal incomes (A-CEEI). A-
CEEI circumvents the impossibility results previously mentioned by making slight compromises in
all three of those dimensions of interest. Specifically, A-CEEI is approximately efficient, satisfies
desirable fairness criteria (envy bounded by a single good and (𝑛 + 1)-maximin share guarantee),
and is strategyproof in the large [Azevedo and Budish, 2019]. Later, Budish et al. [2017] introduced
CM as the practical implementation of A-CEEI. We present A-CEEI and CM in Section 3.

2A mechanism is strategyproof in the large if, for a large enough number of students and any full-support i.i.d. distribution
of opponent reports, reporting truthfully is approximately interim optimal [Azevedo and Budish, 2019].
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Diebold et al. [2014] modeled course allocation as a two-sided matching problem where in-
structors also have preferences over students, which makes the problem quite different from
combinatorial assignment. Bichler and Merting [2021] studied the assignment of tutorials for
mandatory courses, which is more similar to a scheduling problem.

2.2 Machine Learning-based Preference Elicitation
Preference elicitation (PE) using comparison queries has received a lot of attention in the ML com-
munity. Bayesian approaches are a natural candidate for PE due to their ability to explicitly model
uncertainty of users’ utility functions. Chu and Ghahramani [2005] and Bonilla et al. [2010] used
Gaussian processes (GPs) to learn and elicit preferences. In particular, Chu and Ghahramani [2005]
used GPs for the problem of learning preferences given a (fixed) set of comparison queries. However,
they did not answer the question of which comparison query to ask. Bonilla et al. [2010] addressed
this question by iteratively selecting a pairwise comparison query that maximizes the expected value
of information (EVOI). However, their approach is impractical in our setting, as the EVOI needs
to be analytically calculated for each possible comparison query, thus scaling quadratically in the
number of alternatives (course schedules in our case), which is already polynomial in the number of
courses. Guo and Sanner [2010] introduced an approximate PE framework for performing efficient
closed-form Bayesian belief updates and query selection for a multi-attribute belief state, speeding
up the evaluation of EVOI heuristics. However, their approach is inherently limited as it can only
model additive utility functions, and is thus not well-suited for course allocation, where students
have more complex, non-additive preferences. In general, GPs are also not well suited to our setting
due to the high dimensionality of the input space and the integrality constraints that make GP
optimization intrinsically difficult.

Ailon [2012] took a different approach, proposing an active learning algorithm that, using binary
comparison queries which may be non-transitive, can learn an almost optimal linear ordering of a
set of alternatives with an almost optimal query complexity, which is further improved by Ailon
et al. [2011]. However, these approaches are impractical for course allocation because they would
require more than one hundred thousand queries per student. The reason for this large number of
queries is that they do not exploit any notion of similarity between schedules.
Most related to our work is the research on ML-powered combinatorial auctions using SVRs

mentioned above (see Section 1.3). Weissteiner and Seuken [2020] extended this work further by
using neural networks (NNs), which further increased the efficiency. Weissteiner et al. [2022b]
introduced Fourier-sparse approximations for the problem of learning combinatorial preferences.
Weissteiner et al. [2022a] introduced MVNNs, which are specifically designed to learn monotone
combinatorial preferences, resulting in a further efficiency increase. Finally, Weissteiner et al.
[2023] proposed a Bayesian optimization-based combinatorial assignment (BOCA) mechanism which
includes a notion of posterior model uncertainty [Heiss et al., 2022] to properly balance the explore-
exploit dilemma during the preference elicitation phase in a principled manner.

3 PRELIMINARIES
In this section, we first present our formal model and then review A-CEEI and its practical imple-
mentation, CM.

3.1 Formal Model
Let 𝑁 = {1, . . . , 𝑛} denote the set of students indexed by 𝑖 , and let𝑀 = {1, . . . ,𝑚} denote the set of
courses indexed by 𝑗 . Each course 𝑗 has a capacity 𝑞 𝑗 ∈ N>0. Each student 𝑖 has a set Ψ𝑖 ⊆ 2𝑀 of
permissible course schedules. Ψ𝑖 encapsulates both scheduling constraints as well as any student-
specific constraints. An indicator vector 𝑥 ∈ X = {0, 1}𝑚 denotes a course schedule where 𝑥 𝑗 = 1
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iff course 𝑗 ∈ 𝑀 is part of schedule 𝑥 . We let 𝑎 = (𝑎𝑖 )𝑖∈𝑁 ∈ X𝑛 denote an allocation of course
schedules to students, where 𝑎𝑖 is the course schedule of student 𝑖 . A course 𝑗 is oversubscribed in
an allocation 𝑎 iff

∑𝑛
𝑖=1 𝑎𝑖 𝑗 > 𝑞 𝑗 and undersubscribed iff

∑𝑛
𝑖=1 𝑎𝑖 𝑗 < 𝑞 𝑗 . We denote the set of feasible

allocations by F = {𝑎 ∈ X𝑛 :
∑𝑛

𝑖=1 𝑎𝑖 𝑗 ≤ 𝑞 𝑗 ∀𝑗 ∈ 𝑀,𝑎𝑖 ∈ Ψ𝑖 ∀𝑖 ∈ 𝑁}. Students’ preferences over
course schedules are represented by their (private) utility functions 𝑢𝑖 : X −→ R+, 𝑖 ∈ 𝑁 , i.e., 𝑢𝑖 (𝑥)
represents student 𝑖’s utility for course schedule 𝑥 .

3.2 Approximate Competitive Equilibrium from Equal Incomes (A-CEEI)
Budish [2011] proposed the A-CEEI mechanism as an approximation to the competitive equilibrium
from equal incomes (CEEI). A-CEEI simulates a virtual economy where students are assigned
budgets that are approximately (but not exactly) equal. To introduce A-CEEI formally, we represent
each student 𝑖’s complete ordinal preferences by ⪯𝑖 . Each student 𝑖 is allocated a budget 𝑏𝑖 ∈
[1, 1 + 𝛽], 𝛽 > 0. Next, approximate market-clearing prices 𝑝∗ ∈ R𝑚≥0 are calculated (where 𝑝∗𝑗 is the
price for course 𝑗 ) such that, when each student 𝑖 purchases her favorite permissible schedule 𝑎∗𝑖
within her budget, the market approximately clears. Formally, given an allocation 𝑎∗, the clearing
error 𝑧 𝑗 for course 𝑗 and price 𝑝∗𝑗 is

𝑧 𝑗 B

{∑
𝑖 𝑎
∗
𝑖 𝑗 − 𝑞 𝑗 𝑝∗𝑗 > 0,

max
{∑

𝑖 𝑎
∗
𝑖 𝑗 − 𝑞 𝑗 , 0

}
𝑝∗𝑗 = 0.

(1)

The clearing error of the allocation 𝑎∗ is defined as 𝛼 B
√∑

𝑗 𝑧
2
𝑗 . Following Budish [2011], we say

that a price vector 𝑝∗ approximately clears the market if 𝛼 ≤ √𝜎𝑚/2, with 𝜎 = min{2𝑘,𝑚}, where
𝑘 is the maximum number of courses in a permissible schedule.3 Each student 𝑖 is allocated her
utility-maximizing schedule 𝑎∗𝑖 that is permissible and within her budget. Formally,

𝑎∗𝑖 ∈ arg max
⪯𝑖

[
𝑎𝑖 ∈ Ψ𝑖 :

∑
𝑗

𝑎𝑖 𝑗𝑝
∗
𝑗 ≤ 𝑏𝑖

]
. (2)

Then [𝑎∗, 𝑏, 𝑝∗] constitutes an (𝛼, 𝛽)-A-CEEI.

3.3 Course Match (CM)
A-CEEI has many attractive properties (see Section 2), but it cannot be directly implemented in
practice for multiple reasons. First, A-CEEI assumes access to the students’ full ordinal preferences.
Second, A-CEEI only approximately clears the market, which implies that some courses could
be oversubscribed (which would violate a hard capacity constraint in many business schools,
where seats cannot easily be added to a classroom). Third, the combinatorial allocation problem
is PPAD-complete [Othman et al., 2016]; thus, we do not have a polynomial-time algorithm to
solve it. To address these challenges, Budish et al. [2017] introduced Course Match (CM) as a
practical implementation of A-CEEI. In CM, students first report their preferences using the GUI
(see Section 1.1); the final allocation is then computed in three stages (see Figure 1).

Stage 1. In Stage 1, CM uses tabu search [Glover et al., 2018] to find a price vector that constitutes
an A-CEEI. To do this, for every price vector examined, for every student, a MIP has to be solved to
determine the student’s utility-maximizing schedule within her budget.

Stage 2. In Stage 2, CM removes oversubscription by iteratively increasing the price of the most
oversubscribed course until no oversubscribed courses are left.
3Budish [2011] proved that for any 𝛽 > 0 such a price vector always exists.
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Stage 3. In Stage 3, CM reduces undersubscription by first increasing all students’ budgets by a
fixed percentage and then allowing students, one after the other, to “purchase” courses that still
have seats available.

4 MACHINE LEARNING-POWERED COURSE MATCH (MLCM)
In this section, we introduce our ML-powered Course Match (MLCM) mechanism and discuss its
theoretical properties. Here, we describe MLCM for a generic ML model denotedM. In Section 6,
we instantiate the ML model using MVNNs.

4.1 Details of MLCM

GUI Reports

CM Stages 1-3

CM

GUI Reports

ML Model 
Initialization

Approximate 
Price Calculation

ML Model 
Retraining

Comparison 
Queries

MLCM

Phase 1

Phase 2

Phase 3

Phase 5

Phase 4

CM Stages 1-3

Fig. 1. Schematic overview of CM and MLCM

MLCM proceeds in five phases (see Figure 1).

Phase 1: Preference Reporting via GUI. In
Phase 1, students initially report their prefer-
ences using the same reporting language (and
same GUI) as in CM (see Section 1.1). After this
phase, each student can decide whether she
also wants to use MLCM’s ML-based prefer-
ence elicitation feature (which we will simply
call the “ML feature” going forward). If a stu-
dent decides to “opt out”, then MLCM treats
that student’s preference reports in the same
way as CM would, without employing any ML.

Phase 2: ML Model Initialization. In Phase 2,
for each student 𝑖 that has not opted out of
the ML feature, MLCM creates an initial ML
model of her utility function based on her GUI
reports from Phase 1. To do so, MLCM creates
a cardinal training data set 𝐷𝑖,card consisting of ℓ schedule-value pairs implied by student 𝑖’s reports
from Phase 1, i.e., 𝐷𝑖,card = {(𝑥𝑖𝑘 , 𝑢𝑖 (𝑥𝑖𝑘 )}𝑘=1...ℓ (see Appendix A for details) and then uses 𝐷𝑖,card
to train an initial ML modelM0

𝑖 : X → R+, whereM0
𝑖 (𝑥) denotes the ML model’s prediction of

student 𝑖’s utility for schedule 𝑥 . See Section 6, for how to choose the ML model class.

Phase 3: Approximate Price Calculation. Next, MLCM runs Stage 1 of CM to calculate approxi-
mately market-clearing prices for all courses. As those prices are not final, but are only used to
steer the preference elicitation in Phase 4, one can use less computation time for this step than
in Phase 5, accepting a larger clearing error.4 For those students who have opted out of the ML
feature, MLCM uses the values implied by the CM GUI; for every other student 𝑖 , it uses the values
predicted by the ML modelM0

𝑖 .

Phase 4: ML-based Preference Elicitation. In this phase, MLCM uses an ML-powered algorithm
to generate a sequence of comparison queries (CQs) for every individual student. The algorithm
has three main steps: (1) maintain an ordered list 𝑆𝑖 of already queried schedules; (2) use the ML
model to determine the next schedule 𝑥 with the highest predicted value; (3) use “binary search” to
generate a sequence of CQs, until the new schedule 𝑥 can be sorted into 𝑆𝑖 . Note that students can
4If it was desired that students could immediately start answering comparison queries after reporting their initial preferences
via the GUI, one could also use last year’s prices for Phase 4 (and setting the price of new courses to some average price). Of
course, if students’ preferences for courses have changed significantly, or if the new courses are particularly popular or
unpopular, then using last year’s prices would lower the effectiveness of the ML-powered elicitation phase.
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ALGORITHM 1: ML-powered CQ Generation for Student 𝑖
Input: Initial ML modelM0

𝑖 , cardinal data set 𝐷𝑖,card, price vector 𝑝 , permissible schedules Ψ𝑖 , budget 𝑏𝑖
Output: Updated ML modelM𝑡

𝑖

1: 𝑆0
𝑖 = {𝑥 ∈ arg max𝑥 ′∈Ψ𝑖∩𝐷𝑖,card:𝑥 ′ ·𝑝≤𝑏𝑖 M0

𝑖 (𝑥 ′)}
2: for 𝑡 = 1 to∞ do
3: 𝑥 ∈ arg max𝑥 ′∈Ψ𝑖 ,𝑥 ′∉𝑆𝑡−1

𝑖 :𝑥 ′ ·𝑝≤𝑏𝑖 M𝑡−1
𝑖 (𝑥 ′)

4: 𝐶𝑄𝑠𝑡 = BinarySearchQueries(𝑆𝑡−1
𝑖 , 𝑥)

5: if student 𝑖 answered all 𝐶𝑄𝑠𝑡 then
6: 𝑆𝑡𝑖 = Sort(𝑆𝑡−1

𝑖 , 𝑥) based on answers to 𝐶𝑄𝑠𝑡
7: 𝐷𝑡

𝑖,ord = All pairwise orderings implied by 𝑆𝑡𝑖
8: M𝑡

𝑖 = Train(𝐷𝑖,card, 𝐷
𝑡
𝑖,ord)

9: else
10: 𝐷𝑡

𝑖,ord = 𝐷𝑡−1
𝑖,ord∪ {answers to 𝐶𝑄𝑠𝑡 }

11: M𝑡
𝑖 = Train(𝐷𝑖,card, 𝐷

𝑡
𝑖,ord)

12: break
13: end if
14: end for
15: returnM𝑡

𝑖

answer as many of these CQs as they like, and stop at any time. Algorithm 1 formally describes the
process. In Line 1, we create the initial set of totally ordered schedules 𝑆0

𝑖 , which only contains the
one schedule 𝑥 ′ from the cardinal training set with the highest predicted valueM0

𝑖 (𝑥 ′). Then we
iteratively repeat the following procedure: In Line 3, we determine the highest-valued schedule 𝑥
according toM𝑡−1

𝑖 that is not contained in 𝑆𝑡−1
𝑖 , subject to feasibility and budget constraints. In

Line 4, we ask student 𝑖 the CQs to determine 𝑥 ’s position in the ordered set 𝑆𝑡−1
𝑖 . If 𝑖 answered all

CQs, then in Line 6, we completely order 𝑆𝑡𝑖 = 𝑆𝑡−1
𝑖 ∪ {𝑥} based on her answers, and then in Line 7,

we create the ordinal training set 𝐷𝑡
𝑖,ord that contains all pairwise orderings implied by 𝑆𝑡𝑖 . Finally,

we trainM𝑡
𝑖 on both 𝐷𝑖,card and the ordinal set 𝐷𝑡

𝑖,ord. If the student did not answer all CQs, then in
Line 10, we append her (partial) answers to the previous ordinal data set 𝐷𝑡

𝑖,ord, and then in Line 11,
we trainM𝑡

𝑖 using both data sets. This is the final ML model we return in Line 15.

Remark 4.1. One could envision several alternative query heuristics. We have already conducted
experiments using the following alternatives: (1) comparing the currently predicted utility-maximizing
bundle only against the best one queried previously, and (2) comparing at each iteration the two
schedules with the highest predicted utility. However, both approaches led to worse results compared to
Algorithm 1. See Section 9 for possible future work on query generation procedures.

Phase 5: Computing the Final Allocation. Finally, MLCM runs Stages 1–3 of CM to determine the
final allocation. For those students who have opted out of the ML feature, MLCM uses the values
implied by the CM GUI; for every other student 𝑖 , it uses the utility function implied byM𝑡

𝑖 .

Remark 4.2 (Runtime Considerations and Real-time Interaction). In MLCM, Phases 3
(approximate price vector calculation) and 5 (final allocation calculation) are computationally expensive,
because in those phases, MLCM computes an A-CEEI. However, this is not a concern in practice, because
both of those phases do not happen in real-time (and furthermore, this computation is embarrassingly
parallelizable). For a large school, one would use a compute cluster to calculate an A-CEEI for both of
these phases. Furthermore, in work concurrent to the present paper, Budish et al. [2023] introduced a
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Preference Courses Utility Maximizing Utility Answer to
Model 1 2 3 4 Schedule 𝑎∗1 𝑢1 (𝑎∗1) CQ
𝑢1 85 70 50 40 {1,3} 135

𝑢𝐺𝑈 𝐼
1 75 77 42 45 {2,4} 110
M𝑡=0

1 75 77 42 45 {2,4} 110 {1, 4} ≻ {2, 4}
M𝑡=1

1 80 72 42 45 {1,4} 125 {1, 3} ≻ {1, 4}
M𝑡=2

1 80 72 47 40 {1,3} 135 {1, 4} ≻ {2, 3}
M𝑡=3

1 80 72 47 40 {1,3} 135 {2, 3} ≻ {2, 4}
M𝑡=4

1 80 72 47 40 {1,3} 135

Table 1. Worked example illustrating the ML-based preference elicitation algorithm. Each row represents the
linear coefficients (corresponding to the base values) that uniquely define the corresponding function, the
current utility maximizing schedule 𝑎∗1, its corresponding utility 𝑢1 (𝑎∗1) and the answer to the CQ.

novel algorithm for computing an A-CEEI that is multiple orders of magnitudes faster than the tabu
search currently in use, which will likely remove any runtime concerns in the near future.
The only phase with real-time interaction is Phase 4 (ML-based Preference Elicitation), which is

computationally very cheap for our Algorithm 1. There are two distinct cases. If a student answered a
CQ that did not complete an iteration of binary search (Line 4 in Algorithm 1), then generating the
next query takes milliseconds. If a student answered a CQ that completed a round of binary search,
then for the ML model class we selected, retraining the student’s ML model (Line 8 in Algorithm 1) and
solving the MIP to determine the bundle for the next iteration of binary search (Line 3 in Algorithm 1)
takes less than two seconds, and can be further improved with the use of GPUs (please see Section 6 for
details on the selected ML model class). Thus, in terms of real-time interaction, students do not perceive
the computational cost, which highlights MLCM’s practicability.

4.2 MLCM - AWorked Example
In this subsection, we present a worked example to illustrate MLCM’s ML-based preference elicita-
tion algorithm (i.e., Phase 4). Additionally, this example provides intuition for how the CQs help
the ML model correct students’ initial reporting mistakes. Note that we assume that students make
no mistakes when answering CQs.

Example 4.3 (Correcting reporting mistakes). We consider a setting with four courses𝑀 B
{1, 2, 3, 4} with capacity 1 each. There is a single student 𝑁 B {1} who has a budget of 𝑏1 = 1 and who
wants a schedule consisting of at most two courses (and there are no other student-specific constraints).
The prices of the courses are 𝑝 B (0.6, 0.6, 0.3, 0.3), such that the student can afford all bundles of size
two, except for {1, 2}. For ease of exposition, we assume that the student has additive preferences and
that the GUI only allows for additive preference reports. The whole example is presented in Table 1. The
student’s true utility function 𝑢1 is presented in row 1. The student’s GUI reports 𝑢𝐺𝑈 𝐼

1 (which include
reporting mistakes) are shown in row 2. As the ML modelM𝑡

1 we use linear regression, such that each
linear coefficient can be interpreted as an estimate of the student’s base value for a course. LetM𝑡

1 (𝑥)
denote the ML model trained on the cardinal data 𝐷1,𝑐𝑎𝑟𝑑 as well as 𝑡 ∈ N0 answered CQs.
First, given 𝑢𝐺𝑈 𝐼

1 , MLCM constructs a cardinal training data set 𝐷1,𝑐𝑎𝑟𝑑 (see Section A). Next,
MLCM fits the linear regression modelM𝑡=0

1 on 𝐷1,𝑐𝑎𝑟𝑑 .5 We see thatM𝑡=0
1 is able to perfectly fit

5We train the linear regression models using gradient descent, because (i) we restrict them to be monotone, i.e., their
coefficients are constrained to be non-negative, and (ii) this also allows us to train them on both cardinal and ordinal data.
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𝑢𝐺𝑈 𝐼
1 . Next, MLCM generates the first CQ by comparing the two admissible schedules within budget
that have the highest and second highest predicted utility with respect to M𝑡=0

1 , i.e., {2, 4} with
M𝑡=0

1 ({2, 4}) = 122 and {1, 4} withM𝑡=0
1 ({1, 4}) = 120. When presenting this CQ to the student, she

answers that she actually prefers {1, 4} with a true utility of 𝑢1 ({1, 4}) = 125 over {2, 4} with true
utility𝑢1 ({2, 4}) = 110. Next, MLCM updates the ordinal training data set as𝐷1

1,ord = {{1, 4} ≻ {2, 4}}
and retrains the modelM𝑡=1

1 on the combined ranking and regression loss (see Section 6.3). We see that
the regression coefficient for course 1 ofM𝑡=1

1 increased from 75 to 80 and the coefficient for course
2 decreased from 77 to 72. Now the modelM𝑡=1

1 correctly predicts the ordinal ranking of the above
elicited CQ, i.e.,M𝑡=1

1 ({1, 4}) = 125 > 117 =M𝑡=1
1 ({2, 4}) and thus has corrected the student’s initial

reporting mistake on her two most preferred courses. We see that after a single CQ, the student’s utility
for her (predicted) utility maximizing schedule 𝑢1 (𝑎∗1) has already increased from 110 to 125. At this
point, the first iteration of “binary search” (Line 4 in Algorithm 1) has been completed (here, only
leading to one CQ). For the next CQ, MLCM selects {1, 3} – the schedule with the highest predicted
utility that has not been elicited so far. Then MLCM performs binary search again, trying to insert
{1, 3} into the already elicited list of schedules (Line 4 in Algorithm 1) resulting in the CQ consisting of
the schedules {1, 3} and {1, 4}.6 Since the student prefers the schedule {1, 3}, now the complete list of
bundles {1, 3}, {1, 4} and {2, 4} can be sorted and binary search is completed. After retraining with the
updated ordinal training data set 𝐷2

1,ord = {{1, 4} ≻ {2, 4}, {1, 3} ≻ {1, 4}, {1, 3} ≻ {2, 4}}, the new
modelM𝑡=2

1 represents the correct ordinal ranking of all admissible schedules and thus already found
the true utility maximizing schedule {1, 3}. The next schedule selected by MLCM is {2, 3} ∉ 𝐷2

1,ord and
binary search is again performed. Since the student’s answers do not contradict the model’s predicted
ordinal ranking, the linear coefficients ofM𝑡=3

1 andM𝑡=4
1 remain unchanged.

For an example where the student has additionally forgotten some of her base values and how
MLCM infers those missing base values, please see Appendix J.

4.3 Theoretical Properties of MLCM
Budish [2011] showed that A-CEEI satisfies envy-bounded by a single good, (𝑛 + 1)-maximin share
guarantee, and Pareto efficiency. If CM had access to the full true ordinal preferences, then the
Stage 1 allocation of CM would also satisfy the same properties. In Appendix B, we prove that
the same properties also hold in an approximate sense for the Stage 1 allocation of MLCM if the
students’ preferences are captured approximately via the ML modelsM𝑖 .

Incentives. Regarding incentives, Budish [2011] showed that A-CEEI is strategyproof in the large
(SP-L). Budish et al. [2017] argued that CM is also SP-L. Their argument proceeds in two steps. First,
as the number of students increases, 𝑝∗ calculated at the end of Stage 2 will be exogenous to the
students’ reports, and hence the students become price-takers. Second, since the market-clearing
error target 𝛼 ≤ √𝜎𝑚/2 is independent of the number of students, the probability that Stage 3
affects a student’s allocation goes to zero as the market grows. In MLCM, the main difference is
that we use the trained ML models instead of the GUI reports when calculating prices. However,
students are still price-takers, and the probability that Stage 3 affects an individual student still
goes to zero. Therefore, we argue that MLCM is also SP-L.

5 COURSE ALLOCATION SIMULATION FRAMEWORK
In this section, we describe our student preference generator (Section 5.1), how we model students’
reportingmistakes (Section 5.2), and howwe calibrate the parameters to real-world data (Section 5.3).
For additional details, please see Appendices C to E.
6When performing binary search, we break ties in favor of the schedule with the higher predicted utility.
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5.1 Student Preference Generator
We have two goals for our student preference generator. First, students’ preferences (and their
reports) should be realistic, i.e., they should closely match real-world data on the usage of CM.
Second, we must be able to encode each student’s complete preferences as a MIP so that we can
compute an (optimal) benchmark allocation given the students’ true preferences.

Correlation. One of the key features the simulator must capture is some notion of correlation
between students’ preferences. To this end, we divide courses into popular and unpopular. Popular
courses are those that many (but not necessarily all) students have a high value for. Concretely, for
every student 𝑖 , we randomly select a set of favorite courses from the set of popular courses. Then,
for each course, student 𝑖’s base value is drawn from some distribution, where the mean of that
distribution is high for her favorite courses and low for all others. Note that a smaller number of
popular courses implies higher correlation, as more students will have the same favorite courses.
Thus, we can use the number of popular courses to control the degree of correlation.

𝑥

𝑦

1 2 3 4 5 6

1

2

3

4

5

1 2 3 4 5 6

7 8 9 10 11 12

13 14 15 16 17 18

19 20 21 22 23 24

25 26 27 28 29 30

Fig. 2. A latent space with 30 courses.

Complementarities and Substitutabilities. To
model complementarities and substitutabilities
between courses, we build on prior experi-
mental work modeling bidders in combinato-
rial auctions [Goeree and Holt, 2010, Scheffel
et al., 2012]. Concretely, following Scheffel et al.
[2012], we assume that courses lie on a latent
space and that the distance between courses
in that space defines the students’ view on
the complementarity/substitutability of those
courses. Figure 2 depicts an example latent
space with𝑀 = {1, . . . , 30}. The set of popular
courses are𝑀𝑝 = {8, 9, 21, 29} and are marked
with a star. Assume that student 𝑖’s favorite
courses are 9 and 21. From those, we randomly
draw a set of centers – which is course 9 in Figure 2. All courses with 𝐿1 distance smaller or equal
to 1 from that center form the set of substitutabilities {9, 3, 8, 10, 15}. All courses with 𝐿∞ distance
smaller or equal to 1 from that center (that are not in the set of substitutabilities) and the center 9
form the set of complementarities {9, 2, 4, 14, 16}. The number of centers and the distances control
the degree of complementarity and substitutability.

Of course, one could use other topologies that result in the same or very similar preferences – and
for the simulator, only the induced preferences matter. However, using our proposed common latent
space enables a concise, mathematically tractable formalization of substitutabilities/complementarities.
With this, our framework provides us with granular (and interpretable) control over the degree
of complementarities/substitutabilities. As we will show in Section 5.3, this design allows us to
produce instances very similar to those observed in practice by Budish and Kessler [2022].

Total utility calculation. We calculate a student’s utility for a schedule based on her values
for single courses and the number of courses from each substitutability/complementarity set in
the schedule. In Appendix C, we provide mathematical details for the preference generator. In
Appendix D, we provide the corresponding MIP formulation.
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5.2 Students’ Reporting Mistakes
Students can make mistakes when reporting their base value for single courses or when reporting
pairwise adjustments. To capture these reporting mistakes, we use the following four parameters:
(1) 𝑓𝑏 ∈ [0, 1] denotes the probability that a student forgets one of her base values. We assume

that a student forgets to report a base value for her lower-valued courses first. For example, if
𝑀 = {1, 2, 3}, and a student values these courses as 2, 5 and 10, she will first forget course 1.

(2) 𝑓𝑎 ∈ [0, 1] denotes the probability a student forgets to report one of her adjustments (out of
those adjustments for which she has not forgotten to report a base value for either of the courses
in the pair). We assume that students forget adjustments uniformly at random.

(3) 𝜎𝑏 ∈ R≥0 denotes the standard deviation of the additive Gaussian noise N(0, 𝜎2
𝑏
) with which

the students report their base values.
(4) 𝜎𝑎 ∈ R≥0 controls the support of the multiplicative uniform noiseU[1− 𝜎𝑎, 1 + 𝜎𝑎] with which

the students report their adjustment values.

5.3 Calibration of the Simulation Framework
We calibrate the parameters of our framework (i.e., the preference generator and the reporting
mistakes) to match the experimental results from Budish and Kessler [2022]. The key metrics from
their experiment are:
(1) Students only report a base value for 49.9% of the courses.
(2) The number of courses with a reported value in [50, 100] is approximately equal to the number

of courses with a reported value in [0, 50].
(3) Students report between 0 and 10 pairwise adjustments.
(4) Students report an average of 1.08 pairwise adjustments; the median is equal to 0.
(5) Students were asked to compare the schedule they received with several other course schedules.

Their answers were consistent with their reported preferences in 84.41% of the cases, and in
case of disagreements, the median utility difference, based on their reports, was 13.35%.

In Appendix E Table 5, we provide detailed results of our calibration procedure. In our experiments
with 6 popular courses we set (𝑓𝑏, 𝑓𝑎, 𝜎𝑏, 𝜎𝑎) = (0.5, 0.4825, 17, 0.2), and with 9 popular courses we
set (𝑓𝑏, 𝑓𝑎, 𝜎𝑏, 𝜎𝑎) = (0.5, 0.48, 23, 0.2). With these parameters, we are able to match metrics (1)-(3)
exactly. For metric (4), our mean is 10% lower (in one of two settings), while our median is slightly
larger (1 instead of 0). Regarding metric (5), both accuracy and scaled median utility difference
are within 3 percentage points of the reported one. Thus, our framework produces instances very
similar to those described in [Budish and Kessler, 2022]. See Appendix E for details.

6 MACHINE LEARNING INSTANTIATION
In this section, we instantiate the ML model used by MLCM.

6.1 Machine Learning Model Desiderata
There are three important desiderata for the choice of the ML model class. First, it needs to be
sufficiently expressive to be able to learn students’ complex preferences over course schedules
(including complementarities and substitutabilities). Second, we must be able to train the ML model
using both the cardinal input that students provide via the CM reporting language as well as the
ordinal input from answering CQs. Third, in Phases 3–5 of MLCM, we must be able to compute
each student’s utility-maximizing schedule, given the ML model predictions, budget, and prices.
More formally:

𝑥 ∈ arg max
𝑥 ∈Ψ𝑖 ,𝑥 ·𝑝≤𝑏𝑖

M𝑖 (𝑥) (3)
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Data Type Ridge nuSVR-gauss xgboost NN MVNN

GUI 34.01±1.18 34.85±1.13 34.99±1.23 34.85±1.12 34.52±1.42
30 RAND VQs 19.36±1.04 21.76±0.81 23.01±0.88 23.25±0.88 18.64±0.99
50 RAND VQs 12.88±0.83 14.31±0.59 15.79±0.54 15.71±0.65 11.93±0.65
100 RAND VQs 9.87±0.68 9.40±0.50 15.75±0.55 9.32±0.56 5.84±0.53
150 RAND VQs 9.18±0.61 7.89±0.44 13.72±0.41 5.62±0.48 3.50±0.38

Table 2. Comparison of different ML models. Shown are MAEs on the test set and 95% CIs. Winners marked
in grey.

Thus, a key requirement on the ML modelM𝑖 is that Equation (3) can be solved fast enough. For
this, we adopt as a requirement that Equation (3) can be translated into a succinct MIP.

6.2 Generalization Performance
Next, we compare the generalization performance of different ML models to identify the best one
for our domain.

Experiment Setup. As in the experiment by Budish and Kessler [2022], we consider a setting
with 25 courses. We use our simulator to create 100 instances of student preferences, where we
use 20 to tune the ML hyperparameters, and 80 for testing. We use two different types of training
data sets. First, we use as the training set the cardinal data {𝐷𝑖,card}𝑖∈𝑁 generated using the same
procedure as Phase 2 of MLCM (based on the students’ GUI reports) (see Appendix A). Second, we
use {30, 50, 100, 150} random value queries as the training data set. To test the trained models, we
use the complement of these training sets as the test sets and report the mean absolute error (MAE)
and Kendall tau (KT) of each ML model. We use MAE and KT to determine the winners.
As ML models, we consider ridge linear regression (Ridge), nu-support vector regression with

Gaussian kernel (nuSVR-gauss), XGBoost, neural networks (NN), and monotone-value neural
networks (MVNNs). We provide a detailed description of our hyperparameter tuning procedure
and the winner configurations in Appendix F.

Results. Table 2 presents MAE results for a setting with 9 popular courses (results for 6 popular
courses, and for KT, are qualitatively similar; see Appendices G and H). We see that MVNNs have
the best performance across all different training sets with regard to MAE and KT. For the GUI
reports, we observe that all ML models perform on par. This can be explained by the fact that
each ML model learns (approximately) the same quadratic preferences induced by the GUI on the
training set and thus achieves out-of-sample the same test MAE. However, with random values
queries as the training set, MVNNs significantly outperform the other models.

6.3 Integrating comparison queries into MVNNs
To simultaneously train MVNNs on GUI reports (regression data) and CQs (classification data),
we use a method by Sculley [2010] called combined ranking and regression (CRR). CRR trains
regression models using both regression and classification data. For this, CRR randomly alternates
in each gradient step between a regression and a classification loss. Specifically, with probability
𝛼 ∈ [0, 1], CRR selects a regression loss 𝑙𝑟𝑒𝑔 (·) and with probability (1 − 𝛼) a classification loss
𝑙𝑐𝑙𝑎𝑠𝑠 (·), respectively. In case the classification loss is selected, the sigmoid of the difference between
the predicted values for the two schedules included in the comparison query is interpreted as the
probability with which the MVNN predicts that one schedule is better than the other, thus resulting
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in a classification problem. To train MVNNs in our setting, we use CRR with MAE and binary cross
entropy as the regression and classification loss, respectively. See Appendix I for details.

6.4 MIP-Formalizability of the Utility Maximization Problem
Weissteiner et al. [2022a] already provided a very succinct MIP formulation for MVNNs. It is
straightforward to adopt their MIP formulation to the constraints of our setting, making the
optimization of the student’s utility maximization problem (i.e., eq. (3)) practically feasible.

Given that MVNNs satisfy all three desiderata for the choice of the ML model class we have laid
out above (see Section 6.1), we adopt MVNNs as the ML model for MLCM.

7 EXPERIMENTAL EVALUATION
In this section, we experimentally evaluate the performance of MLCM using our simulation frame-
work from Section 5. We provide the source code for all experiments in the supplementary material.

7.1 Experiment Setup
We consider a setting with 25 courses and 100 students.7 We consider 6 and 9 popular courses
(where 6 popular courses corresponds to extreme correlation). As in the lab experiment of [Budish
and Kessler, 2022], every student wants a schedule of (at most) five courses. Thus, for 100 students
the total demand is 500 seats. The supply ratio (SR) denotes the fraction of the total number of seats
to the total demand. Thus, a SR of 1.5 means that there are a total of 750 course seats (split equally
among all courses). We consider SRs of 1.25 and 1.5.

To compare CM andMLCM, we assume that both receive the same reports from the CM reporting
language, with students’ reporting mistakes calibrated as described in Section 5.3. For MLCM, each
student additionally answers 1, 5, 10, 15, or 20 CQs. We denote these mechanisms as CM and MLCM
(1/5/10/15/20 ML-BASED CQs), respectively. We assume that students make no mistakes when
answering CQs.8 We further consider four benchmarks. The first is CM (No Mistakes), which is CM,
but assuming no reporting mistakes. The second is CM* (Full Preferences), which is a modified
version of CM that takes as input the full correct cardinal preferences of the students. Importantly,
CM* includes interactions between three or more courses, which cannot be expressed using CM’s
reporting language. Furthermore, we use a benchmark called MLCM (20 RANDOM CQs), where
each student answers 20 randomly generated CQs. Finally, we also use random serial dictatorship
(RSD) as another benchmark, with the GUI reports as input and the same amount of reporting
mistakes.

We use the same 100 instances to test each mechanism. We use a maximum of 10 random restarts
for the tabu search of Stage 1. Furthermore, we use three hidden layer MVNNs with 20 units per layer
such that they provide a good trade-off between generalization performance and computational
cost of the utility maximization MIP (Equation (3)). See Appendix K for details on the selected
MVNN hyperparameters and the computing infrastructure. Unless otherwise noted, CQs denote
ML-based CQs.
7We selected 25 courses to match the number of courses in the lab experiments of [Budish and Kessler, 2022], allowing us to
properly calibrate the mistake profile of the students (see Section 5.3). However, since this calibration does not depend on the
number of students, we increased the number of students from about 20 in [Budish and Kessler, 2022] to 100. Consequently,
the course capacity increased from approximately 5 to 25, which means that every individual student’s reports have a
smaller impact on the (over-)demand for individual courses. This makes this setting more realistic and reduces variance
during experimentation, while still keeping the runtime for our experiments manageable. Recall that the results from the
lab experiments with 20 students per instance extrapolated well to Wharton with over 1700 students.
8Recall that pairwise comparison queries are known to have low cognitive load [Chajewska et al., 2000, Conitzer, 2009].
Furthermore, Budish and Kessler [2022] used the students’ answers to pairwise comparison queries as ground truth for the
same problem.
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Avgerage Student Utility Minimum Student Utility Overs. Time

Mechanism Stage 1 Stage 2 Stage 3 Stage 1 Stage 2 Stage 3 Stage 1 in h

CM* (Full Preferences) 100.0 ± 0.0 95.4 ± 0.9 98.1 ± 0.7 73.2 ± 0.9 70.9 ± 1.1 72.1 ± 1.0 7.2 ± 0.9 4.1
CM (No Mistakes) 98.6 ± 0.3 95.3 ± 0.7 97.4 ± 0.5 72.5 ± 0.9 70.5 ± 1.1 71.6 ± 1.0 5.7 ± 0.8 3.7
RSD - - 76.8 ± 0.5 - - 29.8 ± 1.3 - 0.0
CM 79.6 ± 0.5 77.9 ± 0.6 79.0 ± 0.5 42.6 ± 1.2 41.5 ± 1.1 42.1 ± 1.1 2.9 ± 0.5 2.0
MLCM ( 1 ML-based CQ) 79.6 ± 0.5 77.4 ± 0.9 78.7 ± 0.8 41.3 ± 1.1 40.1 ± 1.2 41.2 ± 1.2 3.3 ± 0.5 23.2
MLCM ( 5 ML-based CQs) 83.9 ± 0.5 80.7 ± 1.2 82.1 ± 1.1 46.6 ± 1.3 44.0 ± 1.4 45.1 ± 1.5 3.0 ± 0.5 23.5
MLCM (10 ML-based CQs) 86.3 ± 0.5 82.8 ± 1.0 84.6 ± 0.9 50.5 ± 1.1 47.6 ± 1.3 48.3 ± 1.3 3.7 ± 0.6 26.0
MLCM (15 ML-based CQs) 88.0 ± 0.4 84.5 ± 0.9 86.4 ± 0.7 52.0 ± 1.3 49.2 ± 1.4 50.2 ± 1.4 4.3 ± 0.7 27.1
MLCM (20 ML-based CQs) 89.4 ± 0.5 86.4 ± 0.8 88.0 ± 0.7 53.3 ± 1.3 50.5 ± 1.4 51.4 ± 1.5 3.3 ± 0.5 27.4
MLCM (20 Random CQs) 78.9 ± 0.6 77.0 ± 0.8 78.2 ± 0.7 41.0 ± 1.2 40.3 ± 1.2 40.6 ± 1.2 3.2 ± 0.5 25.0

Table 3. Comparison of RSD, CM and MLCM (also using random comparison queries) in Stages 1–3 for a
supply ratio of 1.25, 9 popular courses, and default parameterization for reporting mistakes. We normalize
all results by the average utility of CM* after Stage 1. Shown are averages in % over 100 runs and 95% CIs.
Additionally, we present the oversubscription (in number of seats) after Stage 1 (Overs.) and total runtime (in
hours) per run.

7.2 Welfare Results
In Table 3, we present results for SR = 1.25 (which is very close to Wharton’s SR; see [Budish and
Kessler, 2022]) and 9 popular courses. The results are better for SR = 1.5 and worse for 6 popular
courses (see Appendix L). We normalize all results by the average utility of CM* after Stage 1, so that
all utility metrics can be reported in percent. The metrics of interest are the average and minimum
student utility after Stage 3 (i.e., for the final allocation). We see that MLCM (10 ML-BASED CQs)
significantly outperforms CM, both in average and minimum student utility.9 In particular, MLCM
(10 ML-BASED CQs) increases average utility from 79.0% to 84.6% (a 7.1% increase) and minimum
utility from 42.1% to 48.3% (a 14.7% increase). As the number of CQs increases, the performance of
MLCM improves further. Compared to CM, MLCM (20 ML-BASED CQs) increases average utility
from 79.0% to 88.0% (an 11.4% increase) and minimum utility from 42.1% to 51.4% (a 22.1% increase).

Recall that, if a student answers zero CQs, then MLCM treats her preferences in the exact same
way as CM (i.e., only using her GUI reports). Table 3 shows that, if the student answers a single CQ,
then the performance of MLCM is statistically on par with CM’s performance, and the performance
only improves by increasing the number of CQs. Thus, MLCM never performs worse than CM.
Additionally, we observe that asking 20 random CQs does not improve upon the performance of
CM. This shows the importance of asking “smart” queries in MLCM. Furthermore, we see that
switching from RSD to CM leads to a surprisingly small increase in average student utility, while it
does substantially increase minimum student utility. This further highlights the performance of
MLCM, since MLCM significantly improves both average and minimum student utility compared to
CM. Finally, we observe that the performance difference between CM* (full preferences) and CM
(No Mistakes) is not significant. This shows that our choice of hyperparameters for the simulation
framework results in preferences that can be captured well by the CM language (which can capture
at most pairwise interactions). Thus, the welfare improvements of MLCM over CM are primarily
due to its ability to correct students’ reporting mistakes, and not due to MLCM’s ability to (in
principle) capture more than pairwise interactions between courses.

9See Appendix M for statistical tests for all such statements.



Machine Learning-powered Course Allocation 15

0.5 0.75 0.9 DEFAULT 1.1 1.25 1.5
Reporting Mistakes

65

70

75

80

85

90

Av
g.

 S
tu

de
nt

 U
til

ity
 in

 %
MLCM
CourseMatch

0.5 0.75 0.9 DEFAULT 1.1 1.25 1.5
Reporting Mistakes

25

30

35

40

45

50

55

60

M
in

. S
tu

de
nt

 U
til

ity
 in

 %

MLCM
CourseMatch

Fig. 3. Reporting mistakes ablation experiment for a supply ratio of 1.25 and 9 popular courses. Shown are
average results in % for the final allocation over 50 runs including 95% CI.

7.3 Reporting Mistakes Ablation Study
We now vary how many reporting mistakes students make. For this, we keep the setting fixed
(SR 1.25 and 9 popular courses) and multiply all parameters of the students’ mistake profile (i.e.,
𝑓𝑏 , 𝑓𝑎 , 𝜎𝑏 and 𝜎𝑎) by a common constant 𝛾 . For 𝛾 < 1, students make fewer mistakes than in the
default profile, while for 𝛾 > 1, the opposite is true. Importantly, 𝛾 does not linearly affect the
students’ mistakes. For example, for 𝛾 = 0.5, students make about 50% fewer mistakes compared
to 𝛾 = 1, but the severity of these mistakes (utility difference) is only approximately 25% as large
(see Appendix E). For each 𝛾 , we run the same 50 instances for CM and MLCM, with each student
answering 10 CQs in MLCM.
Figure 3 shows the results of the ablation study (see Appendix N for SR = 1.5 and 6 popular

courses). As 𝛾 increases, the performance of both, CM and MLCM, monotonically decreases. MLCM
significantly outperforms CM for all 𝛾 ∈ [0.5, 1.5]. As 𝛾 increases, the relative performance gap
between the two mechanisms gets significantly larger. For 𝛾 = 1.5, MLCM performs 16.2% and
41.3% better than CM in terms of average and minimum student utility, respectively. Those results
could be further improved by retuning MLCM’s hyperparameters for each value of 𝛾 .

7.4 Should Individual Students Opt Into the ML Feature?
Suppose that MLCM is implemented in practice, and an individual student must decide whether to
opt into MLCM’s ML feature or not. How much would the student benefit, if (a) no other student
opted into the ML feature, or (b) if everyone else also opted in?

No Other Student to Opt into the ML Feature. We first consider the scenario where the student in
question is considering opting in, and no one else does so. We study this by running both MLCM and
CM twice – once where no students have opted in, and once where a single student has done so.10
We use 20 instances and 100 students per instance. We report averages over those 2000 students.
Table 4 shows the results for a SR of 1.25. We observe that the expected relative gain from opting in
is at least 8.5% (across all settings). Furthermore, the student prefers the “MLCM schedule” in at
10Following [Budish and Kessler, 2022], we report results after Stage 1. Furthermore, to make the experiment computationally
feasible, for each setting, we use the Stage 1 price vector that would result if no student would opt in (assuming that the
student who is considering to opt in is a price taker).
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Setting Preferred Mechanism Gain from Opting Into MLCM

SR #PoP #CQs MLCM CM Indiff. Expected if pref MLCM if pref CM

1.25 9 10 72.70% 5.95% 21.35% 11.1% 16.1% -10.8%
1.25 9 15 78.75% 4.25% 17.00% 13.5% 17.6% -8.6%
1.25 9 20 83.15% 4.70% 12.15% 15.5% 19.0% -10.1%
1.25 6 10 67.00% 9.30% 23.70% 8.5% 13.8% -8.7%
1.25 6 15 73.20% 8.05% 18.75% 9.8% 14.4% -8.3%
1.25 6 20 78.75% 6.70% 14.55% 11.4% 15.1% -7.7%

Table 4. Expected gain of opting into MLCM’s ML feature when no other student opts in. Shown are average
results across 2000 students per setting (SR,#PoP,#CQs). CIs for all metrics are ≈ 0.

least 67% of the cases, while she prefers the “CM schedule” in at most 9.3% of the cases.11 As the
number of CQs the student answers increases, the benefit from opting into MLCM’s ML feature
becomes even larger. Finally, the improvement is larger for more popular courses and for a larger
SR (see Appendix O for SR 1.5).
In Appendix O, we perform an analogous experiment for the case when all other students opt

into MLCM’s ML feature. These results (i.e., the expected utility gains) are almost identical.

7.5 Results for Additive Preferences
In this subsection, we test the robustness of our approach to changes in the true students’ preferences.
Specifically, we repeat all experiments described in the previous subsections for the simple case of
students having additive true preferences.

We use our student preference generator (see Section 5.1 and Appendix C) to generate additive
student utility functions and calibrate the mistake profile of the students so that both their accuracy
and the reported utility difference in case of disagreements match those determined in the lab
experiment of Budish and Kessler [2022] (see Table 36 in Appendix P). With these preferences and
mistake profiles, we repeat the welfare experiment described in Section 7.2 for supply ratios of
1.25 and 1.5, the reporting mistakes ablation experiment described in Section 7.3, as well as the
experiment investigating the expected gain of a student opting into MLCM’s ML feature described
in Section 7.4. The results of those experiments are qualitatively very similar to those for the original
preferences and can be found in Appendix P. For example, for the most realistic supply ratio of
1.25, MLCM (10 ML-BASED CQs) increases average student utility by 7.0% and minimum student
utility by 23.1%. Overall, these results show the robustness of our design and its applicability to a
large range of settings.12

7.6 Scaling to Schools with more Courses
All experiments in Section 7 were performed in settings with 25 courses in order to match the
experimental setup in [Budish and Kessler, 2022]. As the number of courses increases, the time
required to solve the MIP that determines a student’s most preferred schedule at a given price
vector, which is required both for the calculation of the final allocation as well as the ML preference

11In the lab experiment of [Budish and Kessler, 2022], they compared CM to the previous mechanism used at Wharton, BPA.
In those experiments, 42.4% of the students preferred the allocation under CM, 31.8% preferred BPA, while the remaining
students were indifferent.
12Note that we did not perform hyperparameter optimization for this new setting, but instead we used the hyperparameters
determined for the original setting described in Section 7.1, which further illustrates the robustness of our approach.
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elicitation according to Algorithm 1, increases. This could raise some concerns about MLCM’s
applicability to a large school with hundreds of courses.
To test whether this is indeed an issue, we conducted the following experiment: Using our

preference generator (Section 5.1), we generated problem instances varying the number of courses
from 25 up to 350. For each problem instance, we trained an MVNN on the GUI reports of each
student and measured the time required to determine that student’s most preferred course schedule
for a given price vector. For each number of courses, we tested 100 different students, each on the
same 10 random price vectors. In Figure 4, we plot the average MIP solution times as well as their
95% confidence intervals.
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Fig. 4. MIP solution times for MVNNs as a function of
the number of courses. Shown are average results over
100 students and 10 random price vectors including
95% CI.

From Figure 4, it becomes clear how grace-
fully the MIP solution time, for our choice of
ML model, scales with the number of courses.13
Concretely, a 14-fold increase in the number
of courses, from 25 to 350, does not even lead
to a doubling of the average MIP solution
time. Thus, the runtime required for finding
an A-CEEI would increase by at most a factor
of 2, assuming that the number of price vectors
evaluated by tabu search remains constant.14
Regarding the real-time component of MLCM
(i.e., generating pairwise comparison queries),
note that even with 350 courses, we can still
generate the query within at most two seconds
(where most of the time is required for retraining the ML model, and not for solving the MIP).

8 DISCUSSION
For our most realistic setting, our results show that, compared to CM, MLCM with 10 comparison
queries per student increases average student utility by over 7% and minimum student by almost
15%. Furthermore, the a priori expected utility gain of a student answering 10 comparison queries
is over 10%. To put these numbers into perspective, consider that CM increased average student
utility compared to RSD by less than 3% (while the increase in minimum student utility was large).
Given this, we consider the improvements achieved by MLCM to be very large.

To realize these gains, the students incur additional costs, as they have to answer some CQs on top
of reporting their preferences to the GUI. However, given that students are already encouraged to
input their cardinal values to the GUI for at least 10 courses [Wharton, 2020], and given that pairwise
comparison queries have a comparatively lower cognitive cost [Chajewska et al., 2000, Conitzer,
2009], we consider the relative increase in cost justified, given the large utility improvements.
Recall that MLCM uses a separate ML model for each student. An alternative approach would

have been to instead use a single neural network for all students, leveraging possible similarities
between students in the learning task. However, this approach might open new possibilities for

13For this test, we used the same MVNN architecture as for all experiments in Section 7, only changing the input layer to
support the additional number of courses. Given that the structure of the students’ preferences does not become significantly
more complicated when increasing the number of courses (as suggested by Wharton’s CM user manual, encouraging
students willing to take up to 5 courses to report a base value for at least 10 courses, even though the school offers over 300
courses per semester [Wharton, 2020]), our original network architecture is still able to capture the students’ preferences.
14Additionally, recall that the new algorithm for computing an A-CEEI that was introduced by Budish et al. [2023] (in work
concurrent to the present paper) is multiple orders of magnitudes faster than the tabu search currently in use, which will
likely remove any runtime concerns regarding finding an A-CEEI in the near future.
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strategic manipulations since a student could then influence other students’ utility representations
via her reports. Additionally, this design would not allow for the asynchronous interaction paradigm
between students and the mechanism (where every student can decide when to answer their CQs),
which was a major consideration in our design.

An important element of MLCM is that we use the trained ML models, not only to generate
CQs in the iterative preference elicitation phase, but also to determine the final allocation. An
alternative approach would be to only use the trained ML models to suggest corrections to each
student’s GUI reports, which the student could then either accept or reject. With this approach,
one would then run the original CM mechanism with the “corrected” GUI reports to determine the
final allocation. While this approach might seem intuitive at first, it has multiple drawbacks. The
main one is that this approach would require significantly more interaction by the students with
the mechanism: the students would have to first report their preferences to the GUI, then answer
some queries, and finally go back to correct their original GUI reports. This last step might be a task
that is cognitively too demanding for most students, given that it involves reviewing “suggested
corrections” for possibly tens of courses, which are all in conflict with what the student originally
reported via the GUI. Additionally, since it requires that students enter their cardinal base values
and adjustments a second time, this might introduce new reporting mistakes. Finally, this approach
does not address the fact that the CM language may not be able to fully capture every student’s
preferences.
Some universities might prefer piloting our approach while making minimal changes to an

already existing implementation of CM at their institution. To enable this, one could modify
MLCM in Phases 3 and 5, projecting the learned ML models back into the original GUI language.
Consequently, one could then simply use the original CM mechanism to find the A-CEEIs at the
end of Phases 3 and 5, without the need for any changes to the core of the CM implementation.
However, defining such a projection without a significant performance loss is non trivial but an
interesting direction for future work. This approach would also not be able to capture preferences
with more than pairwise interactions between courses.

9 CONCLUSION
In this paper, we have introduced the machine learning-powered course match (MLCM) mechanism.
MLCM extends the well-known CM mechanism with an iterative, ML-based preference elicita-
tion component. We have shown experimentally that MLCM significantly improves average and
minimum student utility compared to CM across a wide range of settings.

The main challenge was to design a mechanism that can handle both cardinal and ordinal input
from students, that does not require students to participate in the ML-powered preference elicitation
phase, and that can handle asynchronous interactions of students while at the same time keeping
computational costs in check.
In contrast to prior work on course allocation, we have focused on alleviating the students’

reporting mistakes when declaring their preferences to the mechanism. We have found that, in
realistic scenarios, the impact of the students’ reporting mistakes on welfare can be even larger
than the mechanism choice itself, highlighting the importance of correcting these mistakes. The
main driving force behind our results is the careful selection of CQs, which alleviate the students’
reporting mistakes in the most important area of the bundle space: bundles within the students’
budgets, for which they have a high value.
There are several interesting avenues for future work. First, it seems promising to investigate

the design of the query generation procedure in more depth. The most promising approach seems
to be to deploy ML models for capturing model uncertainty (e.g., [Heiss et al., 2022]), to capture
uncertainty regarding the students’ utility for not yet queried course schedules. With such a model
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in place, more principled query generation procedures based on expected improvement and expected
value of information could be explored.

Second, it would be worthwhile to run a field experiment to empirically evaluate the performance
of MLCM. Our design makes it particularly easy for universities to pilot MLCM, given that each
student can decide whether to use the ML feature or not. It would be interesting to see how many
students would opt into the ML feature and how many comparison queries they would answer.
Third, CM has already been perceived by some students as “black-box”, i.e., non-transparent

[Budish and Kessler, 2022]. MLCM’s ML components could potentially amplify that sentiment.
From a user experience standpoint, it would be worthwhile to investigate how to best explain to the
users what the ML algorithm has learned about them and why (e.g., "because of your reply to query
X, we believe that your utility for course A is lower than what you reported in the GUI”). Adding
such explainability features to the interface would likely make students more comfortable with the
ML feature of the mechanism, increasing its adoption, and thus ultimately increasing welfare.
Finally, we would like to highlight that our ML-powered preference elicitation approach using

comparison queries could in principle be applied to a large variety of combinatorial assignment
and matching problems. For example, one future application we envision is refugee resettlement.
A recent stream of papers has treated refugee resettlement as a matching problem, taking into
account the local communities’ preferences as well as the refugees’ preferences [Bansak et al., 2018,
Delacrétaz et al., 2019]. Thus, one interesting direction for future work would be to investigate how
an ML-powered preference elicitation approach could be used to help refugees better report their
preferences to the matching mechanism (e.g., regarding employment opportunities, localities, and
proximity to previously resettled family members), ultimately leading to a more efficient and fairer
matching between refugees and local communities.
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APPENDIX
A CARDINAL DATASET FROM STUDENTS’ GUI REPORTS
In this section, we describe the process of building the cardinal dataset 𝐷𝑖,card for each student
𝑖 ∈ 𝑁 , given their GUI reports.

From a conceptual standpoint, our idea for incorporating the students’ reports in the learning
framework is straightforward: For every student 𝑖 , we want to use their reports to the GUI and
create a bootstrap dataset 𝐷𝑖,card where every datapoint is a tuple of the form (bundle, value). 𝐷𝑖,card
is then used to initializeM𝑖 .
As explained in Section 3.3, in the current implementation of Course Match, the students have

two means at their disposal to express their preferences: base values and pairwise adjustments.
Based on the student 𝑖’s report, there are three distinct sets of bundles we can generate for our
dataset 𝐷𝑖,card:
• Bundles of type 1 (T1): This set specifically includes two kind of bundles:
(1) Bundles containing a single course, for which the corresponding student has declared a

base value.
(2) Bundles containing two courses for which the corresponding student has declared both

base values plus the corresponding pairwise adjustment.
The value of each such bundle is calculated exactly as in the current Course Match imple-
mentation, i.e., by summing the reported base values plus the reported adjustments whose
courses are contained in that bundle.
These bundles constitute the most solid pieces of information in our dataset, as for any bundle
of this type, we can be sure that there cannot be any terms that the student did not report,
either because they forgot to, or because it was impossible to do so in the CM reporting
language.
• Bundles of type 2 (T2): Each bundle of T2 contains five courses, for all of which the student
reported a base value but not necessarily all corresponding pairwise adjustments. The value
of each such bundle is calculated in the same way as in the current CM implementation,
i.e., it is simply the sum of base values plus any adjustments reported by the student for the
courses it contains.
These bundles are important for two reasons: First, they push the distribution of the training
set closer to the part of the space that matters in practice, a student participating in the
mechanism is allocated a bundle of about five courses; not one or two. Additionally, these
bundles implicitly “show” the learning model the combinatorial structure of the students’
utility functions. For most ML algorithms tested, training them without bundles of this type
lead to significantly worse generalization performance.
• Bundles of type 3 (T3): Each bundle of this type contains five courses, but for at least one
of them, the student did not even submit a base value when reporting their preferences in the
CM language. For every such course, we impute a base value for it. Specifically, the imputed
value is the expected value of the prior value distribution of a course, but now conditioned
on the fact that a student did not report a base value for it in the CM language. No additional
pairwise adjustments are imputed that a student did not report. Having imputed those base
values, the value of each bundle of T3 can be calculated in the same way as for T1 and T2.
Concretely, suppose that a student didn’t report a base value for a course. In the current
implementation, this course will be treated as if the student had declared a zero base value
for it. Thus, there are two possible explanations for a missing base value: Either the student
actually had a zero value for the specific course, or they had a non-zero base value, but they
actually forgot to report it. Given the assumption that students tend to forget to report a base
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value for courses towards the lower-end of their valuation, we model the base value 𝑣 of a
course that wasn’t reported by the student as:

𝑣 =

{
0 w.p. 𝑝𝑧
∼ 𝑈 [𝑙, ℎ] w.p. 1 − 𝑝𝑧

(4)

And thus its expected value is:

E[𝑣] = (1 − 𝑝𝑧)
(
ℎ − 𝑙

2 + 𝑙
)
= (1 − 𝑝𝑧) ℎ + 𝑙2 . (5)

In order to generate the bundles of T3 in our experiments, we set 𝑝𝑧 = 0, 𝑙 = 0, and ℎ equal to
the lowest non-zero reported base value.

B THEORETICAL PROPERTIES OF MLCM
In this section, we show that, if the preferences are captured approximately via the ML modelsM𝑖 ,
then the same theoretical properties as for the CM Stage 1 allocation (i.e, envy-bounded by a single
good, (𝑛 + 1)-maxmin share guarantee, and Pareto efficiency) also hold in an approximate sense for
the Stage 1 allocation of MLCM. First, we recall our notation.

Notation. 𝑁 is the set of students, 𝑛 is the number of students,𝑀 is the set of courses,𝑚 is the
number of courses, 𝑘 is the maximum number of courses allowed in a bundle, 𝑢𝑖 (·) is the true
utility function for student 𝑖 , 𝑥 is a bundle of courses (i.e. course schedule), 𝑎 an allocation, and 𝑎𝑖
denotes the bundle student 𝑖 receives in allocation 𝑎, i.e., student 𝑖’s allocation. The set of feasible
allocations is represented by F . Furthermore, we slightly overload the notation and denote by 𝑎𝑖
both the indicator vector representing the allocation for student 𝑖 ∈ 𝑁 (i.e., 𝑎𝑖 ∈ {0, 1}𝑚) as well
as the corresponding set (i.e., 𝑎𝑖 ∈ 2𝑀 ). With this, we denote by 𝑗 ∈ 𝑎𝑖 that 𝑗 ∈ 𝑀 is contained in
𝑎𝑖 and by 𝑎𝑖 \ { 𝑗} the allocation 𝑎𝑖 without the course 𝑗 ∈ 𝑀 (we also use this for other generic
bundles 𝑥 or 𝑥 ′ ).

First, we define our notion of utility function approximation, approximate fairness and welfare.

Definition B.1 (𝜀-approximation of a utility function). For 𝜀 ≥ 0, a function 𝑢 (·) is an
𝜀-approximation of the true utility function 𝑢 : {0, 1}𝑚 −→ R if

sup
𝑥 ∈{0,1}𝑚

|𝑢 (𝑥) − 𝑢 (𝑥) | < 𝜀. (6)

Definition B.2 (Envy 𝜀-bounded by a single good). An allocation 𝑎 satisfies envy 𝜀-bounded
by a single good if for all 𝑖, 𝑖 ′ ∈ 𝑁
(1) 𝑢𝑖 (𝑎𝑖 ) ≥ 𝑢𝑖 (𝑎𝑖′) − 𝜀 or

(2) There exists some good 𝑗 ∈ 𝑎𝑖′ such that 𝑢𝑖 (𝑎𝑖 ) ≥ 𝑢𝑖 (𝑎𝑖′ \ { 𝑗}) − 𝜀.
That is, if student 𝑖 envies student 𝑖 ′, by removing some single good from student 𝑖 ′’s bundle we

can make 𝑖’s envy at most 𝜀.

Definition B.3 (𝑙-maximin share, Budish [2011]). Let 𝑍 ∗ denote a 𝑙-maximin split, i.e.,

𝑍 ∗ B arg max
{𝑧1,...,𝑧𝑙 }:𝑧𝑘 ∈X∑𝑙

𝑘=1 𝑧𝑘 𝑗 ≤𝑞 𝑗

(
min

𝑘∈{1,...,𝑙 }
𝑢𝑖 (𝑧𝑘 )

)
. (7)

Then, student 𝑖’s 𝑙-maximin share 𝑎MaxiMin,𝑙,𝑢𝑖 for her given utility function 𝑢𝑖 is defined as

𝑎MaxiMin,𝑙,𝑢𝑖 B arg min
𝑧∈𝑍 ∗

𝑢𝑖 (𝑧). (8)
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In words, 𝑎MaxiMin,𝑙,𝑢𝑖 ∈ {0, 1}𝑚 is the course schedule an student obtains when she selects the utility
maximizing feasible partition consisting of 𝑙 bundles of the set of all courses given that an adversary
assigns her the worst bundle from that proposed partition.

Definition B.4 ((𝑙, 𝜀)-maximin share). For any 𝜀 ≥ 0 student 𝑖’s (𝑙, 𝜀)-maximin share is any
course schedule 𝑎MaxiMin,(𝑙,𝜀),𝑢𝑖 for which student 𝑖 has utility at most 𝜀 less than her maximin share,
i.e,

𝑢𝑖 (𝑎MaxiMin,(𝑙,𝜀),𝑢𝑖 ) ≥ 𝑢𝑖
(
𝑎MaxiMin,𝑙,𝑢𝑖

)
− 𝜀. (9)

Definition B.5 ((𝑙, 𝜀)-maximin share guarantee). Any feasible allocation𝑎 = (𝑎𝑖 )𝑛𝑖=1 ∈ F ⊂ X𝑛

where all students 𝑖 ∈ 𝑁 get a bundle 𝑎𝑖 they weakly prefer to their (𝑙, 𝜀)-maximin share 𝑎MaxiMin,(𝑙,𝜀),𝑢𝑖
(w.r.t. their true utility functions, i.e., {𝑢𝑖 }𝑖∈𝑁 ) is said to satisfy the (𝑙, 𝜀)-maximin share guarantee.

In Proposition B.6, we now prove our main theoretical result.

Proposition B.6. Let [𝑎∗, 𝑏, 𝑝∗] be an (𝛼, 𝛽)-A-CEEI calculated using the 𝜀-approximation of the
true utility functions {𝑢𝑖 }𝑖∈𝑁 , then:
(1) If 𝛽 ≤ 1

𝑘−1 with 𝑘 being the maximum number of courses per student, then 𝑎∗ satisfies envy
2𝜀-bounded by a single good w.r.t. the true utility functions {𝑢𝑖 }𝑖∈𝑁 . Moreover, this bound is
tight.

(2) If there exists some 𝛿 ≥ 0 such that 𝑝∗ ∈ P(𝛿, 𝑏), 15 and 𝛽 < (1− 𝛿𝑛)/𝑛(1 + 𝛿), then 𝑎∗ satisfies
the (𝑛 + 1, 2𝜀)-maximin share guarantee w.r.t. the true utility functions {𝑢𝑖 }𝑖∈𝑁 . Moreover, this
bound is tight.

(3) Given 𝑝∗, the true utility of every student 𝑖 ∈ 𝑁 for the bundle she receives in the allocation 𝑎∗

(i.e., 𝑢𝑖 (𝑎∗𝑖 )) is within 2𝜀 of her true utility for her most preferred bundle she could afford.
(4) Given 𝑝∗, the allocation 𝑎∗ is 2𝜀-Pareto efficient w.r.t. the true utility functions {𝑢𝑖 }𝑖∈𝑁 , i.e.,
� 𝑎′ ∈ F such that ∀𝑖 ∈ 𝑁 it holds that:

𝑢𝑖 (𝑎′𝑖 ) ≥ 𝑢𝑖 (𝑎∗𝑖 ) − 2𝜀. (10)

Proof. (1) Let 𝑢 = (𝑢1, 𝑢2, . . . 𝑢𝑛) be the profile of learned utility functions. Using Theorem 3
of Budish [2011]16, we have that for those learned utility functions the allocation 𝑎∗ satisfies
envy bounded by a single good i.e., for any 𝑖, 𝑖 ′ ∈ 𝑆 either:

(a) 𝑢𝑖 (𝑎∗𝑖 ) ≥ 𝑢𝑖 (𝑎∗𝑖′) or
(b) There exists some good 𝑗 ∈ 𝑎𝑖′ such that 𝑢𝑖 (𝑎∗𝑖 ) ≥ 𝑢𝑖 (𝑎∗𝑖′ \ { 𝑗}).
Since 𝑢𝑖 (·) is an 𝜀-approximation of the true utility function 𝑢𝑖 (·) we have that in the first
case:

𝑢𝑖 (𝑎∗𝑖 ) + 𝜀 ≥ 𝑢𝑖 (𝑎∗𝑖 ) ≥ 𝑢𝑖 (𝑎∗𝑖′) ≥ 𝑢𝑖 (𝑎∗𝑖′) − 𝜀 =⇒ 𝑢𝑖 (𝑎∗𝑖 ) ≥ 𝑢𝑖 (𝑎∗𝑖′) − 2𝜀 (11)
Similarly in the second case:

𝑢𝑖 (𝑎∗𝑖 ) + 𝜀 ≥ 𝑢𝑖 (𝑎∗𝑖 ) ≥ 𝑢𝑖 (𝑎∗𝑖′ \ { 𝑗}) ≥ 𝑢𝑖 (𝑎∗𝑖′) − 𝜀 =⇒ 𝑢𝑖 (𝑎∗𝑖 ) ≥ 𝑢𝑖 (𝑎∗𝑖′ \ { 𝑗}) − 2𝜀 (12)
From Equations (11) and (12) it follows immediately that 𝑎∗ satisfies envy 2𝜀-bounded by a
single good.
Next we provide an example that shows that the bound is tight. Assume that there are 3
courses, 𝑎, 𝑏 and 𝑐 with capacities 𝑞𝑎 = 2 and 𝑞𝑏 = 𝑞𝑐 = 1. Moreover, assume that there are 2
students with the following utility functions:
• 𝑢1 ({𝑎, 𝑏}) = 𝑢1 ({𝑎, 𝑏, 𝑐}) = 1, and 0 for any other bundle.

15P(𝛿,𝑏) = {𝑝 ∈ [0,max𝑖 𝑏𝑖 ]𝑚 :
∑

𝑗 𝑝 𝑗𝑞 𝑗 ≤
∑

𝑖 𝑏𝑖 (1 + 𝛿) }.
16To apply Theorem 3 of Budish [2011], we need 𝛽 ≤ 1

𝑘−1 .
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• 𝑢2 ({𝑎}) = 𝑢2 ({𝑏}) = 0.5 − 𝜀,𝑢2 ({𝑎, 𝑐}) = 𝑢2 ({𝑏, 𝑐}) = 0.5 + 𝜀,𝑢2 ({𝑎, 𝑏}) = 𝑢2 ({𝑎, 𝑏, 𝑐}) = 1,
and 0 for any other bundle.

Take 𝜀, 𝜀 ′ > 0 and the learned utility functions of the 2 students to be:
• 𝑢1 ({𝑎, 𝑏}) = 1 − 𝜀,𝑢1{𝑎, 𝑏, 𝑐} = 1, and 0 for any other bundle.
• 𝑢2 ({𝑎}) = 𝑢2 ({𝑏}) = 𝑢2 ({𝑎, 𝑐}) = 𝑢2 ({𝑏, 𝑐}) = 0.5
𝑢2 ({𝑎, 𝑏}) = 𝑢2 ({𝑎, 𝑏, 𝑐}) = 1, and and 0 for any other bundle.

Then, a (0, 𝛽)-A-CEEI ( 𝛽 ≤ 1
𝑘−1 = 1

2 ) can be formed with the following elements:
• 𝑎∗1 = {𝑎, 𝑏, 𝑐}, 𝑎∗2 = {𝑎}
• 𝑏1 = 1 + 𝛽, 𝑏2 = 1
• 𝑝∗𝑎 = 𝛽, 𝑝∗

𝑏
= 1, 𝑝∗𝑐 = 0.

In this (0, 𝛽)-A-CEEI, the envy of student 2 with respect to her true utility function is exactly
2𝜀-bounded by a single good:

𝑢2 (𝑎∗2) = 0.5 − 𝜀 = 𝑢2 (𝑎∗1 \ {𝑏}) − 2𝜀. (13)
Therefore, the bound is tight.

(2) Let 𝑢 = (𝑢1, 𝑢2, . . . , 𝑢𝑛) be the profile of learned utility functions. Using Theorem 2 of [Budish,
2011],17 we have that for those learned utility functions the allocation 𝑎∗ satisfies the (𝑛 + 1)-
maximin share guarantee. Thus, for any 𝑖 ∈ 𝑁 :

𝑢𝑖 (𝑎∗𝑖 ) ≥ 𝑢𝑖
(
𝑎MaxiMin,𝑛+1,𝑢̂𝑖

)
(14)

≥ 𝑢𝑖
(
𝑎MaxiMin,𝑛+1,𝑢𝑖

)
(15)

≥ 𝑢𝑖
(
𝑎MaxiMin,𝑛+1,𝑢𝑖

)
− 𝜀 (16)

where (14) follows from the definition of the (𝑛 + 1)-maximum share guarantee for the
A-CEEI w.r.t. the learned utilities {𝑢𝑖 }𝑖∈𝑁 and (16) is true because 𝑢𝑖 is per assumption an
𝜀-approximation of 𝑢𝑖 . Then, we have that

𝑢𝑖 (𝑎∗𝑖 ) + 𝜀 ≥ 𝑢𝑖 (𝑎∗𝑖 ) ≥ 𝑢𝑖
(
𝑎MaxiMin,𝑛+1,𝑢𝑖

)
− 𝜀, (17)

and therefore
𝑢𝑖 (𝑎∗𝑖 ) ≥ 𝑢𝑖

(
𝑎MaxiMin,𝑛+1,𝑢𝑖

)
− 2𝜀. (18)

Hence the allocation 𝑎∗ satisfies the (𝑛 + 1, 2𝜀)-maximin share guarantee with respect to the
true utilities {𝑢𝑖 }𝑖∈𝑁 .
Next, we provide an example that shows this bound is tight. Assume that there are 4 courses,
𝑎, 𝑏, 𝑐 and 𝑑 with capacities 𝑞𝑎 = 𝑞𝑏 = 𝑞𝑐 = 𝑞𝑑 = 1. Moreover, assume that there are 2 students
with utility functions:
• 𝑢1 ({𝑎}) = 1, 𝑢1 ({𝑏}) = 0.5 + 𝜀,𝑢1 ({𝑐}) = 0.5 − 𝜀,𝑢1 ({𝑑}) = 0 and 𝑢1 ({𝑏, 𝑐}) = 𝑢1 ({𝑏, 𝑑}) =
𝑢1 ({𝑐, 𝑑}) = 0.5 + 𝜀.
• 𝑢2 ({𝑎}) = 0.8, 𝑢2 ({𝑎, 𝑏}) = 𝑢2 ({𝑎, 𝑑}) = 0.9, 𝑢2 ({𝑎, 𝑏, 𝑑}) = 1 and 0 for any other bundle.
Furthermore, assume that the learned utility functions of the 2 students are given as follows:
• 𝑢1 ({𝑎}) = 1, 𝑢1 ({𝑏}) = 𝑢1 ({𝑐}) = 𝑢1 ({𝑏, 𝑐}) = 𝑢1 ({𝑏, 𝑑}) = 𝑢1 ({𝑐, 𝑑}) = 0.5 and 0 for any
other bundle.
• 𝑢2 (·) = 𝑢2 (·).
Then, a (0, 0.25)-A-CEEI (𝛽 = 0.25 ≤ 1−𝛿𝑛

𝑛 (1+𝛿)
𝛿=0
= 1

2 ) is given by:
• 𝑎∗1 = {𝑐}, 𝑎∗2 = {𝑎, 𝑏, 𝑑}
• 𝑏1 = 1, 𝑏2 = 1 + 𝛽 = 1.25

17To apply Theorem 2 of Budish [2011], we need the existence of 𝛿 ≥ 0 such that 𝑝∗ ∈ P(𝛿,𝑏) and 𝛽 < (1 − 𝛿𝑛)/𝑛 (1 + 𝛿) .
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• 𝑝∗𝑎 = 1.1, 𝑝∗
𝑏
= 𝑝∗𝑐 = 0.15, 𝑝∗

𝑑
= 0.

A maximin (𝑛 + 1)-split for student 1 w.r.t. her true utility function is {{𝑎}, {𝑏}, {𝑐, 𝑑}} and
her true utility for her (𝑛 + 1)-maximin share is 0.5 + 𝜀. Hence, the utility of student 1 with
respect to her true utility function is exactly 2𝜀 less than her (𝑛 + 1)-maximin share of the
endowment:

𝑢1 (𝑎∗1) = 0.5 − 𝜀 (19)

= 𝑢1
(
𝑎MaxiMin,𝑛+1,𝑢1

)
− 2𝜀. (20)

(3) For any 𝑖 ∈ 𝑁 , from the definition of the (𝛼, 𝛽)-A-CEEI, it holds that
𝑎∗𝑖 = arg max

𝑥 ∈{𝑥 ′∈X:𝑝∗ ·𝑥 ′≤𝑏𝑖 }
𝑢𝑖 (𝑥). (21)

Therefore,

𝑢𝑖 (𝑎∗𝑖 ) + 𝜀 ≥ 𝑢𝑖 (𝑎∗𝑖 ) (22)

= 𝑢𝑖

(
arg max

𝑥 ∈{𝑥 ′∈X:𝑝∗ ·𝑥 ′≤𝑏𝑖 }
𝑢𝑖 (𝑥)

)
(23)

≥ 𝑢𝑖

(
arg max

𝑥 ∈{𝑥 ′∈X:𝑝∗ ·𝑥 ′≤𝑏𝑖 }
𝑢𝑖 (𝑥)

)
(24)

≥ 𝑢𝑖

(
arg max

𝑥 ∈{𝑥 ′∈X:𝑝∗ ·𝑥 ′≤𝑏𝑖 }
𝑢𝑖 (𝑥)

)
− 𝜀 (25)

Hence, we have that

𝑢𝑖 (𝑎∗𝑖 ) ≥ 𝑢𝑖

(
arg max

𝑥 ∈{𝑥 ′∈X:𝑝∗ ·𝑥 ′≤𝑏𝑖 }
𝑢𝑖 (𝑥)

)
− 2𝜀. (26)

(4) Assume that 𝑎∗ is not 2𝜀- Pareto efficient. This implies that there exists an 𝑎′ ∈ F , which is
a 2𝜀-Pareto improvement of 𝑎∗ in economy

(
𝑁,𝑀, (𝑞∗𝑗 )𝑚𝑗=1, (𝑢𝑖 )𝑛𝑖=1

)
, i.e., the utility of every

student 𝑖 ∈ 𝑁 in allocation 𝑎′ is more than 2𝜀 higher than her utility in 𝑎∗. By item 3, for
every 𝑖 ∈ 𝑁 it holds that 𝑝∗ · 𝑎′𝑖 > 𝑝∗ · 𝑎∗𝑖 . This implies that

∑
𝑖 𝑝
∗ · 𝑎′𝑖 >

∑
𝑖 𝑝
∗ · 𝑎∗𝑖 . This is a

contradiction since prices are non-negative and 𝑎∗ allocates all units of positive-priced goods.
□

Intuitively, item 4 of Proposition B.6 says that if we fix the prices of A-CEEI, the students cannot
aggregate their budgets and then spend them in such a way that they are all benefited by more
than 2𝜀, w.r.t. their true utility function.
Using the wording of Budish [2011], an implication of item 4 of Proposition B.6 is that the

allocation induced by an A-CEEI on the 𝜀-approximate utility functions will not admit any 2𝜀-
Pareto-improving trades among the students, but may admit Pareto-improving trades among sets
of students and the administrator.

C STUDENT PREFERENCE GENERATOR
In this section, we describe in detail our proposed student preference generator.

Our design goal for the student preference generator is two-fold: First, it should be realistic. That
is, the preferences combined with the modeling of students’ mistakes should closely approximate
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the metrics on reported preferences given in [Budish and Kessler, 2022]. Second, we should be able
to formulate the generated preferences in a succinct MIP as this is required by all stages of CM.
We build our preference generator based on the following two assumptions. First, a single

student’s value for a course schedule depends on their value for every single course and the
complementarities/substitutabilities between the courses within a bundle. Second, the high-valued
courses amongst students are correlated and fall under the category of popular courses. This is
because students have the same reasoning for considering a course to be high-valued. These reasons
could be a popular topic, a good instructor, an interest in the same minors, etc.

Thus, a student’s utility for a bundle of courses depends on the following two things:
D1 The individual value of each course in that bundle.
D2 The complementarities and substitutabilities between courses in that bundle.

Recall, that𝑀 ≠ ∅ and and 𝑁 ≠ ∅ denote the set of all courses and the set of students, respectively.
To imitate the effect of students having correlated high-valued courses, we choose 𝑀𝑝 ⊆ 𝑀 to
represent the popular courses amongst students and 𝑀𝑛𝑝 = 𝑀 \𝑀𝑝 to represent the non-popular
courses. We also assume that the set of high-valued courses for each student is a subset of the
popular courses. We call these the student’s favorite courses. For each student, their base value
for each course in their favorite and non-favorite courses is drawn independently from𝑈 (𝑙𝑝 , 𝑢𝑝 )
and𝑈 (𝑙𝑛𝑝 , 𝑢𝑛𝑝 ), respectively, where𝑈 (𝑎, 𝑏) denotes the uniform distribution on the interval (𝑎, 𝑏),
0 ≤ 𝑙𝑛𝑝 ≤ 𝑙𝑝 , and 0 ≤ 𝑢𝑛𝑝 ≤ 𝑢𝑝 .

To simulate the substitutabilities and complementarities between courses in students’ preferences,
we build on the prior work on preference generators for spectrum auctions (i.e., the Local Synergy
Value Model (LSVM) [Scheffel et al., 2012] and the Global Synergy Value Model (GSVM) [Goeree
and Holt, 2010]).

Specifically, we assume that the courses are arranged in a latent space where the complementarity
and substitutability relation between courses is a function of their distance to each other, i.e.,
• If two courses are “too close”, then the contents of the courses have too much overlap and
hence they are substitutes for each other.
• If they are “close” but not “too close”, they are complements.
• If they are “far away”, they are neither complements nor substitutes to each other.

More precisely, we assume that𝑀 ⊂ N2 and that the set of complementarities and substitutabili-
ties are centered around a subset of the popular courses𝑀𝑝 , called centers, i.e.,𝑀𝑐 ⊆ 𝑀𝑝 . Then the
set of substitutabilities and complementarities around a center point 𝑐 ∈ 𝑀𝑐 are defined using the
𝐿1 and 𝐿∞ distances as follows:
• Set of substitutabilities:

𝑆𝑐 = {𝑚 ∈ 𝑀 |𝐿1 (𝑚,𝑐) ≤ 𝑟𝑠 } (27)
• Set of complementarities:

𝐶𝑐 = {𝑚 ∈ 𝑀 |𝐿∞ (𝑚,𝑐) ≤ 𝑟𝑐 } \ 𝑆𝑐 ∪ {𝑐} (28)
where 𝑟𝑠 , 𝑟𝑐 ∈ N>0 are the radius of the set of substitutabilities and the radius of the set of com-

plementarities, respectively. The larger these radii, the more complementarities/substitutabilities
are present in the students’ preferences. We illustrate an example of this latent space in Figure 5.

Figure 5, depicts a latent space of height 5 and width 6 with the courses𝑀 = {1, . . . , 30}, where
we assume that both radii are equal to 1, i.e., 𝑟𝑠 = 𝑟𝑐 = 1 and the set of popular courses is given as
𝑀𝑝 = {8, 9, 21, 29}. Then, the set of substitutabilities and complementarities defined by the center 9
are given by 𝑆𝑐 = {9, 3, 8, 10, 15} and 𝐶𝑐 = {9, 2, 4, 14, 16}, respectively.
To model the impact of complementarities/substitutabilities on students’ preferences, we use

piece-wise constant step functions𝜓𝑐 : {0, . . . , |𝐶𝑐 |} → R+ and 𝜉𝑐 : {0, . . . , |𝑆𝑐 |} → R− to represent
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Fig. 5. A latent space with 30 courses.

the multiplicative bonuses and penalty factors for a bundle of courses if its items belong to the set of
complementarities 𝐶𝑐 or the set of substitutabilities 𝑆𝑐 . We further assume that𝜓𝑐 is monotonically
non-decreasing and 𝜉𝑐 is monotonically non-increasing. For example, given a center 𝑐 ,𝜓𝑐 (3) repre-
sents a student’s multiplicative bonus for taking three courses from the set of complementarities
𝐶𝑐 .

With all these building blocks, the utility of a student 𝑖 ∈ 𝑁 for a bundle 𝑥 ∈ {0, 1}𝑚 is defined as:

𝑢𝑖 (𝑥) =
∑
𝑗 ∈𝑥

𝑢𝑖 ({ 𝑗}) (29)

+
∑
𝑐∈𝑀𝑐

∑
𝑗 ∈𝐶𝑐

𝜓𝑐 (𝜏𝑐 (𝑥))𝑢𝑖 ({ 𝑗})

+
∑
𝑐∈𝑀𝑐

∑
𝑗 ∈𝑆𝑐

𝜉𝑐 (𝜅𝑐 (𝑥))𝑢𝑖 ({ 𝑗}),

where𝑢𝑖 ({ 𝑗}) represents the base values of student 𝑖 ∈ 𝑁 for course 𝑗 and 𝜏𝑐 (𝑥) B |{ 𝑗 ∈ 𝑥 : 𝑗 ∈ 𝐶𝑐 }|
is the number of courses that belong both to the bundle 𝑥 and the set of complementarities at center
𝑐 , i.e., 𝐶𝑐 . Analogously, 𝜅𝑐 (𝑥) B |{ 𝑗 ∈ 𝑥 : 𝑗 ∈ 𝑆𝑐 }| is the number of courses that belong both to the
bundle 𝑥 and the set of substitutabilities at center 𝑐 , i.e., 𝑆𝑐 .

This preference generator enables to efficiently encode students’ complementarities/substitabilities
into a MIP (see Appendix D). Thus, it allows us to conduct experiments and compare MLCM with
the original CM mechanism in a synthetic setting where we have access to the optimal allocations
w.r.t. students’ true preferences.

D MIP FOR THE STUDENT PREFERENCE GENERATOR
In this section, we provide a succinct MIP formulation for calculating the optimal allocation for a
single student 𝑖 given her preferences generated by our proposed student preference generator from
Appendix C and a price vector 𝑝 . This enables us to compute, for any price vector, the allocation
under the students’ true preferences. First, we define the individual student optimization problem.
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Definition D.1 (Individual student utility optimization problem). For student 𝑖 ∈ 𝑁 , utility
function 𝑢𝑖 : X → R+ defined in Equation (29), price vector 𝑝 ∈ R𝑚+ and budget 𝑏𝑖 ∈ [1, 1 + 𝛽], 𝛽 > 0,
we define the individual student utility optimization problem as

arg max
{𝑥 ∈Ψ𝑖 :𝑥 ·𝑝≤𝑏𝑖 }

𝑢𝑖 (𝑥) (30)

In words, a solution of Equation (30) maximizes student 𝑖’s true utility (as defined by our preference
generator in Equation (29)) amongst all her permissible course schedules Ψ𝑖 that are affordable at
prices 𝑝 when given a budget 𝑏𝑖 .

Next, we provide in Proposition D.2 the equivalent MIP.

Proposition D.2 (Individual student MIP). Using the notation from Appendix C, and Defini-
tion D.1 the individual student utility optimization problem defined in Equation (30) can be equivalently
formulated as the following MIP:

arg max
𝑥 ∈Ψ𝑖

∑
𝑐∈𝑀𝑐

∑
𝑗 ∈𝐶𝑐

𝜏∑
𝜏=1

𝜓𝑐 (𝜏) ·𝐺𝑐,𝑗,𝜏 · 𝑢𝑖 ({ 𝑗}) (31)

+
∑
𝑐∈𝑀𝑐

∑
𝑗 ∈𝑆𝑐

𝜏∑
𝜏=1

𝜉𝑐 (𝜏) · 𝐽𝑐,𝑗,𝜏 · 𝑢𝑖 ({ 𝑗}) (32)

+
∑
𝑗 ∈[𝑚]

𝑥 𝑗 · 𝑢𝑖 ({ 𝑗}) (33)

s.t.
𝜏∑

𝜏=1
𝜏 ·𝐺𝑐,𝑗 ′,𝜏 ≤

∑
𝑗 ∈𝐶𝑐

𝑥 𝑗 , ∀ 𝑗 ′ ∈ 𝐶𝑐 ,∀ 𝑐 ∈ 𝑀𝑐 (34)

𝜏∑
𝜏=1

𝐺𝑐,𝑗,𝜏 ≤ 1, ∀ 𝑗 ∈ 𝐶𝑐 ,∀ 𝑐 ∈ 𝑀𝑐 (35)

𝜏∑
𝜏=1

𝜏 · 𝐽𝑐,𝑗 ′,𝜏 ≥
∑
𝑗 ∈𝑆𝑐

𝑥 𝑗 , ∀ 𝑗 ′ ∈ 𝑆𝑐 ,∀ 𝑐 ∈ 𝑀𝑐 (36)

𝜏∑
𝜏=1

𝐽𝑐,𝑗,𝜏 ≤ 1, ∀ 𝑗 ∈ 𝑆𝑐 ,∀ 𝑐 ∈ 𝑀𝑐 (37)
∑
𝑗 ∈[𝑚]

𝑝 𝑗 · 𝑥 𝑗 ≤ 𝑏𝑖 (38)

where
• 𝜏 is the maximum number of courses in a schedule.
• 𝑀𝑐 is the set of centers.
• 𝐶𝑐 is the set of complementarities centered around 𝑐 .
• 𝑆𝑐 is the set of substitutabilities centered around 𝑐 .
• 𝐺𝑐,𝑗,𝜏 denotes the binary variable, whether or not the course indexed by 𝑗 , which belongs to the
set of complementarities 𝐶𝑐 is in 𝑥 , while in total 𝜏 courses from that set are included in 𝑥 .
• 𝐽𝑐,𝑗,𝜏 denotes the binary variable, whether or not the course indexed by 𝑗 , which belongs to the
set of substitutabilities 𝑆𝑐 is in 𝑥 , while in total 𝜏 courses from that set are included in 𝑥 .
• 𝑏𝑖 is the budget of student 𝑖 .
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Proof. The first thing we need to show is that the problem is actually a MIP, i.e., all constraints
are linear and all variables are either linear or integer. First, note that all variables are either linear
or integer by their definition. Moreover, the same is true for all constraints shown, other than the
𝑥 ∈ Ψ𝑖 constraint. Next, we show that this constraint can be encoded in a linear way.

There are 2 reasons a schedule 𝑥 would not be permissible for a student 𝑖 . The first one would
be if it contained any courses that the student is not eligible for. Let 𝐸𝑖 be the indexes of those
courses for student 𝑖 . The second constraint would be if it contained more than one courses that
take place at the same time. Let 𝐻 be the set of all course hours (also known as time slots, e.g.
Wednesdays 10-11am), and 𝑇ℎ the set of indexes of courses that take place at time ℎ ∈ 𝐻 . Then,
𝑥 ∈ Ψ𝑖 is equivalent to the following two linear constraints:∑

𝑗 ∈𝐸𝑖
𝑥 𝑗 ≤ 0, (39)

∑
𝑗 ∈𝑇ℎ

𝑥 𝑗 ≤ 1 ∀ℎ ∈ 𝐻. (40)

Constraint (39) enforces that student 𝑖 cannot enroll in courses that are not permissible for her,
while constraint (40) enforces that she cannot take more than one courses that take place in the
same time slot. Now that we have proven that the problem defined above is a valid MIP respecting
all constraints, we need to prove that its solution is a utility-maximizing course schedule for student
𝑖 ∈ 𝑁 , i.e, is equivalent to Equation (30).

If all binary variables 𝐺𝑐,𝑗,𝜏 and 𝐽𝑐,𝑗,𝜏 are set to the correct value for a given course schedule 𝑥 ,
then Equations (31) to (33) encode the utility of course schedule 𝑥 for a given student 𝑖 , as the only
additive terms not zeroed-out are those in Equation (29). Thus, to prove the correctness of the MIP,
it suffices to prove that those binary variables are correctly set for any valid 𝑥 and that the budget
constraint is satisfied.

Constraint (37) enforces that for any (𝑐, 𝑗) ∈ 𝑀𝑐 ×𝑆𝑐 pair at most one of the binary variables 𝐽𝑐,𝑗,𝜏
will be set to 1. This combined with constraint (36) enforce that if 𝜏 elements from set 𝑆𝑐 are included
in 𝑥 , then for the 𝐽𝑐,𝑗,𝜏′ variable it must hold that 𝜏 ′ ≥ 𝜏 . But since we have a maximization problem
and the function 𝜉𝑐 (·) is monotonically non-increasing, the smallest value of 𝜏 ′ that satisfies the
above constraint will be set to one, thus 𝜏 ′ = 𝜏 . Finally, note that if 𝜉𝑐 (𝜏 ′) = 𝜉𝑐 (𝜏) for some 𝜏 ′ ≥ 𝜏 ,
i.e. 𝜉𝑐 (·) is at a constant part of its support, it can be the case that the maximizer sets 𝐽𝑐,𝑗,𝜏 ′ = 1
instead of the 𝐽𝑐,𝑗,𝜏′ = 1. However, since 𝜉𝑐 (𝜏 ′) = 𝜉𝑐 (𝜏), this is not a problem, as the objective value
is the same in both cases.
Similarly, constraint (35) enforces that for any (𝑐, 𝑗) ∈ 𝑀𝑐 ×𝐶𝑐 pair, at most one of the 𝐺𝑐,𝑗,𝜏′

variables will be set to one. Constraint (34) enforces that if 𝜏 of the elements of𝐶𝑐 are included in 𝑥 ,
then it must hold that 𝜏 ′ ≤ 𝜏 . But since this is a maximization problem and𝜓𝑐 (·) is monotonically
non-decreasing, the solver will set exactly the variable𝐺𝑐,𝑗,𝜏 to one where 𝜏 ′ = 𝜏 , as this maximizes
the objective value out of all feasible solutions. If𝜓𝑐 (𝜏) = 𝜓 (𝜏 ′),𝐺𝑐,𝑗 ′𝜏 could be set to one instead of
𝐺𝑐,𝑗,𝜏 , but the same argument as above again applies.

Finally, constraint (38) enforces that a student cannot take any bundle with a price larger than
her budget. □

E MISTAKE PROFILE CALIBRATION
In this section, we present details on our mistake profile calibration.

Results. Table 5 shows detailed results of our calibration procedure. For each row, we multiply
the default reporting mistake parameters 𝑓𝑏, 𝑓𝑎, 𝜎𝑏, 𝜎𝑎 as defined in Section 5.3 by the common
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constant 𝛾 . We see that our mistake calibration for the default common mistake constant 𝛾 = 1 (i.e,
the rows marked in grey) closely matches the metrics reported in Budish and Kessler [2022].

Setting #Courses with value #Adjustments Accuracy If disagreement

#Pop 𝛾 > 0 (0, 50) [50, 100] Mean Median Min Max CQs utility difference in %

9 0.5 18.75 ± 0.02 14.35 ± 0.07 4.40 ± 0.07 3.72 ± 0.12 3.0 0 17 0.93 ± 0.01 -3.81 ± 0.41
9 0.75 15.62 ± 0.02 10.31 ± 0.08 5.30 ± 0.08 2.06 ± 0.09 1.0 0 12 0.87 ± 0.01 -9.41 ± 0.62
9 0.9 13.75 ± 0.02 7.91 ± 0.09 5.84 ± 0.08 1.37 ± 0.07 1.0 0 11 0.84 ± 0.01 -13.10 ± 0.72
9 1.0 12.49 ± 0.02 6.32 ± 0.09 6.17 ± 0.09 0.98 ± 0.05 1.0 0 10 0.81 ± 0.01 -15.52 ± 0.76
9 1.1 11.20 ± 0.02 4.71 ± 0.09 6.49 ± 0.09 0.69 ± 0.04 0.0 0 7 0.78 ± 0.01 -18.11 ± 0.77
9 1.25 9.39 ± 0.02 2.58 ± 0.08 6.81 ± 0.08 0.37 ± 0.03 0.0 0 6 0.75 ± 0.01 -21.60 ± 0.80
9 1.5 6.20 ± 0.02 0.36 ± 0.04 5.84 ± 0.04 0.10 ± 0.01 0.0 0 3 0.66 ± 0.01 -26.78 ± 0.78

6 0.5 18.75 ± 0.02 13.71 ± 0.06 5.04 ± 0.06 3.83 ± 0.12 3.0 0 19 0.93 ± 0.01 -3.11 ± 0.37
6 0.75 15.62 ± 0.02 10.01 ± 0.07 5.61 ± 0.07 2.17 ± 0.09 2.0 0 13 0.87 ± 0.01 -8.02 ± 0.57
6 0.9 13.75 ± 0.02 7.80 ± 0.08 5.95 ± 0.07 1.47 ± 0.07 1.0 0 10 0.85 ± 0.01 -11.42 ± 0.67
6 1.0 12.49 ± 0.02 6.33 ± 0.08 6.16 ± 0.08 1.08 ± 0.06 1.0 0 10 0.83 ± 0.01 -13.34 ± 0.71
6 1.1 11.20 ± 0.02 4.82 ± 0.08 6.38 ± 0.08 0.73 ± 0.04 0.0 0 10 0.80 ± 0.01 -15.48 ± 0.75
6 1.25 9.39 ± 0.02 2.72 ± 0.08 6.67 ± 0.08 0.41 ± 0.03 0.0 0 10 0.76 ± 0.01 -19.12 ± 0.77
6 1.5 6.20 ± 0.02 0.38 ± 0.04 5.82 ± 0.04 0.11 ± 0.02 0.0 0 3 0.68 ± 0.01 -23.83 ± 0.78

[Budish and Kessler, 2022] 12.45 6.17 6.27 1.08 0 0 10 0.84 -13.35 ± 0.41

Table 5. Mistake profile calibration experiment for several settings defined by the number of popular courses
(#Pop) and the common mistake constant 𝛾 compared to the experimental findings in [Budish and Kessler,
2022]. Our two default settings (i.e., 𝛾 = 1) are marked in grey. 2000 students in total. We show the number
of courses with reported value in 3 distinct intervals, the mean, median, minimum and maximum number
of adjustments in the students’ reports, the accuracy of their reports as determined by asking CQs and the
median scaled utility difference between the two schedules in a CQ in case of disagreement between the CQ
answer and the reported preferences. Shown are average results and a 95% CI.

F HYPERPARAMETER OPTIMIZATION
ML Models Parameter HPO-Range

NN, MVNN Hidden Layers [1,2,3]
Units/Hidden Layer [8, 16, 32, 50, 80, 120, 200, 300]
Learning Rate (1e-4, 1e-2)
Epochs (80,700)
𝑙2 Regularization (1e-15, 1e-3)
Batch Size [4, 8, 16, 30, 50]

XGBoost Eta ( 1e-5 , 0.2)
Colsample Bytree (0.4, 0.8)
Gamma (0, 0.02)
Learning Rate (0.03, 0.3)
Max Depth (2,6)
N_Estimators (10, 200)
Subsample (0.4, 0.6)

nuSVR Nu (0, 0.25)
Gamma (1e-4, 0.9)

Ridge Alpha (0,1)

Table 6. HPO-ranges used for the optuna algorithm.

In this section, we present details on our hyper-
parameter optimization (HPO).

HPO Method. The parameter selection for
all the models is done using the optuna hyper-
parameter selection algorithm by Akiba et al.
[2019]. The number of trials for optuna for all
models were equal and was selected to be 100.
The range of parameters for each model is pre-
sented in Table 6.

Experiment Setup. As in the experiment by
Budish and Kessler [2022], we consider a setting
with 25 courses. We use our simulator to create
100 instances of student preferences, where we use 20 to tune the ML hyperparameters (HPs). In
each of these 20 instances, we use the cardinal data {𝐷𝑖,card}𝑖∈𝑁 that MLCM generated based on
the students’ GUI reports as the training set, which we denote by GUI in the result tables (see
Appendix A for details). Second, we use {30, 50, 100, 150} random value queries (RAND VQs) each
consisting of five courses as the training set. We used the MAE on the complement of the training
set to select the reported hyper-parameters.
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Results. In Tables 7 to 11 we present the selected HPs of the respective ML models for 6 popular
courses. In Tables 12 to 16 we present the selected HPs of the respective ML models for 9 popular
courses.

Data Type Hidden Layers Units per Hidden Layer Learning Rate Epochs L2-Regularization Batch Size

GUI 2 80 0.00074 102 0.00033 16
30 RAND VQs 1 200 0.00965 288 0.00062 16
50 RAND VQs 2 120 0.00666 80 0.00079 50
100 RAND VQs 3 300 0.00641 454 0.00100 4
150 RAND VQs 1 50 0.00646 197 0.00031 4

Table 7. Selected HPs for MVNN for 6 popular courses.

Data Type Hidden Layers Units/Hidden Layer Learning Rate Epochs L2-Regularization Batch Size

GUI 3 80 0.00710 545 0.00094 16
30 RAND VQs 2 8 0.00573 697 0.00088 4
50 RAND VQs 1 120 0.00956 538 0.00054 4
100 RAND VQs 2 8 0.00821 681 0.00043 8
150 RAND VQs 2 32 0.00989 371 0.00049 4

Table 8. Selected HPs for NN for 6 popular courses.

Data Type Eta Colsample Bytree Gamma Learning Rate Max Depth N_Estimators Subsample

GUI 0.03 0.59 0 0.18 3 159 0.44
30 RAND VQs 0.13 0.64 0 0.13 2 140 0.50
50 RAND VQs 0.11 0.72 0 0.09 6 146 0.45
100 RAND VQs 0.17 0.47 0 0.18 4 170 0.59
150 RAND VQs 0.03 0.77 0 0.12 4 200 0.45

Table 9. Selected HPs for XGBoost for 6 popular courses.

Data Type Nu Gamma

GUI 0.24 0.05
30 RAND VQs 0.25 0.04
50 RAND VQs 0.25 0.04
100 RAND VQs 0.24 0.04
150 RAND VQs 0.24 0.05

Table 10. Selected HPs for nuSVR with Gaussian kernel for 6 popular courses.

G GENERALIZATION PERFORMANCE RESULTS WITH 25 COURSES AND 6
POPULAR COURSES

Experiment Setup. As in the experiment by Budish and Kessler [2022], we consider a setting with
25 courses. We use our simulator to create 100 instances of student preferences, where we use 20
to tune the ML hyperparameters (see Appendix F for details), and 80 for testing. We perform two
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Data Type Alpha

GUI 0.22
30 RAND VQs 0.39
50 RAND VQs 0.38
100 RAND VQs 0.41
150 RAND VQs 0.45

Table 11. Selected HPs for Ridge for 6 popular courses.

Data Type Hidden Layers Units/Hidden Layer Learning Rate Epochs L2-Regularization Batch Size

GUI 2 32 0.00979 342 0.00009 8
30 RAND VQs 1 200 0.00998 604 0.00070 30
50 RAND VQs 2 50 0.00586 414 0.00072 4
100 RAND VQs 3 50 0.00949 401 0.00085 8
150 RAND VQs 2 120 0.00165 305 0.00084 4

Table 12. Selected HPs for MVNN for 9 popular courses.

Data Type Hidden Layers Units/Hidden Layer Learning Rate Epochs L2-Regularization Batch Size

GUI 2 300 0.00669 247 0.00099 4
30 RAND VQs 2 300 0.00472 700 0.00096 16
50 RAND VQs 2 8 0.00730 591 0.00048 16
100 RAND VQs 1 50 0.00682 657 0.00078 16
150 RAND VQs 1 300 0.00496 367 0.00075 4

Table 13. Selected HPs for NN for 9 popular courses.

Data Type Eta Colsample Bytree Gamma Learning Rate Max Depth N_Estimators Subsample

GUI 0.00 0.52 0 0.09 4 165 0.56
30 RAND VQs 0.18 0.68 0 0.14 6 112 0.40
50 RAND VQs 0.06 0.57 0 0.21 3 85 0.54
100 RAND VQs 0.10 0.64 0 0.10 2 189 0.42
150 RAND VQs 0.05 0.68 0 0.24 3 93 0.43

Table 14. Selected HPs for XGBoost for 9 popular courses.

Data Type Nu Gamma

GUI 0.22 0.05
30 RAND VQs 0.24 0.04
50 RAND VQs 0.24 0.04
100 RAND VQs 0.13 0.05
150 RAND VQs 0.25 0.04

Table 15. Selected HPs for nuSVR with Gaussian kernel for 9 popular courses.

experiments. First, we use the cardinal data {𝐷𝑖,card}𝑖∈𝑁 that MLCM generated based on the students’
GUI reports as the training set, which we denote by GUI in the result tables (see Appendix A for
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Data Type Alpha

GUI 0.22
30 RAND VQs 0.22
50 RAND VQs 0.27
100 RAND VQs 0.36
150 RAND VQs 0.45

Table 16. Selected HPs for Ridge for 9 popular courses.

details). Second, we use {30, 50, 100, 150} random value queries (RAND VQs) each consisting of five
courses as the training set. To test the trained models, we use the complement of the training set as
the test set and report the mean absolute error (MAE) and Kendall tau (KT) of each ML model.

Results. In Tables 17 and 18, we provide the generalization performance results for the mean
absolute error (MAE) and the Kendall tau rank correlation with 25 courses in total and 6 popular
courses.

Data Type Ridge nuSVR XGBoost NN MVNN

GUI 37.45± 1.17 37.63± 1.13 38.38± 1.30 38.25± 1.09 37.38± 1.45
30 RAND VQs 22.35± 1.07 26.64± 0.85 25.82± 0.86 25.05± 0.89 20.65± 1.02
50 RAND VQs 15.08± 0.92 17.01± 0.69 19.96± 0.67 17.77± 0.77 13.46± 0.78
100 RAND VQs 11.37± 0.72 10.80± 0.60 15.74± 0.53 11.80± 0.56 7.80± 0.57
100 RAND VQs 10.56± 0.69 9.42± 0.56 13.68± 0.42 7.81± 0.50 4.79± 0.38

Table 17. MAE on the test set. 25 courses in total and 6 popular courses. Winners are marked in grey.

Data Type Ridge nuSVR XGBoost NN MVNN

GUI 0.34± 0.02 0.34± 0.02 0.33± 0.02 0.31± 0.02 0.30± 0.03
30 RAND VQs 0.65± 0.02 0.61± 0.01 0.59± 0.01 0.60± 0.01 0.68± 0.02
50 RAND VQs 0.78± 0.01 0.76± 0.01 0.70± 0.01 0.73± 0.01 0.80± 0.01
100 RAND VQs 0.83± 0.01 0.84± 0.01 0.77± 0.01 0.83± 0.01 0.88± 0.01
150 RAND VQs 0.84± 0.01 0.86± 0.01 0.81± 0.01 0.88± 0.01 0.93± 0.01

Table 18. Kendall tau on the test set (larger is better). 25 courses in total and 6 popular courses. Winners
marked in grey.

H GENERALIZATION PERFORMANCE RESULTS WITH 25 COURSES AND 9
POPULAR COURSES

Experiment Setup. We use the exact same experiment setup as described in Appendix G, except
for the number of popular courses which we set to 9 when generating students’ preferences with
our proposed student preference generator defined in Section 5.1 and Appendix C.
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Results. In Tables 19 and 20, we provide the generalization performance results for the mean
absolute error (MAE) and the Kendall tau rank correlation with 25 courses in total and 9 popular
courses.

Data Type Ridge nuSVR XGBoost NN MVNN

GUI 34.01± 1.18 34.85± 1.13 34.99± 1.23 34.85± 1.12 34.52± 1.42
30 RAND VQs 19.36± 1.04 21.76± 0.81 23.01± 0.88 23.25± 0.88 18.64± 0.99
50 RAND VQs 12.88± 0.83 14.31± 0.59 15.79± 0.54 15.71± 0.65 11.93± 0.65
100 RAND VQs 9.87± 0.68 9.40± 0.50 15.75± 0.55 9.32± 0.56 5.84± 0.53
150 RAND VQs 9.18± 0.61 7.89± 0.44 13.72± 0.41 5.62± 0.48 3.50± 0.38

Table 19. MAE on the test set. 25 courses in total and 9 popular courses. Winners are marked in grey.

Data Type Ridge nuSVR XGBoost NN MVNN

GUI 0.35± 0.02 0.34± 0.02 0.32± 0.02 0.30± 0.02 0.31± 0.02
30 RAND VQs 0.68± 0.02 0.65± 0.01 0.60± 0.02 0.59± 0.01 0.69± 0.02
50 RAND VQs 0.79± 0.01 0.78± 0.01 0.74± 0.01 0.75± 0.01 0.81± 0.01
100 RAND VQs 0.84± 0.01 0.85± 0.01 0.74± 0.01 0.86± 0.01 0.90± 0.01
150 RAND VQs 0.85± 0.01 0.87± 0.01 0.78± 0.01 0.9± 0.01 0.94± 0.01

Table 20. Kendall tau on the test set (larger is better). 25 courses in total and 9 popular courses. Winners are
marked in grey.

I INTEGRATING COMPARISON QUERIES INTO MVNNS
In this section, we describe the details how we simultaneously train the MVNNs on GUI reports
(regression data) and CQs (classification data).

Sculley [2010] proposed a method called combined ranking and regression (CRR) to train linear
regression models using both regression and classification data at the same time (in our application
the data generated from the students answers to the GUI is the regression data and the students’
answers to comparison queries is the classification data). For this they use a trade-off parameter
𝛼 ∈ [0, 1] to combine a regression loss and a ranking loss into one loss. More specifically, given
𝛼 , a convex regression loss function 𝑙𝑟𝑒𝑔 (·), and a convex classification loss function 𝑙𝑐𝑙𝑎𝑠𝑠 (·), we
define the hybrid loss 𝑙ℎ as follows:

𝑙ℎ (·) = 𝛼𝑙𝑟𝑒𝑔 (·) + (1 − 𝛼)𝑙𝑐𝑙𝑎𝑠𝑠 (·). (41)
Using this hybrid loss, we fit the parameters of the MVNNs using Algorithm 2, which trains the
MVNN using Adam on both the data from the GUI (regression data) and the data from the CQs
(classification data).

The main idea of Algorithm 2 is to choose the data from GUI or the CQs to update the parameters
of MVNN. In Algorithm 2, with probability 𝛼 a data point from the regression data set is chosen
(Line 4). Similarly, a data point from the classification data is chosen with probability 1 − 𝛼 (Line
8). If the data from the CQs is selected, we use the Sigmoid function 𝑓 (𝑥) = 1

1+𝑒−𝑥 to convert the
real-valued outputs of MVNN(·) to the [0, 1]-interval, where the value of 1

1+𝑒−(𝑦̂1−𝑦̂2 ) represents
the predicted probability that bundle 𝑥1 is more valuable than bundle 𝑥2 for the student (Line 13).
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ALGORITHM 2: Combined ranking and regression for MVNN
Input: {𝑋𝑟𝑒𝑔, 𝑦𝑟𝑒𝑔}, {𝑋𝑐𝑙𝑎𝑠𝑠 , 𝑦𝑐𝑙𝑎𝑠𝑠 }
Parameters: 𝛼 ∈ [0, 1], epochs 𝑡 , learning rate 𝜂
Output: Parameters of trained MVNN
1: 𝜃0 ←− initialize parameters of the MVNN(·)
2: for 𝑖 = 1 to 𝑡 do
3: pick 𝑧 uniformly at random from [0, 1]
4: if 𝑧 < 𝛼 then
5: (𝑥,𝑦) 𝑈𝑛𝑖 𝑓∼ {𝑋𝑟𝑒𝑔, 𝑦𝑟𝑒𝑔}
6: 𝑦 = MVNN(𝑥)
7: 𝑙𝑜𝑠𝑠 = 𝑙𝑟𝑒𝑔 (𝑦,𝑦)
8: else
9: (𝑥,𝑦) 𝑈𝑛𝑖 𝑓∼ {𝑋𝑐𝑙𝑎𝑠𝑠 , 𝑦𝑐𝑙𝑎𝑠𝑠 }
10: (𝑥1, 𝑥2) = 𝑥
11: 𝑦1 = MVNN(𝑥1)
12: 𝑦2 = MVNN(𝑥2)
13: 𝑦 = 1

1+𝑒−(𝑦̂1−𝑦̂2 )
14: 𝑙𝑜𝑠𝑠 = 𝑙𝑐𝑙𝑎𝑠𝑠 (𝑦,𝑦)
15: end if
16: 𝜃𝑖 = ADAM(𝜃𝑖−1, 𝑙𝑜𝑠𝑠, 𝜂)
17: end for
18: return 𝜃𝑡

ADAM is then used to update the parameters of MVNN. The algorithm terminates after 𝑡 epochs
and returns the selected parameters.

J INFERRING MISSING BASE VALUES - A WORKED EXAMPLE
In Example J.1, we show how MLCM can infer missing base values, a common error observed in
the lab experiment by Budish and Kessler [2022].

Preference Courses Utility Maximizing Utility Elicited
Model 1 2 3 4 Schedule 𝑎∗1 𝑢1 (𝑎∗1) CQ
𝑢1 85 70 40 0 {1,3} 125

𝑢𝐺𝑈 𝐼
1 75 76 0 0 {2} 70
M𝑡=0

1 75 76 38 38 {2,3} 110 {2, 3} ≻ {2, 4}
M𝑡=1

1 75 76 41 33 {2,3} 110 {1, 3} ≻ {2, 3}
M𝑡=2

1 78 71 44 36 {1,3} 125 {2, 3} ≻ {1, 4}
M𝑡=3

1 78 72 45 32 {1,3} 125 {1, 4} ≻ {2, 4}
M𝑡=4

1 78 72 45 32 {1,3} 125

Table 21. Worked example illustrating the ML-based preference elicitation algorithm. Each row represents
the linear coefficients (corresponding to the base values) that uniquely define the corresponding function, the
current utility maximizing schedule 𝑎∗1, its corresponding utility 𝑢1 (𝑎∗1) and the answer to the CQ.

Example J.1 (Inferring Missing Base Values). In this example, we assume that the student
forgot to report a base value for courses 3 and 4. This is treated in the original CM reporting language



Machine Learning-powered Course Allocation 37

as inserting a base value equal to zero in the GUI, i.e., 𝑢𝐺𝑈 𝐼
1 ({3}) = 𝑢𝐺𝑈 𝐼

1 ({4}) = 0 (as can be seen in
the second row of Table 21). First, note that our cardinal dataset generation procedure (see Appendix A
for details) implies that any schedule for which a student forgot to report a base value has the same
initial predicted base value (as defined in Equation (5)), which is not necessarily zero but lower than
the base value of any non-forgotten course. This results inM𝑡=0

1 ({3}) =M𝑡=0
1 ({4}) = 38 instead of

zero.
After this point, MLCM proceeds again in the same way as in Example 4.3 until the student stops

answering CQs.

K WELFARE EXPERIMENTS DETAILS
For all welfare experiments we selected the MVNN hyperparameters shown in Table 22. .

Hidden Layers Units per Hidden Layer Learning Rate Epochs L2-Regularization Batch Size

3 20 0.001 400 6e-5 8

Table 22. Selected hyperparameters for MVNNs in MLCM.

Computing Infrastructure. All welfare experiments were conducted on a compute cluster running
Debian GNU/Linux 10 with Intel Xeon E5-2650 v4 2.20GHz processors with 24 cores and 128GB
RAM and Intel E5 v2 2.80GHz processors with 20 cores and 128GB RAM and Python 3.7.10.

L WELFARE RESULTS FOR OTHER SETTINGS
In this section, we provide additional welfare results for the following three settings defined by a
supply ratio (SR) and a number of popular courses (#Pop):

• SR = 1.50 and #Pop = 9 (see Table 23),

• SR = 1.50 and #Pop = 6 (see Table 24),

• SR = 1.25 and #Pop = 9 (see Table 25),

where we use the same experimental setup as described in the main paper in Section 7.2.

Results. From Table 23, Table 24, and Table 25, we see that the results (both average and minimum
student utility) are better for SR = 1.5 and worse for 6 popular courses but qualitatively similar
compared to the results presented in the main paper in Section 7.2.
Namely, for SR = 1.5 and 9 popular courses MLCM (10 ML-BASED CQs) increases average

utility from 79.2% to 86.5% (a 8.8% increase) and minimum utility from 41.6% to 50.4% (a 21.2%
increase). At the most extreme setting of SR = 1.25 and 6 popular courses, MLCM (10 ML-BASED
CQs) increases average utility compared to CM from 83.4% to 86.7% (a 4% increase) and minimum
utility from 50.0% to 55.0% (a 10.0% increase). For all settings, as the number of CQs increases, the
performance of MLCM improves further.

M STATISTICAL SIGNIFICANCE TESTS
To test whether our results from Section 7 are statistically significant, we perform a multivariate
analysis of variance (MANOVA) test, using as the independent variable the mechanism and as
dependent variables (a) average student utility, and (b) the minimum student utility. We use
as significance level for this test a value of 0.05. The MANOVA test determined that there is a
statistically significant treatment effect between the different mechanisms. Given this, we then
performed a Post-Hoc tukey test for all pairs of mechanisms. For those tests, we used one dependent
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Avgerage Student Utility Minimum Student Utility Overs. Time

Mechanism Stage 1 Stage 2 Stage 3 Stage 1 Stage 2 Stage 3 Stage 1 in h

CM* (Full Preferences) 100.0 ± 0.0 98.5 ± 0.3 99.7 ± 0.2 71.5 ± 1.0 71.1 ± 1.0 71.4 ± 1.0 3.3 ± 0.6 3.3
CM (No Mistakes) 98.4 ± 0.3 97.3 ± 0.3 98.3 ± 0.3 71.2 ± 1.0 70.7 ± 1.0 71.1 ± 1.0 2.5 ± 0.5 2.9
RSD - - 78.2 ± 0.5 - - 36.2 ± 1.2 - 0.0
CM 79.3 ± 0.5 78.7 ± 0.4 79.2 ± 0.5 41.7 ± 1.1 41.7 ± 1.1 41.6 ± 1.1 1.3 ± 0.3 1.4
MLCM ( 1 ML-based CQ) 79.2 ± 0.5 78.7 ± 0.5 79.1 ± 0.5 41.0 ± 1.2 40.8 ± 1.2 40.9 ± 1.2 1.2 ± 0.3 13.6
MLCM ( 5 ML-based CQs) 83.8 ± 0.4 83.2 ± 0.4 83.7 ± 0.4 47.3 ± 1.2 46.8 ± 1.2 47.0 ± 1.1 1.1 ± 0.2 14.1
MLCM (10 ML-based CQs) 86.6 ± 0.4 86.0 ± 0.4 86.5 ± 0.4 50.3 ± 1.2 50.0 ± 1.2 50.4 ± 1.2 1.1 ± 0.3 12.4
MLCM (15 ML-based CQs) 88.4 ± 0.4 87.8 ± 0.4 88.3 ± 0.4 51.8 ± 1.3 51.4 ± 1.3 51.6 ± 1.3 1.2 ± 0.3 13.2
MLCM (20 ML-based CQs) 89.3 ± 0.4 88.6 ± 0.4 89.2 ± 0.4 54.2 ± 1.2 53.7 ± 1.2 53.9 ± 1.2 1.3 ± 0.3 16.7
MLCM (20 Random CQs) 78.7 ± 0.5 78.2 ± 0.5 78.6 ± 0.5 41.0 ± 1.2 40.8 ± 1.2 40.9 ± 1.2 1.4 ± 0.3 16.7

Table 23. Comparison of RSD, CM and MLCM (also using random CQs) in Stages 1–3 for a supply ratio of
1.5, 9 popular courses, and default parameterization for reporting mistakes. We normalize all results by the
average utility of CM* after Stage 1. Shown are averages in % over 100 runs and 95% CIs. Additionally, we
present the oversubscription (in number of seats) after Stage 1 (Overs.) and total runtime (in hours) per run.

Avgerage Student Utility Minimum Student Utility Overs. Time

Mechanism Stage 1 Stage 2 Stage 3 Stage 1 Stage 2 Stage 3 Stage 1 in h

CM* (Full Preferences) 100.0 ± 0.0 95.7 ± 0.7 98.4 ± 0.5 77.5 ± 0.7 74.0 ± 0.9 75.8 ± 0.9 8.7 ± 1.6 3.8
CM (No Mistakes) 98.7 ± 0.4 93.7 ± 0.7 96.6 ± 0.6 76.5 ± 0.8 72.7 ± 0.9 73.9 ± 0.9 10.8 ± 1.5 3.2
RSD - - 81.0 ± 0.7 - - 34.8 ± 1.3 - 0.0
CM 83.8 ± 0.6 81.3 ± 0.7 83.4 ± 0.6 49.4 ± 1.4 48.1 ± 1.4 48.8 ± 1.4 5.0 ± 0.9 1.4
MLCM ( 1 ML-based CQ) 83.3 ± 0.6 81.1 ± 0.7 83.0 ± 0.6 50.2 ± 1.3 48.3 ± 1.3 49.8 ± 1.3 4.4 ± 0.8 21.4
MLCM ( 5 ML-based CQs) 87.1 ± 0.6 83.7 ± 0.8 86.1 ± 0.6 55.0 ± 1.3 51.4 ± 1.4 52.7 ± 1.4 5.7 ± 1.0 20.8
MLCM (10 ML-based CQs) 89.2 ± 0.5 85.6 ± 0.7 88.2 ± 0.5 57.7 ± 1.3 54.5 ± 1.2 55.9 ± 1.3 5.5 ± 0.9 21.0
MLCM (15 ML-based CQs) 90.3 ± 0.6 86.2 ± 0.8 88.9 ± 0.6 59.7 ± 1.2 55.1 ± 1.4 56.9 ± 1.3 5.8 ± 1.0 22.7
MLCM (20 ML-based CQs) 90.8 ± 0.5 87.2 ± 0.7 89.9 ± 0.6 59.2 ± 1.3 56.4 ± 1.2 57.6 ± 1.2 5.6 ± 0.9 23.3
MLCM (20 Random CQs) 83.0 ± 0.6 80.6 ± 0.6 82.5 ± 0.6 50.0 ± 1.3 48.9 ± 1.4 49.5 ± 1.4 4.4 ± 0.7 22.1

Table 24. Comparison of RSD, CM and MLCM (also using random CQs) in Stages 1–3 for a supply ratio of
1.5, 6 popular courses, and default parameterization for reporting mistakes. We normalize all results by the
average utility of CM* after Stage 1. Shown are averages in % over 100 runs and 95% CIs. Additionally, we
present the oversubscription (in number of seats) after Stage 1 (Overs.) and total runtime (in hours) per run.

Avgerage Student Utility Minimum Student Utility Overs. Time

Mechanism Stage 1 Stage 2 Stage 3 Stage 1 Stage 2 Stage 3 Stage 1 in h

CM* (Full Preferences) 100.0 ± 0.0 94.4 ± 1.0 97.7 ± 0.9 78.0 ± 0.7 74.0 ± 1.1 75.5 ± 1.0 13.7 ± 2.1 5.0
CM (No Mistakes) 98.4 ± 0.5 92.7 ± 1.3 96.0 ± 1.1 77.1 ± 0.7 73.2 ± 1.3 75.1 ± 1.2 11.6 ± 2.0 4.3
RSD - - 80.5 ± 0.8 - - 31.3 ± 1.4 - 0.0
CM 83.7 ± 0.6 81.2 ± 0.7 83.4 ± 0.7 49.8 ± 1.3 49.1 ± 1.2 50.0 ± 1.3 5.4 ± 0.9 2.0
MLCM ( 1 ML-based CQ) 83.1 ± 0.6 80.6 ± 0.8 82.4 ± 0.7 50.3 ± 1.4 48.2 ± 1.3 49.1 ± 1.4 5.2 ± 0.8 27.7
MLCM ( 5 ML-based CQs) 86.4 ± 0.6 82.4 ± 1.2 84.6 ± 1.1 54.6 ± 1.3 51.3 ± 1.5 52.1 ± 1.5 5.6 ± 0.8 30.1
MLCM (10 ML-based CQs) 88.4 ± 0.6 84.2 ± 1.4 86.7 ± 1.3 56.9 ± 1.4 54.0 ± 1.4 55.0 ± 1.5 6.1 ± 1.1 29.8
MLCM (15 ML-based CQs) 89.6 ± 0.6 85.6 ± 1.2 88.2 ± 1.1 59.1 ± 1.3 55.9 ± 1.6 58.2 ± 1.6 6.0 ± 1.0 30.9
MLCM (20 ML-based CQs) 90.9 ± 0.6 86.5 ± 1.2 88.9 ± 1.1 60.6 ± 1.3 56.4 ± 1.7 58.9 ± 1.6 6.6 ± 1.1 31.5
MLCM (20 Random CQs) 83.0 ± 0.6 79.8 ± 0.9 81.9 ± 0.8 49.8 ± 1.3 47.7 ± 1.3 48.9 ± 1.4 5.7 ± 1.0 28.7

Table 25. Comparison of RSD, CM and MLCM (also using random CQs) in Stages 1–3 for a supply ratio of
1.25, 6 popular courses, and default parameterization for reporting mistakes. We normalize all results by the
average utility of CM* after Stage 1. Shown are averages in % over 100 runs and 95% CIs. Additionally, we
present the oversubscription (in number of seats) after Stage 1 (Overs.) and total runtime (in hours) per run.

variable (i.e., either average or minimum student utility), with a significance level of 0.025 where
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the null hypothesis is that there is no treatment effect between Group1 and Group2, i.e., H0 :
𝜇𝐺𝑟𝑜𝑢𝑝1 = 𝜇𝐺𝑟𝑜𝑢𝑝2. The results for each setting are provided in Tables 26 to 33.

group1 group2 meandiff p-adj lower upper reject
CM MLCM (10 ML-based CQs) 0.0563 0.0010 0.0417 0.0708 True
CM MLCM (20 ML-based CQs) 0.0899 0.0010 0.0754 0.1044 True
CM MLCM (20 Random CQs) -0.0075 0.5326 -0.0220 0.0070 False
CM RSD -0.0216 0.0010 -0.0361 -0.0071 True
MLCM (10 ML-based CQs) MLCM (20 ML-based CQs) 0.0337 0.0010 0.0191 0.0482 True
MLCM (10 ML-based CQs) MLCM (20 Random CQs) -0.0638 0.0010 -0.0783 -0.0492 True
MLCM (10 ML-based CQs) RSD -0.0778 0.0010 -0.0924 -0.0633 True
MLCM (20 ML-based CQs) MLCM (20 Random CQs) -0.0974 0.0010 -0.1119 -0.0829 True
MLCM (20 ML-based CQs) RSD -0.1115 0.0010 -0.1260 -0.0970 True
MLCM (20 Random CQs) RSD -0.0141 0.0324 -0.0286 0.0004 False

Table 26. Post-hoc tukey test for average student utility. Supply ratio 1.25, 9 popular courses. Significance
level for Reject column was set to 0.025.

group1 group2 meandiff p-adj lower upper reject
CM MLCM (10 ML-based CQs) 0.0627 0.0010 0.0353 0.0900 True
CM MLCM (20 ML-based CQs) 0.0937 0.0010 0.0664 0.1210 True
CM MLCM (20 Random CQs) -0.0152 0.4661 -0.0425 0.0122 False
CM RSD -0.1224 0.0010 -0.1498 -0.0951 True
MLCM (10 ML-based CQs) MLCM (20 ML-based CQs) 0.0310 0.0069 0.0037 0.0584 True
MLCM (10 ML-based CQs) MLCM (20 Random CQs) -0.0778 0.0010 -0.1052 -0.0505 True
MLCM (10 ML-based CQs) RSD -0.1851 0.0010 -0.2125 -0.1578 True
MLCM (20 ML-based CQs) MLCM (20 Random CQs) -0.1089 0.0010 -0.1362 -0.0815 True
MLCM (20 ML-based CQs) RSD -0.2161 0.0010 -0.2435 -0.1888 True
MLCM (20 Random CQs) RSD -0.1073 0.0010 -0.1346 -0.0800 True

Table 27. Post-hoc tukey test for minimum student utility. Supply ratio 1.25, 9 popular courses. Significance
level for Reject column was set to 0.025.

group1 group2 meandiff p-adj lower upper reject
CM MLCM (10 ML-based CQs) 0.0724 0.0010 0.0628 0.0820 True
CM MLCM (20 ML-based CQs) 0.0993 0.0010 0.0897 0.1089 True
CM MLCM (20 Random CQs) -0.0066 0.2454 -0.0162 0.0030 False
CM RSD -0.0108 0.0072 -0.0204 -0.0013 True
MLCM (10 ML-based CQs) MLCM (20 ML-based CQs) 0.0269 0.0010 0.0173 0.0365 True
MLCM (10 ML-based CQs) MLCM (20 Random CQs) -0.0790 0.0010 -0.0886 -0.0694 True
MLCM (10 ML-based CQs) RSD -0.0832 0.0010 -0.0928 -0.0737 True
MLCM (20 ML-based CQs) MLCM (20 Random CQs) -0.1059 0.0010 -0.1155 -0.0963 True
MLCM (20 ML-based CQs) RSD -0.1102 0.0010 -0.1197 -0.1006 True
MLCM (20 Random CQs) RSD -0.0043 0.6544 -0.0138 0.0053 False

Table 28. Post-hoc tukey test for average student utility. Supply ratio 1.5, 9 popular courses. Significance
level for Reject column was set to 0.025.

N MISTAKE ABLATION EXPERIMENT FOR SUPPLY RATIO 1.5
In this section, we present three further reporting mistake ablation experiments for the following
choices of supply ratios and number of popular courses, respectively:

• A supply ratio of 1.25 and 6 popular courses (see Figure 6).

• A supply ratio of 1.5 and 9 popular courses (see Figure 7).

• A supply ratio of 1.5 and 6 popular courses (see Figure 8).
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group1 group2 meandiff p-adj lower upper reject
CM MLCM (10 ML-based CQs) 0.0882 0.001 0.0627 0.1137 True
CM MLCM (20 ML-based CQs) 0.1229 0.001 0.0974 0.1484 True
CM MLCM (20 Random CQs) -0.0066 0.900 -0.0321 0.0189 False
CM RSD -0.0537 0.001 -0.0792 -0.0282 True
MLCM (10 ML-based CQs) MLCM (20 ML-based CQs) 0.0347 0.001 0.0092 0.0602 True
MLCM (10 ML-based CQs) MLCM (20 Random CQs) -0.0949 0.001 -0.1204 -0.0694 True
MLCM (10 ML-based CQs) RSD -0.1419 0.001 -0.1674 -0.1164 True
MLCM (20 ML-based CQs) MLCM (20 Random CQs) -0.1295 0.001 -0.1550 -0.1040 True
MLCM (20 ML-based CQs) RSD -0.1766 0.001 -0.2021 -0.1511 True
MLCM (20 Random CQs) RSD -0.0470 0.001 -0.0725 -0.0215 True

Table 29. Post-hoc tukey test for minimum student utility. Supply ratio 1.5, 9 popular courses. Significance
level for Reject column was set to 0.025.

group1 group2 meandiff p-adj lower upper reject
CM MLCM (10 ML-based CQs) 0.0326 0.0010 0.0125 0.0527 True
CM MLCM (20 ML-based CQs) 0.0551 0.0010 0.0350 0.0752 True
CM MLCM (20 Random CQs) -0.0152 0.1631 -0.0352 0.0049 False
CM RSD -0.0288 0.0010 -0.0489 -0.0087 True
MLCM (10 ML-based CQs) MLCM (20 ML-based CQs) 0.0225 0.0079 0.0024 0.0426 True
MLCM (10 ML-based CQs) MLCM (20 Random CQs) -0.0478 0.0010 -0.0678 -0.0277 True
MLCM (10 ML-based CQs) RSD -0.0614 0.0010 -0.0815 -0.0414 True
MLCM (20 ML-based CQs) MLCM (20 Random CQs) -0.0703 0.0010 -0.0903 -0.0502 True
MLCM (20 ML-based CQs) RSD -0.0839 0.0010 -0.1040 -0.0639 True
MLCM (20 Random CQs) RSD -0.0137 0.2532 -0.0337 0.0064 False

Table 30. Post-hoc tukey test for average student utility. Supply ratio 1.25, 6 popular courses. Significance
level for Reject column was set to 0.025.

group1 group2 meandiff p-adj lower upper reject
CM MLCM (10 ML-based CQs) 0.0497 0.0010 0.0191 0.0803 True
CM MLCM (20 ML-based CQs) 0.0886 0.0010 0.0580 0.1192 True
CM MLCM (20 Random CQs) -0.0113 0.7813 -0.0419 0.0193 False
CM RSD -0.1873 0.0010 -0.2180 -0.1567 True
MLCM (10 ML-based CQs) MLCM (20 ML-based CQs) 0.0389 0.0016 0.0083 0.0695 True
MLCM (10 ML-based CQs) MLCM (20 Random CQs) -0.0610 0.0010 -0.0916 -0.0304 True
MLCM (10 ML-based CQs) RSD -0.2370 0.0010 -0.2676 -0.2064 True
MLCM (20 ML-based CQs) MLCM (20 Random CQs) -0.0999 0.0010 -0.1305 -0.0693 True
MLCM (20 ML-based CQs) RSD -0.2760 0.0010 -0.3066 -0.2453 True
MLCM (20 Random CQs) RSD -0.1761 0.0010 -0.2067 -0.1454 True

Table 31. Post-hoc tukey test for minimum student utility. Supply ratio 1.25, 6 popular courses. Significance
level for Reject column was set to 0.025.

group1 group2 meandiff p-adj lower upper reject
CM MLCM (10 ML-based CQs) 0.0479 0.0010 0.0351 0.0607 True
CM MLCM (20 ML-based CQs) 0.0651 0.0010 0.0523 0.0780 True
CM MLCM (20 Random CQs) -0.0088 0.2500 -0.0216 0.0041 False
CM RSD -0.0241 0.0010 -0.0369 -0.0113 True
MLCM (10 ML-based CQs) MLCM (20 ML-based CQs) 0.0172 0.0010 0.0044 0.0301 True
MLCM (10 ML-based CQs) MLCM (20 Random CQs) -0.0567 0.0010 -0.0695 -0.0438 True
MLCM (10 ML-based CQs) RSD -0.0720 0.0010 -0.0848 -0.0591 True
MLCM (20 ML-based CQs) MLCM (20 Random CQs) -0.0739 0.0010 -0.0867 -0.0611 True
MLCM (20 ML-based CQs) RSD -0.0892 0.0010 -0.1020 -0.0764 True
MLCM (20 Random CQs) RSD -0.0153 0.0037 -0.0281 -0.0025 True

Table 32. Post-hoc tukey test for average student utility. Supply ratio 1.5, 6 popular courses. Significance
level for Reject column was set to 0.025.
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group1 group2 meandiff p-adj lower upper reject
CM MLCM (10 ML-based CQs) 0.0715 0.001 0.0434 0.0995 True
CM MLCM (20 ML-based CQs) 0.0882 0.001 0.0602 0.1163 True
CM MLCM (20 Random CQs) 0.0076 0.900 -0.0205 0.0356 False
CM RSD -0.1396 0.001 -0.1676 -0.1115 True
MLCM (10 ML-based CQs) MLCM (20 ML-based CQs) 0.0167 0.388 -0.0113 0.0448 False
MLCM (10 ML-based CQs) MLCM (20 Random CQs) -0.0639 0.001 -0.0920 -0.0359 True
MLCM (10 ML-based CQs) RSD -0.2110 0.001 -0.2391 -0.1830 True
MLCM (20 ML-based CQs) MLCM (20 Random CQs) -0.0807 0.001 -0.1087 -0.0526 True
MLCM (20 ML-based CQs) RSD -0.2278 0.001 -0.2558 -0.1997 True
MLCM (20 Random CQs) RSD -0.1471 0.001 -0.1752 -0.1191 True

Table 33. Post-hoc tukey test for minimum student utility. Supply ratio 1.5, 6 popular courses. Significance
level for Reject column was set to 0.025.

Results. Similarly to the results presented in the main paper in Figure 3 (supply ratio of 1.25
and 9 popular courses), we see that, as 𝛾 increases, the performance of both, CM and MLCM,
monotonically decreases. This should not come as a surprise, as for values of 𝛾 larger than 1 the
students make more mistakes when reporting their preferences to the GUI. MLCM significantly
outperforms CM for all 𝛾 ∈ [0.75, 1.5]. Moreover, as 𝛾 increases, the relative performance gap of
the two mechanisms gets larger. These results further highlight the robustness of our design to
changes in the mistake profile of the students.
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Fig. 6. Reporting mistakes ablation experiment for a supply ratio of 1.25 and 6 popular courses. Shown are
average results in % for the final allocation over 50 runs including 95% CI.

O SHOULD INDIVIDUAL STUDENTS OPT INTO THE ML FEATURE?
In this section, we first provide additional results for a supply ratio of 1.5 for the experiment
measuring the expected utility gain of a student if she were the only one to opt into MLCM, as
described in Section 7.4. We present those results in Table 34. Furthermore, we perform a similar
test, measuring the expected gain of a student opting into MLCM, if every other student also opted
in. We present those results in Table 35.

No Other Student to Opt into the ML Feature. Similarly to the results presented in the main paper
(see Table 4 for a supply ratio of 1.25), Table 34 shows that for a supply ratio equal to 1.5 the expected
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Fig. 7. Reporting mistakes ablation experiment for a supply ratio of 1.5 and 9 popular courses. Shown are
average results in % for the final allocation over 50 runs including 95% CI.
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Fig. 8. Reporting mistakes ablation experiment for a supply ratio of 1.5 and 6 popular courses. Shown are
average results in % for the final allocation over 50 runs including 95% CI.

relative gain from opting in is at least 7.9% (across all settings). Furthermore, the student prefers the
“MLCM schedule” in at least 68.45% of the cases, while she prefers the “CM schedule” in at most
7.8% of the cases. As the number of comparison queries (CQs) the student answers increases, the
benefit from opting into MLCM’s ML feature as the first student becomes even larger. Finally, the
improvement is larger in for a setting with more popular courses.

All Other Students to Opt into the ML Feature. Now suppose that all students have decided to opt
into MLCM’s ML feature, except for one. How much would that last student benefit if she decided
to also “opt in”? As before, we answer this question by running both MLCM and CM twice – once
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Setting Preferred Mechanism Gain from Opting Into MLCM

SR #PoP #CQs MLCM CM Indiff. Expected if pref MLCM if pref CM

1.50 9 10 73.85% 4.70% 21.45% 10.9% 15.5% -10.9%
1.50 9 15 80.45% 2.80% 16.75% 13.6% 17.2% -6.7%
1.50 9 20 84.75% 2.90% 12.35% 15.2% 18.3% -9.4%
1.50 6 10 68.45% 7.80% 23.75% 7.9% 12.5% -8.5%
1.50 6 15 74.65% 7.00% 18.35% 9.4% 13.4% -8.9%
1.50 6 20 78.60% 6.80% 14.60% 10.3% 13.8% -7.6%

Table 34. Expected gain of opting into MLCM’s ML feature when no other student opts in. Shown are average
results across 2000 students per setting (SR,#PoP,#CQs). CIs for all metrics are ≈ 0.

where all but one student have opted in, and once where all students have opted in.18 We use 20
instances and 100 students per instance. We report averages over those 2000 students. Table 35
shows those results for both supply ratios, 1.25 and 1.5. We see that the expected relative gain from
opting in is at least 7.6% (across all settings). Furthermore, the student prefers the “MLCM schedule”
in at least 64% of the cases, while she prefers the “CM schedule” in at most 11.15% of the cases. As
the student answers more CQs, the benefit from opting into MLCM’s ML feature becomes even
larger. Finally, the improvement is larger for more popular courses and for a larger SR.

Setting Preferred Mechanism Gain from Opting Into MLCM

SR #PoP #CQs MLCM CM Indiff. Expected if pref MLCM if pref CM

1.25 9 10 68.20% 9.00% 22.80% 10.1% 16.0% -9.4%
1.25 9 15 74.00% 7.45% 18.55% 12.1% 17.2% -8.3%
1.25 9 20 79.50% 7.10% 13.40% 14.4% 18.8% -7.0%
1.25 6 10 64.00% 11.15% 24.85% 7.6% 13.5% -9.6%
1.25 6 15 69.95% 10.70% 19.35% 8.7% 13.8% -8.4%
1.25 6 20 73.05% 11.15% 15.80% 9.9% 14.9% -8.0%
1.50 9 10 72.50% 5.45% 22.05% 10.7% 15.5% -9.8%
1.50 9 15 79.25% 3.20% 17.55% 13.2% 17.1% -8.1%
1.50 9 20 82.35% 5.05% 12.60% 14.6% 18.3% -9.1%
1.50 6 10 66.60% 9.15% 24.25% 7.7% 12.7% -7.9%
1.50 6 15 71.70% 9.55% 18.75% 8.8% 13.6% -9.0%
1.50 6 20 74.90% 9.85% 15.25% 9.6% 13.9% -7.8%

Table 35. Expected gain of opting into MLCM’s ML feature when all other students also opt in. Shown are
average results across 2000 students per setting (SR,#PoP,#CQs). CIs for all metrics are ≈ 0.

P ADDITIVE PREFERENCES
In this section, we repeat all of our experiments for the special case of students having additive
true preferences, i.e., we use our student preference generator (see Section 5.1 and Appendix C) to
generate additive/linear true students’ utility functions. Again, we calibrated the mistake profile of
the students so that both their accuracy and the reported utility difference in case of disagreements
match those determined in the lab experiment of Budish and Kessler [2022] (see Table 36).
18As before, we report Stage 1 results but now use the fixed price vector that would result if all students chose to opt in.
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Setting #Courses with value #Adjustments Accuracy If disagreement

#Pop 𝛾 > 0 (0, 50) [50, 100] Mean Median Min Max CQs utility difference in %

9 0.5 17.20 ± 0.02 9.96 ± 0.10 7.24 ± 0.09 0.00 ± 0.00 0.0 0 0 0.95 ± 0.01 -1.47 ± 0.31
9 0.75 13.39 ± 0.03 5.66 ± 0.11 7.73 ± 0.11 0.00 ± 0.00 0.0 0 0 0.91 ± 0.01 -6.44 ± 0.73
9 0.9 11.03 ± 0.01 3.00 ± 0.11 8.03 ± 0.11 0.00 ± 0.00 0.0 0 0 0.87 ± 0.01 -11.11 ± 0.89
9 1 9.49 ± 0.03 1.53 ± 0.09 7.96 ± 0.09 0.00 ± 0.00 0.0 0 0 0.84 ± 0.01 -14.03 ± 1.00
9 1.1 7.92 ± 0.02 0.50 ± 0.06 7.42 ± 0.06 0.00 ± 0.00 0.0 0 0 0.78 ± 0.01 -17.70 ± 1.07
9 1.25 5.62 ± 0.03 0.04 ± 0.01 5.58 ± 0.03 0.00 ± 0.00 0.0 0 0 0.69 ± 0.02 -22.18 ± 1.07
9 1.5 1.75 ± 0.03 0.00 ± 0.00 1.75 ± 0.03 0.00 ± 0.00 0.0 0 0 0.59 ± 0.02 -17.01 ± 1.36

Budish and Kessler [2022] 12.45 6.17 6.27 1.08 0 0 10 0.84 -13.35 ± 0.41

Table 36. Mistake profile calibration experiment for additive preferences for several settings defined by the
number of popular courses (#Pop) and the common mistake constant 𝛾 compared to the experimental findings
in [Budish and Kessler, 2022]. Our default settings (i.e.,𝛾 = 1) is marked in grey. 1000 students in total. We show
the number of courses with reported value in 3 distinct intervals, the mean, median, minimum and maximum
number of adjustments in the students’ reports, the accuracy of their reports as determined by asking CQs
and the median scaled utility difference between the two schedules in a CQ in case of disagreement between
the CQ answer and the reported preferences. Shown are average results and a 95% CI.

For these new preferences we present
• the main welfare results for supply ratios 1.25 and 1.5 (Table 37 and Table 38),
• the reporting mistakes ablation study for supply ratios 1.25 and 1.5 (Figure 9 and Figure 10),
• the first- and last-student to opt into MLCM experimental study (Table 39 and Table 40).

Overall our results in the following three sections show that MLCM achieves qualitatively the
same results when the true students’ utilities are restricted to be additive/linear. These results
further highlight the robustness of our design, and its adaptability to different environments.

P.1 Welfare Results for Additive Preferences
In this subsection, we present the main welfare results when students’ true utility functions are
restricted to be additive/linear. Please see Section 7.2 for details on the experiment setup.
In Table 37, we present results for SR = 1.25 (which is very close to Wharton’s SR; see [Budish

and Kessler, 2022]) and 9 popular courses. The results are qualitatively very similar for a SR of 1.5.
We normalize all results by the average utility of CM* (Full Preferences) after Stage 1. Note that
in this setting with additive preferences, the mechanisms CM* (Full Preferences) and CM (No
Mistakes) completely coincide. The metrics of interest are the average and minimum student utility
after Stage 3 (i.e., for the final allocation). We see that MLCM (10 ML-BASED CQs) significantly
outperforms CM, both in average and minimum student utility. In particular, MLCM (10 ML-BASED
CQs) increases average utility from 84.7% to 90.6% (a 7% increase) and minimum utility from 53.3%
to 65.6% (a 23% increase). As the number of CQs increases, the performance of MLCM improves
further.
In these tables, we show one additional version of MLCM, MLCM-LR. It is the same MLCM

mechanism but now the machine learning model of each student is an MVNN with zero hidden
layers, thus it can only capture additive preferences (as is the case for this setting). The performance
achieved with these networks is on par with our original MLCM design, yet at the same time,
the computational cost of calculating a final allocation is the same as for CM, as indicated by the
last column of Table 37. Thus, for a setting where the school in question only wishes to capture
such preferences, the welfare improvement of MLCM compared to CM comes at no additional
computational cost.
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Average Student Utility Minimum Student Utility Oversubs Time
Mechanism Stage 1 Stage 2 Stage 3 Stage 1 Stage 2 Stage 3 Stage 1 (in h)

CM* (Full Preferences) 100.0 ± 0.0 89.6 ± 2.5 93.0 ± 2.2 84.5 ± 0.6 74.7 ± 2.3 77.3 ± 2.2 10.9 ± 1.6 2.6
CM (No Mistakes) 100.0 ± 0.0 89.6 ± 2.5 93.0 ± 2.2 84.5 ± 0.6 74.7 ± 2.3 77.3 ± 2.2 10.9 ± 1.6 2.6
CM 85.8 ± 0.4 82.3 ± 0.6 84.7 ± 0.4 54.9 ± 1.0 51.8 ± 1.1 53.3 ± 1.0 5.2 ± 0.9 1.2
MLCM ( 1 ML-based CQs) 88.7 ± 0.2 85.1 ± 0.8 87.5 ± 0.6 61.3 ± 1.0 58.5 ± 1.2 60.4 ± 1.2 5.6 ± 0.8 26.1
MLCM ( 5 ML-based CQs) 91.3 ± 0.2 86.9 ± 1.0 89.2 ± 0.9 65.0 ± 1.1 60.5 ± 1.4 62.3 ± 1.3 5.9 ± 1.0 25.8
MLCM (10 ML-based CQs) 93.2 ± 0.3 88.1 ± 1.2 90.6 ± 1.0 68.3 ± 1.1 62.9 ± 1.5 65.6 ± 1.2 7.2 ± 1.3 25.9
MLCM (15 ML-based CQs) 94.1 ± 0.2 88.9 ± 1.4 91.5 ± 1.3 69.8 ± 1.0 65.0 ± 1.6 66.7 ± 1.5 6.0 ± 1.0 27.3
MLCM (20 ML-based CQs) 94.9 ± 0.2 89.3 ± 1.3 92.1 ± 1.1 71.1 ± 1.0 65.4 ± 1.6 67.9 ± 1.4 6.7 ± 1.1 28.2
MLCM-LR ( 1 ML-based CQ) 88.6 ± 0.2 84.7 ± 0.8 87.2 ± 0.6 60.5 ± 1.0 57.5 ± 1.1 58.7 ± 1.1 5.8 ± 0.9 1.1
MLCM-LR ( 5 ML-based CQs) 90.7 ± 0.2 86.6 ± 0.8 89.1 ± 0.6 63.4 ± 1.0 60.3 ± 1.4 61.8 ± 1.2 6.6 ± 1.1 1.0
MLCM-LR (10 ML-based CQs) 91.7 ± 0.2 87.0 ± 1.3 89.5 ± 1.1 65.5 ± 1.1 61.2 ± 1.8 63.2 ± 1.6 5.6 ± 0.8 1.0
MLCM-LR (10 ML-based CQs) 93.0 ± 0.2 88.2 ± 1.4 90.5 ± 1.3 67.3 ± 1.1 63.2 ± 1.7 65.4 ± 1.5 6.2 ± 0.9 1.0
MLCM-LR (20 ML-based CQs) 93.8 ± 0.2 88.7 ± 1.2 91.3 ± 1.0 69.1 ± 1.0 64.6 ± 1.5 66.6 ± 1.4 5.6 ± 0.7 1.0

Table 37. Comparison of CM and MLCM in Stages 1–3 for additive preferences, a supply ratio of 1.25, 9
popular courses, and default parameterization for reporting mistakes. We normalize all results by the average
utility of CM* after Stage 1. Shown are averages in % over 100 runs and 95% CIs. Additionally, we present the
oversubscription (in number of course seats) after Stage 1 (Overs.) and total runtime (in hours) per run.

Average Student Utility Minimum Student Utility Oversubs Time
Mechanism Stage 1 Stage 2 Stage 3 Stage 1 Stage 2 Stage 3 Stage 1 (in h)

CM* (Full Preferences) 100.0 ± 0.0 96.4 ± 0.5 98.6 ± 0.4 84.3 ± 0.6 81.0 ± 0.8 82.7 ± 0.7 12.8 ± 1.8 1.8
CM (No Mistakes) 100.0 ± 0.0 96.4 ± 0.5 98.6 ± 0.4 84.3 ± 0.6 81.0 ± 0.8 82.7 ± 0.7 12.8 ± 1.8 1.8
CM 88.4 ± 0.4 84.9 ± 0.6 87.4 ± 0.4 57.5 ± 1.1 54.4 ± 1.1 56.7 ± 1.1 4.1 ± 0.7 1.1
MLCM ( 1 ML-based CQ) 90.2 ± 0.3 87.8 ± 0.4 89.7 ± 0.3 62.0 ± 1.0 61.1 ± 1.0 62.1 ± 1.0 3.8 ± 0.7 20.0
MLCM ( 5 ML-based CQs) 92.5 ± 0.2 89.6 ± 0.4 91.7 ± 0.3 66.0 ± 1.0 63.1 ± 1.1 64.3 ± 1.1 5.4 ± 0.9 21.1
MLCM (10 ML-based CQs) 93.9 ± 0.3 91.0 ± 0.5 93.2 ± 0.3 68.8 ± 1.0 66.3 ± 1.0 67.5 ± 1.0 5.2 ± 0.8 20.9
MLCM (15 ML-based CQs) 94.8 ± 0.3 92.0 ± 0.4 94.2 ± 0.3 70.6 ± 1.0 67.9 ± 1.0 69.1 ± 1.0 5.0 ± 0.9 22.1
MLCM (20 ML-based CQs) 95.5 ± 0.3 92.4 ± 0.5 94.5 ± 0.4 71.7 ± 1.1 69.1 ± 1.0 70.3 ± 0.9 5.5 ± 0.9 25.6
MLCM-LR ( 1 ML-based CQ) 90.2 ± 0.3 87.6 ± 0.4 89.5 ± 0.3 61.8 ± 1.1 60.5 ± 1.1 61.5 ± 1.0 4.9 ± 0.8 0.7
MLCM-LR ( 5 ML-based CQs) 91.5 ± 0.3 89.1 ± 0.4 90.9 ± 0.3 63.9 ± 1.1 61.7 ± 1.2 63.1 ± 1.2 4.8 ± 0.8 0.8
MLCM-LR (10 ML-based CQs) 92.5 ± 0.2 90.2 ± 0.5 91.9 ± 0.3 65.4 ± 1.1 63.6 ± 1.1 64.4 ± 1.1 4.7 ± 0.8 0.8
MLCM-LR (10 ML-based CQs) 93.7 ± 0.3 91.0 ± 0.4 93.0 ± 0.3 68.1 ± 0.9 66.3 ± 0.9 66.9 ± 0.9 4.7 ± 0.8 0.8
MLCM-LR (20 ML-based CQs) 94.4 ± 0.3 92.1 ± 0.4 94.0 ± 0.3 69.6 ± 0.9 67.4 ± 1.1 69.1 ± 1.0 4.9 ± 0.9 0.8

Table 38. Comparison of CM and MLCM in Stages 1–3 for additive preferences, a supply ratio of 1.5, 9 popular
courses, and default parameterization for reporting mistakes. We normalize all results by the average utility
of CM* after Stage 1. Shown are averages in % over 100 runs and 95% CIs. Additionally, we present the
oversubscription (in number of course seats) after Stage 1 (Overs.) and total runtime (in hours) per run.

P.2 Reporting Mistakes Ablation Study for Additive Preferences
In this subsection, we present in Figures 9 and 10 the reporting mistakes ablation study when
students’ true utility functions are restricted to be additive/linear. Please see Section 7.3 for details
on the experiment setup.
Similar to the results in Section 7.3, as 𝛾 increases, the performance of both CM and MLCM

monotonically decreases. MLCM significantly outperforms CM for all 𝛾 ∈ [0.5, 1.5]. As 𝛾 increases,
the relative performance gap of the two mechanisms gets significantly larger. Those results could
be further improved by retuning MLCM’s hyperparameters for each value of 𝛾 .
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P.3 Should Individual Students Opt Into MLCM?
In this section, we present the experimental results measuring a students expected gain from opting
into MLCM when students’ true utility functions are restricted to be additive/linear. Recall, that
we use 20 instances and 100 students per instance. We report averages over those 2000 students.
Please see Section 7.4 for more details on the experiment setup.

No Other Student to Opt into the ML Feature. Table 39 shows the results when all other students
opt out of MLCM’s ML feature. We observe that the expected relative gain from opting in is at least
8.4% (across both supply ratios). Furthermore, the student prefers the “MLCM schedule” in at least
71.5% of the cases, while she prefers the “CM schedule” in at most 6.3% of the cases. As the number
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Fig. 9. Reporting mistakes ablation experiment for additive preferences for a supply ratio of 1.25 and 9 popular
courses. Shown are average results in % for the final allocation over 50 runs including 95% CI.
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Fig. 10. Reporting mistakes ablation experiment for additive preferences for a supply ratio of 1.5 and 9 popular
courses. Shown are average results in % for the final allocation over 50 runs including 95% CI.
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of CQs the student answers increases, the benefit from opting into MLCM’s ML feature becomes
even larger.

Setting Preferred Mechanism Gain from Opting Into MLCM

SR #PoP #CQs MLCM CM Indiff. Expected if pref MLCM if pref CM

1.25 9 10 77.60% 5.75% 16.65% 10.98% 14.54% -5.46%
1.25 9 15 81.35% 6.35% 12.30% 12.32% 15.52% -4.93%
1.25 9 20 85.30% 6.10% 8.60% 13.58% 16.21% -4.08%
1.50 9 10 71.55% 6.30% 22.15% 8.42% 12.30% -6.02%
1.50 9 15 77.85% 5.45% 16.70% 9.81% 12.95% -4.39%
1.50 9 20 81.70% 6.50% 11.80% 10.56% 13.30% -4.89%

Table 39. Expected gain of opting into MLCM’s ML feature when no other student opts in for additive
preferences. Shown are average results across 2000 students per setting (SR,#PoP,#CQs). CIs for all metrics
are ≈ 0.

All Other Students to Opt into the ML Feature. Table 40 shows the results when all other students
opt into MLCM’s ML feature. We observe that the expected relative gain from opting in is at least
7.6% (across both supply ratios). Furthermore, the student prefers the “MLCM schedule” in at least
68.5% of the cases, while she prefers the “CM schedule” in at most 8.4% of the cases. As the number
of CQs the student answers increases, the benefit from opting into MLCM’s ML feature becomes
even larger.

Setting Preferred Mechanism Gain from Opting Into MLCM

SR #PoP #CQs MLCM CM Indiff. Expected if pref MLCM if pref CM

1.25 9 10 74.55% 8.4% 17.05% 10.05% 14.12% -5.80%
1.25 9 15 77.6% 8.4% 14.00% 10.94% 14.73% -5.91%
1.25 9 20 81.7% 8.15% 10.15% 11.79% 14.91% -4.67%
1.50 9 10 68.5% 7.95% 23.55% 7.59% 11.70% -5.75%
1.50 9 15 73.95% 8.65% 17.40% 8.54% 12.20% -5.95%
1.50 9 20 77.8% 8.65% 13.55% 9.06% 12.19% -5.56%

Table 40. Expected gain of opting into MLCM’s ML feature when all other students also opt in for additive
preferences. Shown are average results across 2000 students per setting (SR,#PoP,#CQs). CIs for all metrics
are ≈ 0.





Curriculum Vitae

Personal Information

Name Jakob Weissteiner

Date of Birth November 22, 1992

Place of Birth Grieskirchen, Austria

Nationalities Austrian

Education

February 2019 – February 2023 Doctoral program at the University of Zurich

Department of Informatics

Computation and Economics Research Group

September 2016 – September 2018 M.Sc. in Quantitative Finance (passed with distinction)

Vienna University of Economics and Business

Vienna, Austria

October 2015 – January 2018 M.Sc. in Mathematics (passed with distinction)

Specialization: Financial Mathematics

Technical University of Vienna

Vienna, Austria

October 2012 – September 2015 B.Sc. in Mathematics (passed with distinction)

Specialization: Financial and Actuarial Mathematics

Technical University of Vienna

Vienna, Austria

Professional Experience

October 2021 – September 2022 Workflow Chair

ACM Conference on Economics and Computation (EC’22)

Zurich, Switzerland

September 2017 – July 2018 Junior Data Scientist

Raiffeisen Bank International AG

Department of Advanced Analytics

Vienna, Austria

October 2015 – March 2017 Freelancer

Raiffeisen Bank International AG

Department of Investment Finance

Vienna, Austria

215


	Abstract
	Acknowledgements
	Contents
	Introduction
	Background, Problem Statements and Research Questions
	Further Related Work
	Preference Elicitation in Combinatorial Auctions
	Machine Learning-based Preference Elicitation and Mechanism Design
	Encoding Neural Networks as Mixed Integer Linear Programs
	Quantifying Model Uncertainty for Neural Networks
	Monotone Neural Networks

	Publications Contained in this Thesis
	Summary of Contributions
	Deep Learning-powered Iterative Combinatorial Auctions
	Fourier Analysis-based Iterative Combinatorial Auctions
	NOMU: Neural Optimization-based Model Uncertainty
	Monotone-Value Neural Networks: Exploiting Preference Monotonicity in Combinatorial Assignment
	Bayesian Optimization-based Combinatorial Assignment
	Machine Learning-powered Course Allocation

	Conclusion and Future Work

	Deep Learning-powered Iterative Combinatorial Auctions
	Fourier Analysis-based Iterative Combinatorial Auctions
	NOMU: Neural Optimization-based Model Uncertainty
	Monotone-Value Neural Networks: Exploiting Preference Monotonicity in Combinatorial Assignment
	Bayesian Optimization-based Combinatorial Assignment
	Machine Learning-powered Course Allocation
	Curriculum Vitae

