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Abstract
Interactive visualizations of large-scale datasets can greatly benefit from parallel rendering on a cluster with
hardware accelerated graphics by assigning all rendering client nodes a fair amount of work each. However,
interactivity regularly causes unpredictable distribution of workload, especially on large tiled displays. This re-
quires a dynamic approach to adapt scheduling of rendering tasks to clients, while also considering data locality
to avoid expensive I/O operations. This article discusses a dynamic parallel rendering load balancing method
based on work packages which define rendering tasks. In the presented system, the nodes pull work packages
from a centralized queue that employs a locality-aware dynamic affinity model for work package assignment. Our
method allows for fully adaptive implicit workload distribution for both sort-first and sort-last parallel rendering.

Categories and Subject Descriptors (according to ACM CCS): I.3.2 [Computer Graphics]: Graphics Systems—
Distributed Graphics; I.3.m [Computer Graphics]: Miscellaneous—Parallel Rendering

1. Introduction

Research in parallel computing that exploits computational
resources concurrently to work towards solving a single
large complex problem has pushed the boundaries of the
physical limitations of hardware to cope with ever growing
computational problems. While reducing the workload of a
single computational unit with parallelism in data or task
space, making use of distributed parallel computers brings
its own set of issues that need to be addressed. Among the
main challenges are the stringent requirement for optimiza-
tion of task partitioning as well as distribution of tasks to re-
sources with consideration of minimal communication and
I/O overheads.

With the dramatic increase of parallel computing and
graphics resources through the expansion of multi-core
CPUs, the increasing level of many-core GPUs as well as the
growing deployment of clusters, scalable parallelism is well
supported on the hardware level. In a number of applica-
tion domains such as computational sciences the utilization
of multiple or many compute units is nowadays common-
place. Also modern operating systems and desktop appli-
cation programs more and more exploit the use of multiple
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CPU cores to improve their performance. Moreover, GPUs
are increasingly used to speed up general computationally
intensive tasks.

The growing deployment of computer clusters along with
the dramatic increase of parallel computing resources has
also been exploited in the computer graphics domain for
demanding visualization and rendering applications, where
GPUs are exploited using their data-parallel many-core ar-
chitecture. The combination of cost-effective and integrated
parallelism at the hardware level as well as widely supported
open source clustering software, has established graphics
clusters as a commonplace infrastructure for development of
more efficient algorithms for visualization as well as generic
platforms that provide a framework for parallelization of
graphics applications.

Not unlike other cluster computing systems, parallel
graphics systems experience the need to improve efficiency
in access to data and communication to other cluster nodes,
while achieving optimal parallelism through a most favor-
able partitioning and assignment of rendering tasks to avail-
able resources. Parallel rendering adopts approaches to job
scheduling similar to the distributed computing domain, and
adapts them to perform a well-balanced partitioning and
scheduling of workload under the conditions governed by
the graphics rendering pipeline and specific graphics al-
gorithms. Whereas some applications can be parallelized
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more easily with a statical a-priori distribution of tasks to
the available resources, many real-time 3D graphics appli-
cations require a dynamically adapted scheduling mecha-
nism to compensate for varying rendering workloads on dif-
ferent resources for fair utilization and better performance.
This article explores a dynamic implicit load balancing ap-
proach for interactive visualization within the parallel ren-
dering framework Equalizer, comparing and analyzing the
performance improvements of a work packages based task
pulling mechanism against available dynamic explicit task
pushing schemes integrated in the same framework.

The following Section 2 provides an overview of termi-
nology and related work in parallel rendering. Section 3 out-
lines the properties of the used parallel rendering framework
and describes the details of our dynamic load balancing ap-
proach using work packages. After an analysis of test results
in Section 4, a summary and ideas for future improvements
conclude the article in Section 5.

2. Related Work

With respect to Molnar’s parallel-rendering taxonomy
[MCEF94] on the sorting stage in parallel rendering, as
shown in Figure 1, we can identify three main categories of
single-frame parallelization modes: sort-first (image-space)
decomposition divides the screen space and assigns the re-
sulting tiles to different render processes; sort-last (object-
space) does a data domain decomposition of the 3D data
across the rendering processes; and sort-middle redistributes
parallel processed geometry to different rasterization units.
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Figure 1: Sort-first, sort-middle and sort-last parallel ren-
dering workflow.

While GPUs internally optimize the sort-middle mecha-
nism for tightly integrated and massively parallel vertex and
fragment processing units, this approach is not feasible for
parallelism on a higher level. In particular, driving multi-
ple GPUs distributed across a network of a cluster does not
lend itself to an efficient sort-middle solution as it would re-
quire interception and redistribution of the transformed and
projected geometry (in scan-space) after primitive assembly.
Hence, we treat each GPU as one unit capable of processing
geometry and fragments at some fixed rate, and address load

balancing of multiple GPUs in a cluster system on a higher
level, exploiting sort-first or sort-last parallel rendering.

2.1. Parallel Rendering Systems

Besides many application-specific solutions for paralleliza-
tion on multiple GPUs, few generic frameworks have been
proposed to provide an interface for executing visual-
ization applications on distributed systems. One class of
such approaches are OpenGL intercepting libraries, which
are highly transparent solutions that only require replac-
ing OpenGL libraries with their implementations. These li-
braries intercept all rendering calls, and forward them to ap-
propriate target GPUs according to different configurations
of a cluster of nodes. The Chromium [HHN∗02] approach
can be configured for different setups but often exhibits se-
vere scalability bottlenecks due to streaming of calls to mul-
tiple nodes generally through a single node. Follow up sys-
tems such as CGLX [DK11] and ClusterGL [NHM11] try
to reduce the network load primarily through compression,
frame differencing and multi-casting but retain the principle
structural bottlenecks.

More generic platforms support flexible resource config-
urations and shield the developer from most of the complex-
ity of the distributed and networked cluster-parallel system.
VRJuggler [BJH∗01] targets the configuration of immer-
sive VR applications, however, it too suffers from scalabil-
ity limitations. OpenGL Multipipe SDK [JDB∗04, BRE05]
implements a callback layer for an effective paralleliza-
tion, but only for shared memory multi-CPU/GPU systems.
IceT [MWP01] represents a system for sort-last parallel ren-
dering of large datasets on tiled displays, focusing specifi-
cally on image composition strategies. LOTUS [CKP12], on
the other hand, is a system which focuses on configurable
virtual environments on cluster-based tiled displays.

In contrast to these other approaches, Equalizer [EMP09]
represents a unique solution that is both oriented towards
scalable parallel rendering as well as flexible task decom-
position and resource configuration (see also Figure 2). It
supports a fully distributed architecture with network syn-
chronization, generic distributed objects and a large set of
parallel rendering features combined with load balancing.
Due to its flexibility and supported features, the dynamic
work packages load balancing method presented here has
been implemented and evaluated within this framework.

2.2. Load Balancing

Distributing work to multiple resources can improve the
performance of an application in general, however, the re-
lationship between the number of resources and perfor-
mance speed-up is rarely linear. As Amdahl has recog-
nized [Amd67], an application always contains some lim-
iting sequential non-parallelizable as well as overhead code,
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Figure 2: Overview of Equalizer server driving rendering
clients based on a resource usage configuration file.

for synchronization and setting up the parallel tasks. Further-
more, the work between the parallel workers needs to be bal-
anced for optimal speedup, which is rarely easy for real-time
graphics applications. The cost of a partitioned task varies
over time, e.g., when a displayed model is transformed on
screen due to user interaction, different amounts of polygons
are to be rendered for different parts of the screen. Dynamic
load-balancing of tasks and assigning them to the most ap-
propriate resources is used to achieve a better resource uti-
lization.

Dynamic load balancing can be defined as partitioning
and scheduling the work to equalize resource utilization for
better overall performance. The task of rendering an image
can be partitioned within instruction or data space, i.e., into
computational units of execution or subsets of data to be pro-
cessed, respectively. Moreover, parameters like dependen-
cies between tasks, priorities, locality of the data should be
observed while designing a load balancing algorithm. More-
over, computing the task decomposition itself should not de-
mand a lot of resources, since it typically is a sequential por-
tion of the code as per Amdahl’s classification.

Various approaches to assign and load balance tasks for
multiple resources have been proposed. In the following, we
will focus primarily on interactive cluster-parallel rendering
and specifically on dynamic load balancing of sort-first and
sort-last parallel rendering on cluster systems. In distributed
parallel rendering it is important that the workload task parti-
tioning dynamically adjusts to heterogeneous resources, I/O
and communication costs, as well as varying data dependen-
cies and rendering costs.

We can classify load-balancing into explicit and implicit
approaches, where explicit methods centrally compute a task
decomposition up-front, before a new frame is rendered,
while implicit methods decompose the workload into task
units that can dynamically be assigned to the resources

during rendering, based on the work progress of the indi-
vidual resources. Explicit load-balancing can be reactive,
based on load distribution in previous frames, or predic-
tive, based on an application-provided cost function. Ex-
plicit load-balancing typically assigns a single task to each
resource to minimize static per-task costs. Implicit load-
balancing generally uses a finer granularity of many more
task units than resources to minimize the load imbalance due
to a fixed coarse task granularity, but doing so will impose
a larger per-task overhead cost. Implicit load-balancing may
use central task distribution or apply distributed task steal-
ing between resources. We therefore propose a classification
of load-balancing methods into reactive explicit, predictive
explicit, centralized implicit and distributed implicit.

In [SZF∗99], the fundamental concepts of adaptive sort-
first screen partitioning and various explicit load-balancing
schemes have been introduced, and experimental evidence
that a single task per resource leads to the best perfor-
mance has been presented. In [SFLS00], a predictive ex-
plicit approach is used for hybrid sort-first/sort-last parallel
rendering. Past-frame rendering time is proposed as a sim-
ple, yet effective cost heuristic for a reactive explicit algo-
rithm in [ACCC04]. Pixel-based rendering cost estimation
and kd-tree screen partitioning are used in [MWMS07] for
improved predictive explicit sort-first parallel volume ren-
dering. Similarly, per-pixel vertex and fragment processing
cost estimation and adaptive screen partitioning is proposed
in [HXS09]. A reactive explicit load-balancing algorithm for
a multi-display visualization system was further proposed
in [EEP11].

Implicit algorithms are more commonly used for off-line
raytracing compared to real-time rasterization algorithms,
due to the practically non-existent per-tile cost in raytrac-
ing. In [HA98], both predictive explicit and implicit algo-
rithms are proposed and compared, and implicit algorithms
are shown to be superior for raytracing. In [KR04], central-
ized and distributed implicit load-balancing algorithms are
compared for radiosity rendering. Centralized implicit algo-
rithms for modern, highly parallel graphics processors are
proposed in [CT08].

Implicit dynamic load-balancing methods for real-time
distributed cluster-parallel rendering, however, have not yet
been addressed in the research community, and this paper
provides a first step and experiments in this direction. The
main differentiation from prior work includes:

1. A novel implicit rendering task partitioning approach, us-
ing

2. a parallel rendering work package and a task pulling
mechanism, as well as

3. the introduction of a dynamic affinity model for scoring
the mapping of tasks to resources.
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3. Dynamic Load Balancing

Dynamic load balancing systems must either be able to a
priori assess the cost of the workload as accurately as pos-
sible and decompose it as evenly as possible for explicit
task partitioning, or otherwise have flexible granular work
units that can dynamically be assigned to the various avail-
able resources for implicit task partitioning. In the former,
accurately assessing the rendering cost of some given 3D
graphics data under a given viewing and illumination config-
uration, as well as deriving cost-uniform work partitions is
non-trivial and can be costly for real-time rendering. Hence,
under the assumption of strong temporal frame-to-frame co-
herence, most approaches use fairly simple previous-frame
rendering time statistics to approximate the expected current
frame rendering cost, and correspondingly, adjust the previ-
ous rendering task decomposition explicitly before starting
to render a new frame. However, our implicit load balanc-
ing approach does neither, allowing for adaptive balancing
of workload during the rendering of a single frame, and thus
being able to adapt to variable graphics resources even once
the work decomposition has been defined (see Figure 3).
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Figure 3: (a) Static versus (b) an explicit dynamic load bal-
ancing that can adjust task decomposition between frames,
and (c) fully adaptive implicit workload distribution.

Therefore, in this work we explore a flexible implicit load
balancing approach (as in Figure 3(c)) and exploit the con-
cept of rendering work packages as outlined in Figure 4.
This allows for a quick-start setup with initial work package
assignments, as well as subsequent dynamic (re)allocation
of work packages to rendering resources that are ready for
more work.

3.1. Parallel Rendering Framework

As a generic platform, Equalizer supports various modes
of rendering task parallelization. A server configuration file
declares the available resources (besides automatic detec-
tion possibilities), and allows for a flexible description of

server
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client

rendering 
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rendering 
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active work packages

completed work packages

Figure 4: Dynamic load balancing in distributed parallel
rendering using work packages.

resource usage, determining the distribution of rendering
tasks as well as final image composition (see also Figure 5).
The rendering tasks can even be decomposed hierarchically
into partitions in the sort-first image or sort-last data space.
Moreover, separate eye passes can be assigned to different
resources for multi-view visualization, nodes can be chosen
to render consecutive frames for a smoother frame rate, as
well as sample subpixels for antialiasing.
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Figure 5: Simplified execution flow of an Equalizer appli-
cation using our work packages method. Note that clients
request work packages from the server, which in turn as-
signs the packages to the respective client nodes, establish-
ing a work-assignment loop that ends when all packages
have been processed, finishing the current frame.
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3.2. Parallel Rendering Work Packages

Focusing on sort-first and sort-last parallel rendering, Equal-
izer already supports explicit dynamic load balancing in
both image and data space by redistributing rendering tasks,
based on previous frame time statistics. To further improve
resource utilization, one could use a task pulling mechanism,
an approach that has been employed before in distributed
computing. We explore this approach in this work with a
dynamic work packages implementation within the Equal-
izer framework. Rather than having the server push tasks to
the rendering clients, our dynamic work packages approach
works by managing fine grained tasks on the server side,
while the clients request and execute the tasks as they be-
come available.

As illustrated in Figure 4, every rendering client employs
a local queue of work packages for caching purposes. Dur-
ing rendering, a client first works on packages from its lo-
cal queue and requests nreq packages from the server when-
ever the amount of available packages sinks below some
nmin. According to the employed dynamic affinity model,
the server will respond with at maximum nreq work pack-
ages most suitable for the requesting client. The client then
adds these to its local queue.

The work packages used in our system relate to small,
uniformly-sized partitions in object-data or image space. At
the beginning of each frame, the server generates the de-
scriptions for all ntotal required work packages (i.e. regions
in image space or index ranges in geometry space) and stores
them in an indexed map M . A work package is associated
with, and can be retrieved from M with a key k ∈ [0,1] that
is based on an affinity model in either image or data space,
as further detailed below.

The key k is calculated from the package’s index i and
the total number of available packages ntotal for the current
frame as k = i

ntotal
. Given the appropriate affinity model, this

corresponds to a locality-preserving mapping from data or
image space to our work package key space.

3.3. Work Package Data Locality

To establish a data locality preserving work package affinity,
we first-most must have a locality preserving linear mapping
of the work packages and their data to our linear map M of
work packages. For both, object-space data as well as image-
space screen partitioning, space filling curves (SFCs) offer a
locality preserving linear mapping, as illustrated in Figure 6.
The z-curve as shown in Figure 6(a), e.g., can be used to
map work packages of an object-space 3D data partitioning
to linear indices k ∈ [0,1]. For this, the 3D geometry data
is arranged and grouped along a 3D SFC. The data local-
ity in sort-last rendering is now achieved as follows: given
that an initial data package k0 is assigned to a certain ren-
dering node, the work packages k0±1 will contain spatially
close geometry. Thus assigning more data packages close to

k0 to the same rendering node will be favorable due to less
random memory accesses, and hence improves pre-fetching
and caching benefits. Furthermore, nearby data work pack-
ages will be rendered to nearby regions on screen as well,
thus further benefits in image compositing may be possible.

Mapping the tiles of an image-space screen partitioning
to the linear indices k ∈ [0,1] of a 2D SFC, together with a
spatial locality preserving linearization of the 3D data, data
locality in sort-first rendering can also be achieved, as indi-
cated in Figure 6(b). The rendering of nearby tiles k0±1 from
the starting tile k0 of a rendering node, will require further
3D data that is spatially close (in perspective projection) to
the geometry already rendered for tile k0. Thus locality is
also preserved with respect to memory access, and further
benefits may arise in the per-tile view-frustum culling stage.

3.4. Work Packages Affinity

For work package to rendering node assignments, each ren-
dering node is also associated with the linear space, and
given a position p ∈ [0,1] in this space. The work package
m(p) closest to this position is retrieved from the available
ones in M according to Eq. 2. Here we use a circular ad-
dressing scheme, that utilizes a distance function d as de-
fined in Eq. 1, which is exploited in a dynamic affinity model
as further described below.

d(p,x) = min(|1− p+ x|, |p− x|, |1− x+ p|) (1)

m(p) = argmin
x∈M

{d(p,x)} (2)

To allow the server to select the most suitable set of work
packages to serve a given client request, we propose a data
locality and work-load aware dynamic affinity model. As
work packages are mapped to positions k ∈ [0,1] in our key
space, requesting client nodes are associated with this space
as well. In this combined work package key and node in-
dex space we define our affinity model and mapping. The
key is to achieve a linear work package mapping that will
eventually exploit data locality on rendering clients under a
dynamic work package allocation process. The basic data lo-
cality of the work packages is achieved as explained in the
previous section.

Our dynamic affinity model then works such that the
server maps each client to a position p ∈ [0,1] in key space
and always responds with work packages available from M
closest to p, according to Eq. 2, which are subsequently
removed from the map M . Our mapping rules result in
client positions and node boundaries continuously being up-
dated as clients consume work packages, which is illustrated
in Figure 7. Initially, clients and work packages are being
mapped to key space in an equidistant fashion, as shown in
Figure 7(a). As packages are consumed, the server continu-
ously updates the boundaries between clients (node bound-
aries), based on the ratio of work package consumption be-
tween neighboring client nodes, as illustrated in Figure 7(b).
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Figure 6: Mapping from object/image space to our one-dimensional key space using a space-filling curve. In example (a),
object-space geometry segments are mapped to work packages using a 3D z-curve. In (b), screen-space tiles are mapped to
work packages using a 2D Hilbert curve. Darker colors indicate a lower, lighter colors a higher position in key space (gray
circle). The two lowest and the two highest work package positions are written on the right-hand side. Please note that the
successor of the work package at position 1 is at position 0, due to circular indexing. Four rendering clients are mapped to key
space positions p1 = .125, p2 = .375, p3 = .625, and p4 = .875.

Subsequently, the server re-centers client positions between
adjacent node boundaries, which is shown in Figure 7(c).
This has the effect that clients that are faster at consuming
work packages will tend to move towards their slower neigh-
bors, eventually consuming packages originally associated
with these.

To preserve locality, the server only removes and assigns
packages if their distance to the client’s position p in key
space fulfills the following condition:

d(p,x)≤ d′ with d′ =

{
d(pprev,x), for x≤ p
d(pnext ,x) for x > p

(3)

where x is the position of a candidate package, and pprev and
pnext are the previous and next client’s positions from p in
key space, respectively.

To adjust for load imbalances, node positions within key
space are constantly updated, according to the amount of
packages they have consumed in relation to each other,
within a time window w. Consequently, the number of pack-
ages used to calculate a client’s position is

n(p) = 1+ s(p,w) (4)

where s(p,w) is the sum of packages the node at position p
received within the last w time steps. Please note that these
time steps are not dependent on frame boundaries but are
currently defined as interval between two package requests
being served.

The function n(p) can be used to calculate boundaries be-
tween the nodes in key space as a weighted sum of neighbor-

ing node positions, based on the associated nodes’ package
consumption. Before serving a request, the server calculates
the boundary b between a client at position p and its suc-
cessor pnext in key space as follows, see Figure 7(b) for an
illustration of the resulting change in node boundaries:

b(p, pnext) =
n(p)pnext +n(pnext)p

n(p)+n(pnext)
(5)

The server then repositions every client in key space by
centering it between the new adjacent node boundaries, as
shown in Figure 7(c):

pnew =
b(pprev, p)+b(p, pnext)

2
(6)

where p is the old client position, and pprev, and pnext are
the positions of its neighboring nodes in key space.

The role of server and client in creating and distributing
work packages can be simplified and summarized as follows
from Algorithm 1 and Algorithm 2, respectively. Note that
their respective roles within the Equalizer platform are illus-
trated in Figure 5.

More specifically, package request handling on the server
is summarized in Algorithm 3. Note that node positions are
not reset every frame, but are a function of work package
consumption of the respective node, taking the previous w
time steps into account (see Eq. 4), also across frame bound-
aries. Only before serving the very first request, this auto-
matically results in an equidistant positioning of nodes.
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Algorithm 1 Role of the server (simplified)
1: while running do
2: Start frame
3: Generate package indices and spatial positions
4: let ntotal be the number of all available packages
5: for each package x do
6: k← x.index / ntotal
7: Insert x into M at k
8: end for
9: Handle package requests

10: end while

Algorithm 2 Role of the client (simplified)
1: while rendering frame do
2: let nlocal be the number of locally available packages
3: if nlocal < nmin then
4: Request n packages
5: end if
6: Process server response
7: if no more packages exist on server then
8: Stop rendering frame
9: end if

10: for each local package x do
11: Draw x
12: Process and transmit result
13: end for
14: end while

Algorithm 3 Package request handling on the server
1: procedure HANDLEPACKAGEREQUEST(node, nreq)
2: Calculate boundaries between all node positions
3: Use boundaries to recalculate node positions
4: let pnew be the new position of node
5: let packages be an empty list of work packages
6: Update d′ . see Eq. 3
7: package← m(pnew) . see Eq. 1
8: while ntotal > 0 do
9: if d(pnew, package.position)≤ d′ then

10: Add package to packages
11: Remove package from M
12: package← m(pnew)
13: Update ntotal
14: if packages.count ≥ nreq then
15: return packages
16: end if
17: end if
18: end while
19: return packages
20: end procedure
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10

(a) Initial mapping

p1 p2 p3 p4

10

(b) Adjusted boundaries

p1 p2 p3 p4

10

(c) Re-centered client positions

Figure 7: Mapping of rendering clients and work packages
to key space at different stages. Showing four clients at po-
sitions p1...4. Node boundaries are indicated by white gaps,
work packages by slabs from left (position 0) to right (po-
sition 1). The color corresponding to the positions in key
space. Grey areas indicate consumed packages. (a) shows
the initial mapping, (b) shows re-calculated node bound-
aries based on client work package consumption, (c) shows
client positions re-centered between node boundaries.

4. Performance Analysis

We tested our system on a rendering cluster with 10 nodes,
each equipped with a hexacore 1.8 GHz Intel Xeon E5 pro-
cessor, 16 GB DDR4 RAM, and a nVidia GTX 970 GPU
with 4 GB VRAM. The nodes are connected via a 40 Gbit/s
Infiniband network.

For conducting our experiments, we used two different
data sets: David1mm, with 56.2 M triangles, and StMatthew,
with 372.8 M triangles. To avoid a trivial fragment process-
ing scenario, both data sets were rendered using a procedural
marble shader and simple spherical harmonic lighting (see
Figure 8). In all experiments, we rendered our data sets at a
final resolution of 1920x1080.

In order to simulate a challenging rendering scenario, we
used a complex camera path where the camera is placed to
the model very closely and moves along the major axis of
the model while, simultaneously, the model rotates quickly
around that axis (see also example shots in Figure 8). In this
scenario the visibility of different parts of the model varies
rapidly from frame to frame and thus the rendering load
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Figure 8: Screenshots of the David1mm model along the
camera path. The model seems to enter the screen (right)
and revolves along its longest axis while the camera moves
along this axis as well (right to left image).

is not easily predicted by traditional load balancing mech-
anisms.

We implemented our method within the Equalizer plat-
form as Package Equalizer and tested it with a sort-first con-
figuration of 8x8 tiles in screen space, and a sort-last config-
uration of 64 segments of 3D data in object space. In Table 1
we compare our implicit dynamic load balancing method
with conventional sort-first and sort-last dynamic load bal-
ancing approaches reliant on frame-to-frame coherence. The
Equalizer platform already contains implementations of both
approaches, respectively named as 2D Load Equalizer and
DB Load Equalizer [Eye08].

We additionally implemented two simple affinity mod-
els for comparison to the dynamic data locality and work-
load aware model that we propose. The Equal affinity model
simply segments the key space into constant, equally-sized
ranges of work packages and assigns each client to one of
these for the entire duration of program execution. The first-
come, first-served (FCFS) affinity model, conversely, simply
maintains a list of work packages and assigns any requesting
client with the first package available.

Our experiments are summarized in Table 1 which in-
cludes the draw and assembly time accumulated over all
parallel nodes, and in Figure 9 which shows the dynamic
development of draw and assembly times over time. In the
latter the time reported is the passed wall-clock time for
each frame, i.e. considering the maximum draw time needed
by any node working in parallel, plus subsequent assembly
time. Draw time is the duration that rendering of a frame
requires on a node. Assembly time is the duration required
to assemble the final image, including the time to wait for
all nodes to finish rendering. Increased load and load im-
balances can therefore increase assembly time. The increas-
ing assembly time as shown in Figure 9 is likely a conse-
quence of the used camera path, which results in the model
entering the screen from one side until covering it com-
pletely (see Figure 8), hence steadily increasing the assem-
bly cost. Reaching 600 frames the model increasingly cov-

(a) Model David1mm (56.2 M triangles)

Method Draw Assembly Total
Pack DB Equal 19940 53830 73770
Pack DB FCFS 22167 46089 68256
Pack DB Dynamic 20687 47094 67781
Load DB 43280 45848 89128
Pack 2D Equal 21966 10797 32763
Pack 2D FCFS 27464 9510 36974
Pack 2D Dynamic 23108 9985 33093
Load 2D 40034 6408 46442

(b) Model StMatthew (372.8 M triangles)

Method Draw Assembly Total
Pack DB Equal 28378 65692 94070
Pack DB FCFS 114386 64270 178656
Pack DB Dynamic 31597 58404 90001
Load DB 93204 57136 150340
Pack 2D Equal 47193 16913 64106
Pack 2D FCFS 126988 26340 153328
Pack 2D Dynamic 93488 26026 119514
Load 2D 96581 9188 105769

Table 1: Total draw and assembly time in milliseconds for
the StMatthew and the David1mm model, as well as the sum
of these timings for our Package Equalizer (Pack) and the
traditional Load Equalizer (Load) in sort-first (2D) and sort-
last (DB) configurations with three different affinity models:
Equal, FCFS, and Dynamic. The values were calculated over
the duration of 1990 frames.

ers the screen. Thus the rendering load is further increased,
therefore, the frame statistics plotted in Figure 9 only par-
tially contribute to the timings reported in Table 1 which
cover a longer time period. Note that the Table 1 summarizes
total draw times, i.e. the sum of draw times of all nodes of all
frames. Conversely, Figure 9 shows the effective wall-clock
draw time per frame; since nodes render in parallel, this is
the maximum of all draw times per frame.

Table 1 indicates that in the given sort-last parallel render-
ing scenarios (DB), our method exhibits better overall per-
formance than the traditional Load Equalizer method, con-
sidering both draw and assembly times, as also notable in
Figure 9. In the sort-last scenarios, the proposed dynamic
affinity model also exhibits the expected improved perfor-
mance compared to the alternative Equal and FCFS models.

In the sort-first (2D) scenarios the performance of our
dynamic work package method and the affinity model is
also better than the performance of Load Equalizer for the
smaller David1mm model. However, of the tested affinity
models, the simple Equal model works best in this scenario.
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(a) DB Package Equalizer: Equal
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(b) DB Package Equalizer: Dynamic
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(c) DB Package Equalizer: FCFS
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(d) DB Load Equalizer

Figure 9: Draw and assembly times for rendering 600 frames of the rotating StMatthew model with both Package Equalizer
and Load Equalizer in sort-last configuration (DB). The graphs result from the measurements summarized in Table 1.

This can partially be explained by the Equal model being im-
plemented using significantly less amount of overhead than
the Dynamic model, while, unlike the FCFS model, still not
ignoring data locality.

For the larger StMatthew model we can observe a sim-
ilar behavior for sort-last (DB) rendering in Table 1, with
the work packages method improving on the Load Equal-
izer approach. However, for sort-first (2D) rendering, only
the Equal work package affinity model is faster than Load
Equalizer. Among the factors that affect the performance of
our method are the costs and effects associated with tile-
based rendering of large-scale geometry that relate to data
traversal and culling.

5. Discussion and Conclusion

We presented an implicit dynamic load balancing method for
parallel rendering using a flexible rendering task partitioning
approach and a novel work package pulling mechanism. In
particular, we also introduced a dynamic affinity model for
scoring the mapping of rendering tasks and computing re-
sources to the same linear indexing space.

The results of our tests using the dynamic work packages
method for rendering the given models using a challenging

camera path in sort-last (DB) configurations, revealed a per-
formance advantage of our method over a traditional load
balancing method, based on the rendering times of previous
frames.

In the tested sort-first configurations, the method for par-
titioning the rendering tasks in small work packages also ex-
hibited overall better performance than a traditional load bal-
ancer. However, in this scenario the dynamic affinity model
was not superior. Overhead costs and other rendering effects,
such as culling costs that grow with geometry complexity,
likely contribute to this. However, this may be less the case
for large-scale volume rendering where less culling overhead
can be expected.

Finally, the higher performance of our method in the
tested sort-last configurations, in comparison with traditional
load balancing, based on previous frame rendering times,
suggests that our dynamic load balancing method is highly
adaptive and can react more immediately to rapid changes in
the distribution of the rendering load. Our dynamic affinity
model also outperforms alternative first-come, first-served
(FCFS) and Equal models in these scenarios. For the sort-
first setup, further investigation is needed to understand the
effects of culling overhead, more accurate culling and possi-
bly off-screen rendering.

c© The Eurographics Association 2016.
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Furthermore, extended studies on varying settings and in-
homogeneous rendering node capacities are expected to fur-
ther reveal the potential benefits of dynamic work-package
based load balancing in parallel rendering.
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