3D Point Cloud VR viewer

University of Zurich^{UZH}

Introduction

Many human-computer interaction techniques using input devices like keyboards and mouses have been developed and matured over time. For example, software tools use well-known methods for scrolling, zooming, panning, and selecting with a mouse in 2D environments in identical ways. In comparison, the input devices in Virtual Reality (VR) environments are new.

Figure 1: HTC Vive.

Figure 2: HTC Vive interaction.

Tracking the head and two hand-held controllers, each with six degrees of freedom, provides a considerable input space. Creative interaction techniques should be

devised, tested, and improved iteratively to exploit the potential of the input devices in VR.

Assignment

For this project, the task is to develop a VR viewer for 3D scenes represented by point clouds obtained from scanners and implement walk-through navigation interactively in this environment with the VR input devices. This project will be running on HTC Vive.

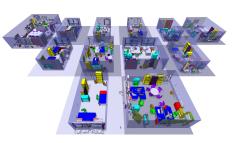


Figure 3: UZH IfI dataset.

Requirements

Interest and willingness to learn about computer graphics and human-computer interaction. This project requires C++ programming experience and prior knowledge of OpenGL.

Work Load

- 30% Theory
- 50% Implementation
- 20% Test

Project Type

This project can be defined for the requirements of a Bachelor, Master thesis, or Master project. The goals and tasks will be adjusted accordingly.

Supervision

- Prof. Dr. Renato Pajarola
- Luciano A. Romero Calla (assistant)

Contact

Write an email to romero@ifi.uzh.ch.

References

- Tomas Akenine-Möller, Eric Haines, and Naty Hoffman. *Real-Time Rendering, Fourth Edition.* A. K. Peters, Ltd., USA, 4th edition, 2018.
- [2] Claudio Mura, Gregory Wyss, and Renato Pajarola. Robust normal estimation in unstructured 3D point clouds by selective normal space exploration. *The Visual Computer*, 34(6-8):961–971, June 2018.
- [3] Alexandre Boulch and Renaud Marlet. Deep learning for robust normal estimation in unstructured point clouds. In *Proceedings Eurographics Symposium on Geometry Processing*, 2016.
- [4] Aravind Kalaiah and Amitabh Varshney. Modeling and rendering points with local geometry. *IEEE Transactions on Visualization and Computer Graphics*, 9(1):30–42, January-March 2003.
- [5] Y. Ben-Shabat, M. Lindenbaum, and A. Fischer. Nesti-net: Normal estimation for unstructured 3d point clouds using convolutional neural networks. In 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pages 10104–10112, 2019.

Prof. Dr. Renato Pajarola Visualization and MultiMedia Lab Department of Informatics University of Zurich