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1 Introduction

The task for this work was to get acquaint with the linear optimization problem and the most
famous algorithm experienced in this area, called Simplex and then implement this algorithm
in the context of relational databases as a set of user defined functions in PostgreSQL. For the
purpose of in-database analytic methods the open-source library MADIib was used.

An optimization problem has the goal to maximize or minimize a value corresponding to an
objective function. The linear optimization problem is a specific optimization problem char-
acterized by a linear objective function and constraints that are expressed as a set of linear
equalities or inequalities. Moreover, the diet optimization problem is a subset of the linear
optimization problems. The standard form of this problem is a minimization of the objective
function with constraints representing an upper bound. For example this problem may be used
by a dietitian of an army, who needs to find the most economical diet satisfying the basic mini-
mum nutritional requirements (constraints) for a good food balance (Luenberger & Ye, 2016a).
The most popular algorithm for solving this problem is Simplex. The idea of Simplex is to get
iteratively from one feasible solution to another one that finally results in a better value of the
objective function. This needs to be done until an optimum (minimum or maximum) is reached
or the problem gets declared as unbounded (Luenberger & Ye, 2016b).

2 Simplex Algorithm

A linear program is a subset of an optimization problem (maximum or minimum) where the
objective function is linear and the constraints consist either of linear equalities or inequalities
(Luenberger & Ye, 2016b). The following form represents the standard form of a linear problem:

minimize z = cjx1 + coxa + ... + ¢y
subject to: a11x1 + ajoxe + ... + a1pxy, = by

a21T1 + a22%2 + ... + Q2p Ty = by

Am1T1 + amaTo + ... + GmnTn = bm

and x1 > 0,20 > 0,...,x, >0

In matrix notation this is shown as below:

minimize z = ¢’ x

subject to: Ax =b
and z >0

The corresponding dual problem of this linear problem can be achieved by transforming some
number of vectors and matrices. This leads to the following matrix notation:

maximize z = by
subject to: ATy = ¢

and xzy > 0
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The relationship between the primal and the dual form of a linear problem depends on finding
a solution. If the primal has an optimal solution then the dual has either. If the primal problem
is unbounded then the dual is infeasible, and if the solution of the primal is infeasible then the
corresponding dual has an unbounded solution.

Slack and surplus variables Usually linear programming problems naturally arise in inequal-
ities. To convert those problems into the standard form shown above, an inequality may be
converted to an equality using slack or surplus variables.

a1121 + ajaxe + ... + apen < by

leads to,
a1121 + a1222 + ... + a1pxn 4+ s1 = by, with s;1 >0

Using the slack variables s;, Vi € R for m constraints (rows), m columns got added to the matrix,
which results in an identity matrix of size m x m.

1 0 .. 0 0
0 1 .. 00
I=
0 0 1
0 0 .. 0 1]

Figure 1: Identity matrix

On the other side, surplus variables I;, Vi € R would be used in case of an inequality that is
bigger than some value. Those variables would then be subtracted from this inequality.

a1121 + ajax2 + ... + apxrn > by

leads to,
a1171 + a12x2 + ... + a1pxn — 1 = by, with [y >0

The mixing of slack and surplus variables and the existence of only surplus variable wouldn’t
lead to an identity matrix as shown in Figure 1.

Example In this section the simplex algorithm is demonstrated in its standard form, as well as
in its revised form. Throughout this paper, the following linear program is used. This problem
is the dual of a diet optimization problem, because it is maximizing the objective function and
has only upper bound constraints. It is used for this example to avoid the two-phase method
where we would have to add artifical variables. The two-phase method consists of phase I where
artificial variables are introduced and the sum of artificial variables is the objective function so
that a basic feasible solution is found. The phase II then uses the computed solution from phase
I and minimizes the original objective function (Luenberger & Ye, 2016b).
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maximize z = 7x1 + 9o + 43
subject to: 2x1 + 1lxo +4x3 < 6
2x1 + 3xo + 223 < 13
dr1 + lao + 43 < 12
2x1 4+ dxo + 123 < 10

x1,x2,x3 > 0

The first step in solving this optimization problem is to transform the inequalities into equal-
ities. For this purpose we can define additional variables, so called slack variables. This leads
to the following standard form of an optimization problem:

maximize z = Tz + 929 + 43
subject to: 21 + lxo + 423+ 51 =6
2x1 4+ 3x0 + 223 + 59 =13
4z + lxg + 43 + s3 = 12
2x1 4+ 5xo + 1oz + 54 = 10

T1,T2,T3,51,52,83,54 > 0

2.1 Simplex Algorithm

The goal of the simplex algorithm, and especially for the diet optimization problem, is to iter-
atively decrease the value of an objective function (minimize). The target is to get from one
feasible solution to another feasible solution. As a result, Simplex returns values of the unknown
variables and the corresponding total minimized cost of the optimization problem.

2.1.1 Basic and Non-Basic variables

Next, we need to introduce the basic and non-basic variables. All basic variables have assigned
a value greater or equal to zero. At the beginning of the algorithm the basic variables are the
slack variables. At contrast the non-basic variables always have value zero. After every iteration
a basic variable is exchanged to a non basic variable and vice versa. For this purpose we need
to split the matrices and vectors as shown below:

a-lo o= [i] o= 7]

where xp are the non-basic variables and z g are the basic variables. Matrix A is divided into
two matrices D containing non-basic variables and B containing basic variables. At the first

iteration B represents the identity matrix shown in Figure 1.

Initial Tableaux The linear problem from above must be transformed as described into a system
containing only of equalities. This can be achieved using slack variables for each inequality.
Usually the simplex algorithm is given implemented for minimization. In case that maximizing
is the goal of the optimization problem, then the coefficients of the objective values must be
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multiplied by —1. At the beginning of the simplex procedure we assume to start with a basic
feasible solution and a tableaux corresponding to the following construct that represents the
system of equalities:

$}F3 ‘ xg ‘RHS ‘ basis
D B b B

T T

—z

Table 1: Simplex Initial Tableaux

where RHS defines the right hand side of the equations. For the provided example following
values can be assigned to the matrices and vectors to build up the initial tableaux:

2 1 4 100 0 6
|23 2 g |01, i3
41 4 0010 12
2 5 1 000 1 10

51
c%:[7910}7cﬁz{0000],x32 2l z=0

53

S4

2.1.2 Pivot operation

The pivot operation then generates a new system of equalities based on the old one by replacing
a basic variable with a non-basic variable and the other way around (=swapping). In each
iteration the table (matrix) is transformed using standard elementary operations (scalar row
multiplication, add and subtract rows) (Luenberger & Ye, 2016b).

2.1.3 Example

The initial tableaux (standard form in Table 1) of the example described with its values filled
in is shown in Table 2 below:

1 Ty X3 \ S1 S9  S3 84‘ b \ratio \ basis

2 1 41 0 0 0]6] 6 | =
2 3 20 1 0 0/[13]13/3] s
41 4]0 0 1 0[12] 12 | s
2 ® 1[0 0 0 1]10] 2 | &
7 9 4]0 0 0 0]0] [ —2

Table 2: Initial Tableaux

After creating the initial tableaux the basic feasible solution can be detected from the tableaux.
The non basic variables x1, x2 and x3 have assigned value zero. The slack variables correspond
to the basic variables which means that following solution results as the basic feasible solution:

x1=0,29=0,23=0and z=0
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For every iteration the simplex algorithm contains of the following steps:

1. Check optimality: The relative cost coefficients are shown in the last row of the tableaux.
If all of the coefficients are non-negative (positive), then the current solution is already the
optimal solution, because when having negative values there is still room for improvement
of the feasible solution.

In the provided example there are 3 negative coefficients which means the solution is not
optimal yet.

2. Find entering variable: If improvements are possible (negative values), a variable needs
to be selected as the entering variable. If there exists more than one negative relative
cost coefficient it is common practice to choose the most negative value to achieve the
greatest decrease of the objective function. The chosen variable then enters the basis
while increasing the value of this variable to a positive value (> 0), and the corresponding
column is called the pivot column.

For the initial tableaux the entering variable is xo which means that ¢ = 1 (second element
of pivot column).

3. Check boundness and find leaving variable: The row with the smallest non negative
ratio of b (RHS) divided by the pivot column is chosen as the pivot row, justified by the
need of satisfying all constraints. If the values are all negative then the solution is to be
considered as unbounded. If there are ratios that are tie, any minimum ratio element can
be used as a pivot element.

The ratios in this example can be gathered from the initial tableaux. The lowest (non-
negative) ratio is 2 in the 4th row. Therefore k = 3 and the variable s4 is considered as
leaving variable of the basis.

4. Update tableux: As last step, the tableaux is updated to an equivalent system of equal-
ities that represent the new solution. To achieve this new solution, a set of elementary
row operations (Gaussian elimination) are applied to transform the pivot column into a
column of the identity matrix. The operations that must be applied for this step are:

a) Divide the pivot row (fourth row) by 5
b) First row minus 1 times new pivot row
¢) Second row minus 3 times new pivot row
d) Third row minus 1 times new pivot row

e) Fifth row plus 9 times new pivot row

This leads to following tableaux after the 1st iteration:

1 X2 T3 ‘ S1 SS9 S3 84 ‘ b ‘ ratio ‘ basis
¢ 0 38 |1 0 0 —-02|4]| 25 $1
08 0 14 |0 1 0 —-06|7]8.75 S9
36 0 38 |0 0 1 —-02]10]25/9]| s3
04 1 020 0 0 022 5 o
-34 0 —-22]0 0 0 18 [18] | —2

Table 3: Tableaux after 1st iteration
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Because there are still some negative relative costs, the algorithm needs to continue with a
further iteration:

1. Check optimality: The current solution can be improved by updating the tableaux.
2. Find entering variable: z; has to be chosen as the entering variable.

3. Check boundness and find leaving variable: The ratios per row are shown in Table 3.
The smallest value can be found in the first row, which leads to the pivot element marked
in the circle.

4. Update tableux: For updating the tableaux following operations need to be executed:

a) Divide the pivot row (first row) by 1.6

b) Second row minus 0.8 times new pivot row
c¢) Third row minus 3.6 times new pivot row
d) Fourth row minus 0.4 times new pivot row

e) Fifth row plus 3.4 times new pivot row

The following tableaux results after finishing 2 iterations:

T1 X9 T3 \ S1 S S3 S4 \ b \ basis
1 0 237510625 0 0 -—0.125] 2.5 T
0O 0 -051|-05 1 0 =05 5 S9
0 0 —-475|-225 0 1 0.25 1 S3
0 1 -075]-025 0 O 0.25 1 T9
0 0 5287 \ 2125 0 0 1.375 \ 26.5 \ —z

Table 4: Tableaux after 2nd iteration

Finally there are no negative values in ¢, anymore, meaning that the optimal solution is found
in the beginning of the 3rd iteration:

z=—-26.5,71 =25,z =1,23 =0.

2.2 Revised Simplex Algorithm

The revised simplex algorithm is a modification of the simplex algorithm. It is following the
same steps as Simplex, but it doesn’t use the large matrix A for representing the current state
after every iteration. Instead of matrix A it is using B~! which is computed after every iteration
based on the previous B~! and the original A, which means that matrix A will never be changed
throughout the whole algorithm. Based on matrix B~! everything can be fully computed using
the originals of A, b, c.

Steps of the algorithm

1. Initialize matrices and vectors:
2=0,y" = CEB_I,B =B

2. Tteration:
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a)

Example

Step 1 (Compute Relative Costs): Calculate the current relative cost coefficients
rg = cCJS — yT'D where yT = c:gB_l. D is the part of matrix A where the columns
correspond to the initialized non-basis variables and the same for cg, which is part
of vector c¢. If rp > 0 then stop, the current solution is optimal. Additionally, find

the entering variable ¢ by selecting the smallest relative cost coefficient.

Step 2 (Compute Pivot Column): Calculating a, = B~ 'a, returns the vector
for using as the pivot column where a4 is the pivot column of A.

Step 3 (Determine Leaving Variable): If no value of @, > 0 then stop, the
problem is unbounded. Else, compute the ratios §/a, to determine the pivot element
where 3 = B~1b.

Step 4 (Update Tableaux): The pivot column now needs to enter the basis array
which means updating B~! and other vectors and matrices. The following operations
must be executed in correct order:

i. Bk, +] = %‘[Ik’*} (divide pivot row by the corresponding @)
ii. B71i,*] — %([Ik’*},w # k (subtract from every row the new calculated pivot
row)
iii. swap(eplq], cplk]) and swap the position in basis and nonbasis array.
iv. 8=B"1
v. yI' = ch*1

vi. z = cgﬂ

According to the example used in this paper, the algorithm is executed as follows:

1. Initialize the matrices and vectors:

o O O =

00 0 2 1 4 163
100 2 3 2 _

010 D=1y 14 ch=[-7 -9 —4] e
00 1 2 5 1 10

2. First Iteration

a)

Step 1 (Compute Relative Costs):
rg:c:g—yTD: -7 -9 —4

additionally set ¢ = 1 (second element of the vector)
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b) Step 2 (Compute Pivot Column):

1 0 0 Of |1 1
d, = B la, = 0 1.0 03] _13
0 01 0f (1 1
0 0 0 1] |5 5
c) Step 3 (Determine Leaving Variable):
6
. _ |13/3
t = =
ratio = (/a, 19
2

therefore the last value is the minimum ratio and r = 3.

d) Step 4 (Update Tableaux): Updating B! according to column @,

100 —0.2] new cg:[o 0 0 _9] 4
pa_ |01 0 —06 8- Blp— 7
001 —02 N ~ |10
000 02 new c%=[—7 0 —4} 5

y =k =]0 0 0 -13] s— LB =18

3. Second iteration

a) Step 1 (Compute Relative Costs):

2 1 4
2 3 2
b= b yTD = [—7 0 —4] - [0 00 —18 —[-34 0 —2.2}
4 1 4
2 5 1
additionally set ¢ = 0 (first element of the vector)
b) Step 2 (Compute Pivot Column):
1 0 0 —0.2( 1|2 1.6
1 —0. 2 .
d, = B la, = 0 0 —0.6 _ |08
0 01 -02]| (4 3.4
0 0 0 02 2 0.4
c) Step 3 (Determine Leaving Variable):
2.5
8.75
t. = a =
ratio = /a, 50/17
5

therefore the first value is the minimum ratio and r = 0.
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d) Step 4 (Update Tableaux): Updating B! according to column @,

0625 0 0 —0.2 new ¢§ = [_7 0 0 _9} 2.5
05 1 0 —0.
B! — 0.5 0 —0.6 BBl
225 0 1 —0.2
025 0 0 0.2 new ¢f, = [0 0 —4} 1
T
yT=cEB1=]2125 0 0 —1.375} z=chB=—265

4. Third iteration:
a) Step 1 (Compute Relative Costs):

r{,:c{)—yTDZ[o 0 —4}—[—2.125 00 —1.375} :[o 0 5.875}

DN NN
T = W =
— R N

b) As there is no negative value, we’ve found the optimal solution:

z=-206.5,21 =25,20=1,23 =0

2.3 Comparison of Simplex and Revised Simplex Algorithm

The standard simplex algorithm updates the entire tableaux after each iteration. As not all
values in the tableaux are needed in every iteration, the standard simplex algorithm does com-
putations that are not really needed. In contrast, the revised simplex does not keep a repre-
sentation of the full tableaux and should therefore be more efficient. This is shown in following
computation of time complexity for the theoretical algorithm:

Standard Simplex The advantage of the standard simplex algorithm is its simplicity. A disad-
vantage of the algorithm is that it updates the complete A-matrix after every iteration, which
means it uses m X n operations to update the complete matrix.

o Computation: O(mn) operations for each iteration

Revised Simplex The revised simplex algorithm needs the following 4 operations with its
corresponding upper bound computation time:
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Operation Sub-Operation Cost Total Cost
Compute Relative Costs O(m? + mn)
Multiplication of y© = 5B~ | O(m?)
Multiplication of y* D O(mn)
Subtraction of rp = c5 —yT'D | O(n)
Compute Pivot Column Compute @, = B la, O(m?) O(m?)
Determine Leaving Variable Compute ratios 3/a, O(m) O(m)
Update Tableaux O(m? + mn)
B[k, + = 2l O(m)
B Vi« - 2l vi £ k| O(m?)
swap(epld], cs[K]) o)
B=DB" O(m?)
yI' =C0LB™! O(m?)
z=cLp O(m)

Leading to following total upper bound for the computation of the revised simplex algorithm:

« Computation: O(m? + mn) operations for each iteration

This actually contradicts the efficiency of the revised simplex algorithm. Usually in practice

m << n and matrix A is a sparse matrix, meaning to have very few nonzero values. We define

7 as the number of nonzero values in matrix A. Since the revised simplex does not update A, it

preserves its sparsity and takes advantage of it.

Inserting this 7 and assuming that n >> m gives following calculations for the upper bound

of the revised simplex:

O(m?* 4+ mn) = O(m?* + 1)

Compared to the standard simplex, that fills matrix A in with non-zero values (after some

iterations), this means for n >> m that the revised simplex is much more efficient for matrices

with many nonzero values. Therefore this algorithm was used for the implementation.

10
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3 MADIib

MADIib is an open-source library of in-database scalable analytic methods that can be executed
in a relational database engine supporting extensible SQL. MADIib was developed by people
from industry (Greenplum) and academia (universities of Berkley, Florida and Wisconsin) in
2008 with the primary target of accelerating data analytics algorithm implementation on DBMS
(Database Management System) (Hellerstein et al. , 2012).

As the library is publicly accessible on GitHub to the open-source community, the developers
are allowed to modify its methods to their own purposes and implement new methods and ports
to other DBMS. This is a major advantage over traditional closed-source packages (Hellerstein
et al. , 2012).

For this purposes some techniques are used by MADIib to succeed in handling the data in the
DBMS. The framework consists of the following major components (McQuillan, 2015):

1. C++ database abstraction layer
2. C++ implementation functions

3. Python Driver functions

3.1 C++ Implementation Functions

The functions are the actual implementations of the individual algorithms (ex. Simplex). In-
cluded in this C++-implementation are the core functions and the aggregates that are used for
the particular algorithms (McQuillan, 2015).

3.1.1 User Defined Aggregates

The first technique used for implementation are user-defined aggregates (UDAs). UDAs are used
to implement mathematical functions that take a number of tuples as input variables. A UDA
needs to be composed of at least two user-defined functions (UDF) (Hellerstein et al. , 2012):

1. Transition function: takes the current state and a new tuple and combines them to a
new transition state.

2. Merge function (optional): takes two current states and merges those transition states
by computing a new transition state.

3. Final function: takes a old transition state and transforms it into an output value.

3.1.2 State

The state stores all variables used for the implementation of the algorithm. For this purpose a
datatype of the state must be defined which can be a vector, a matrix or just one number.

11
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3.2 C++ Database Abstraction Layer for UDFs

This low-level abstraction layer provides matrix operations for easier writing of UDFs. The
layer supports three classes of functionality: resource management, type bridging and math
library integration. Type briding provides us the c++-data types and functions and additionally
translates it to database types and vice versa. The resource management provides a runtime
interface to DBMS-managed resources (e.g. allocating/deallocating memory)which separates
the c++-exception handling and the DBMS handlers. The final class of functionality is the
integration of third party libraries such as Eigen which makes it easier for developers to handle
linear-algebra (Hellerstein et al. , 2012).

3.3 Python Driver Functions

Most statistical methods implemented in MADIib are iterative which means that a data set

needs to be passed many times. For this purpose some variations for implementation came up
for MADIib (Hellerstein et al. , 2012):

o Virtual Tables: A virtual table with n rows can be declared to go through n iterations.
Then join this virtual table with a view representing a single iteration. This method can
only be used for stateless algorithms, because it isn’t possible to pass the state through
the iterations.

e Window Aggregates for Stateful Iteration: If a current iteration depends on a pre-
vious iteration then window aggregates can be used to transport the state through all
iterations.

¢ Recursive Queries: Recursive Queries can be used to perform this iteration with user-
defined stopping conditions.

e Python Driver Functions: Provides control over the iteration of the data movement

and creates temp tables to avoid moving data outside of the Database Management System
(DBMS) (McQuillan, 2015).

The virtual tables can be used only for predefined number of iterations (they do not support
termination conditions) and they cannot be used for stateful algorithms. As the window aggre-
gates and recursive queries don’t provide generality for all SQL engines and portability, MADIib
has chosen Python Driver Functions to implement complex iterative methods (Hellerstein et al.
, 2012).

12
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4 Implementation of Simplex Algorithm in PostgreSQL

For the implementation of the revised simplex algorithm, values need to be stored in two different

kinds of memories.

4.1 Disk

Matrices of the standard form of the problem are represented as relations in the Linear Program

example:

Input relations:

e Coefficients of the constraints: A (row int, col int, value double precision)
e The right side of the constraints: b (row int, value double precision)

e Cost coeflicients: ¢ (col int, value double precision)

Generated relations:

e Storing position of relation basis: basis (position int, i int)

e Storing position of relation nonbasis: nonbasis (position int, i int)

The matrices A, b and ¢ are represented in relations, but the zero values are ommited from
the relation to safe storage. For relations basis and nonbasis, less computations are used if
they are stored in the disk instead of storing it in the RAM, because tuples then can be filtered
from the relation with a WHERE-statement. This means not all values need to be considered for

swapping values in relations basis and nonbasis.

Example For the shown example, the following data is stored in the disk. Relation A is divided
into D (white cells) and B (gray cells):

] rowi \ coli \ value ‘

0 0 2

] rowi \ value ‘

0 6
1 13
2 12
3 10

)
NGNS |

Table 6: Relation b Table 7: Relation ¢

WO OWWWNONNREFEREEREOO
DU WNHHFONFONRFEONR
R R PR OTN R R RN WN

Table 5: Relation A

13
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position | 1] [position | 1]

0 3 0 0
1 4

1 1
2 5 9 9
3 6

Table 9: Relation nonbasis

Table 8: Relation basis

4.2 State in RAM

For every User Defined Function a previous state is used to calculate the new one. For this we

need to pass the state through storage. The state contains the following elements:

Implemented | Math | Description Size

Name Name

numRows - Contains the number of rows processed so far

nval n Describes the number of decision variables, which is the
number of columns of matrix D

mval m Describes the number of constraints, which corresponds | 1
to the number of rows of the matrix D

bimat B! Corresponds to the B~ matrix m?

yvec a Stores the computed y”-vector m

zval z Stores the value of the objective function where to find | 1
an optimal solution

agvec [ States the ag-vector m

minRatio - Defines the minimum ratio of §/a, initialized by —1 1

cbvec cg Stores the c¢g-vector which contains m-values m

cdvec cg Contains the values of ¢p-vector which stores n-values n

rdvec rg Describes the relative cost vector rp which contains of | n
n-values

rval k Indicates the value of the pivot row after every iteration | 1

qval Indicates the value of the pivot column after every itera- | 1
tion

status status | Describes the status of the algorithm (0=Continue, | 1
1=Unbounded, 2=Optimum)

Summed up, the state needs following storage:

Storage=1+1+1+m?>+m+14+m+1l+m+n+n+1+1+1
=m?4+3m+2n+8=0(m?+n)

The implementation of Simplex always passes the whole state through the aggregate functions.

The implementation could be improved using just variables needed by the specific aggregate

UDF. Between calling the aggregate UDFs a interstate can be implemented to provide that all

attributes can be passed through the aggregate UDFs.

14
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4.3 Implemented UDFs
4.3.1 Compute Relative Costs
Aggregate UDF which computes the relative cost coefficients and determines which variable is

having the most negative cost coefficient g.

Transition Function Runs for every tuple of the relation A corresponding to nonbasic variables.
In line 1 it first calculates the relative cost vector for the position coli. If there is a negative
value in rp which is smaller than the saved state.qual, this value is updated.

Listing 1 ComputeRelativeCostsTrans (int rowi, int coli, int value, State state)

1: state.rdvec[coli] -= value * state.yvec[rowil;

2: if (state.rdvec[coli] < O && state.rdvec[coli] < state.rdvec[state.qvall)
3: state.qval = coli;

4: return state;

Final Function Checks if the optimum solution is already found. For this purpose it determines
if the vector rp contains of negative values. If this isn’t the case, then it assigns the value 2 to
the state, which means the optimal solution is found.

Listing 2 ComputeRelativeCostsFin (int rowi, int coli, int value, State state)

1: if (state.numRows == 0)

2: return Null();

3: if (state.rdvec[state.qvall >= 0)
4: state.status = 2;

5. return state;

4.3.2 Compute Pivot Column
Aggregate UDF which calculates the pivot column @,.
Transition Function Computes the pivot column and runs for every tuple of A (nonbasis),

WHERE coli = state.qval. In line 2 we can see a use of the Eigen library where the algorithm
multiplies a row of a matrix by one value.

Listing 3 ComputePivotColumnTrans (int rowi, int value, State state)

1: if (state.numRows == 0) state.aqvec.setZero();
2: state.aqvec += state.bimat.col(rowi) * value;
3: return state;

Final Function This final function checks if there are only negative values in a,; which would
mean that the solution is unbounded.

Listing 4 ComputePivotColumnFin (int rowi, int value, State state)

1: bool negative = true;
2: for(int i = 0; i < state.mval; i++) {
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3: if (state.aqvec[i] >= 0) negative = false;
4: 3}

5: if (negative == true) state.status = 1;

6: return state;

4.3.3 Determine Leaving Variable

This UDF calculates the ratios 3/a, Va, > 0 to determine which vector is leaving the basis.

Transition Function In line 1 the value state.rval is initialized to -1. In the for-loop a temp
variable stores the current rows ratio and then checks if this value is smaller than the previous
ratio. After executing this algorithm, the smallest ratio is stored in statae.minRatio and the
number of the pivot row is stored in state.rval

Listing 5 DetermineLeavingVariableTrans (State state)

1: state.rval = -1;

2: for(int i = 0; i < state.mval; i++) {

3 double temp = state.betavec[i] / state.aqvec[il];
4: if (state.rval > -1) { //there is a wvalue
o: if (temp < state.minRatio) {

6 state.minRatio = temp;

7 state.rval = i;

8 }

9 } else {

10: state.minRatio = temp;

11: state.rval = i;

12: }

13: }

14: return state;

4.3.4 Update Tableaux

Transition Function This function updates B~! (with elementary row operations), swaps the
correct values of ¢, and ¢4, and calculates the S-vector. Every line between line 1 and line 18 is
executed only once at the beginning of the iteration. In line 2 the pivot row of B~! is updated
according to vector @,. In line 4 all other rows (except the pivot row) are updated, so that a, is
entering the basis. From line 10 - line 12 the swapping of vectors ¢; and ¢4 corresponding to the
value state.rval and state.qual is executed. Then in line 15 vector state.betavec is calculated
according to the new B~1.

Listing 6 UpdateTableauxTrans (int rowi, int value, State state)

1: if (state.numRows == 0) {

2: state.bimat.row(state.rval) = state.bimat.row(state.rval) /
3: state.aqvec[state.rvall;

4: for(int i = 0; i < state.mval; i++) {

5: if (i !'= state.rval) {

6: state.bimat.row(i) -= state.aqvec[i] *

7 state.bimat.row(state.rval);
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8: }

9: }

10: double cbtemp = state.cbvec[state.rvall;

11: state.cbvec[state.rval] = state.cdvec[state.qvall;
12: state.cdvec[state.qval] = cbtemp;

13: state.betavec.setZero();

14: }

15: state.betavec += state.bimat.col(rowi) * value;
16: return state;

Final Function This function will be executed only once at the end of the aggregated UDF.
As a result we get the new calculated y” and the updated z. In line 1 the algorithm again takes
use of the Eigen library to set all values of the vector equal to zero. In line 2 the new y” vector
is calculated and in line 4 the new z-value gets updated.

Listing 7 UpdateTableauxFin (int rowi, int value, State state)

1: state.yvec.setZero();

2: state.yvec = trans(state.cbvec) * state.bimat;
3: state.zval = 0;
4: state.zval = trans(state.cbvec) * state.betavec;
5: return state;

4.3.5 Simplex

The aggregated UDFs are executed iteratively using the following algorithm. From line 1 until
line 20 the actual algorithm as described in section 2.2 is executed by using the aggregate UDFs
explained in section 4.3. In line 21 - line 24 the values are added to a new created table, which

stores the results of z and b.

Listing 8 Simplex (Table A, Table b, Table cd)

1: for i in range(0, max_iter):
2: state = plpy.execute(SELECT ComputeRelativeCosts (a_row, a_col,

3: a_val, state) FROM A

4: WHERE d_col IN (SELECT i FROM nonbasis))

5: if state.status == 2 then break

6: state = plpy.execute (SELECT ComputePivotColumn (a_row, a_val)

T FROM A WHERE a_col =

8: (SELECT i FROM nonbasis WHERE postition = state.qval))
9: if state.status == 1 then break

10: state = plpy.execute (SELECT DetermineleavingVariable (state))
11: state = plpy.execute(SELECT UpdateTableaux (b_row, b_val, state))
12: g_result = plpy.execute(SELECT getqvalue(state))

13: r_result = plpy.execute (SELECT getrvalue(state))

14: swap_to_basis = plpy.prepare(SELECT i FROM nonbasis

15: WHERE position = q_result)

16: plpy.execute (UPDATE nonbasis

17: SET i = (SELECT i FROM basis WHERE position = r_result)
18: WHERE position = q_result)

19: plpy.execute (UPDATE basis
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20: SET i = swap_to_basis WHERE postition = r_result)
21: CREATE TABLE out_z (value DOUBLE PRECISION);

22: INSERT INTO out_z (value) VALUES state.zval;

23: CREATE TABLE out_b (rowi INT, value DOUBLE PRECISION);

24: INSERT INTO out_b (rowi, value) VALUES (rowNumber[], values[]);

4.4 Open questions on optimizing the implementation

Would it be more efficient if a tuple of relation A represent a row or columnof matrix
A? Actually it sounds logical that it would save storage if an attribute was omitted. In the

implementation of Simplex (n x m + m) rows in the relation are needed.
o (n x m)-rows for the coefficients of the decision variables.
o m-rows for the coefficients of the slack variables.

If this 3 column relation would change to a 2 column relation, storage could be saved. For ex-
ample the relation could look like A (row int, value double precision[]) or A (col int,
value double precision[]). When using this relation design it wouldn’t be possible to omit
zero values, which would lead to use more storage again. Thus, this idea isn’t that good for
large sparse matrices. Remembering variable 7 which stands for the nonzero values in A, the
computation would look like:

e 3 column relation A (col int, row int, value double precision):
2 int + 1 float = 2 x 4 Byte + 1 % 4 Byte = 12 Bytes / tuple
For m xn tuples = 12[m x n| and because of sparsity =—> 12 % 7 Bytes
e Per row A (col int, value double precision[]):
1 int + n float = 1 x4 Byte + n * 4 Byte = 4(n + 1) Bytes / tuple
For m tuples = 4nm + 4m Bytes
e Per column A (row int, value double precision[]):
1 int + m float = 1 x4 Byte + m x4 Byte = 4(n + 1) Bytes / tuple
For n tuples = 4nm + 4n Bytes

In the implementation the per cell relation was implemented. The choice of this database
design compared to the 'per column’-design should therefore be more efficient. Given those
assumption, following comparison can be calculated:

127 < dnm + 4n
127 < 4n(m + 1)
T < 1/3n(m+1)
which means that the number of nonzero values needs to be smaller then 1/3 of the matrix, so

that the implementation design is more efficient than the per column or the per row implemen-
tation.
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5 Conclusion

As seen in this paper, MADIib provides a framework to implement in-database analytic methods.
The predictive analytics of data in a DBMS is becoming more important wherefore MADIib
uses user-defined-aggregates (UDAs) to implement mathematical functions in SQL. Exemplary
Simplex was implemented to get an overview about MADIib. Simplex gets a linear optimization
problem as an input and outputs optimized costs and the optimal number of inputs per input
variable.

In this project I got to know about the MADIib framework which is going to increase its
popularity and extended this framework with an auxiliary method. Additionally to the frame-
work, I learned implementing user defined-functions in PostgreSQL and building user-defined
aggregates (UDAs). Further on I learned the mathematical handling of the simplex algorithm
in its both forms. Unfortunately it was out of scope of the project to test the algorithm on the
basis of the Swiss Feed Database, where larger data sets could be used instead of testing it only
with self developed examples.
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