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Figure 1: Overview of our pipeline. From left to right: input point clouds (a); room-based clustering of viewpoints (b); room-
based clustering of planar scene parts (c); reconstructed room models before (d) and after (e) merging of overlapping rooms.

ABSTRACT
We propose a scalable strategy for the architectural modeling of
large-scale interiors from 3D point clouds. We exploit the fact that
buildings are structured into different rooms to cast the model-
ing of a large, multi-room environment as a set of simpler and
independent reconstruction problems. This drastically reduces the
complexity of the computation and makes the processing of large-
scale datasets feasible even without using restrictive priors that
affect the precision of the final output.
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1 MOTIVATION AND BACKGROUND
With the ever-increasing diffusion of fast and accurate 3D acquisi-
tion systems, new frontiers have opened in domains such as engi-
neering, architecture and facility management. A number of appli-
cation scenarios rely on the use of compact 3D models of interiors
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that describe their architectural shape. In practice, such models are
often created by hand using interactive modeling tools, leading to
labor-intensive and time consuming workflows. For this reason,
there is a strong need for automatic pipelines to extract compact
and structured 3D models of interiors from raw input data.

The challenges involved in this task are manifold and range
from the robust handling of defects in the input data to the precise
representation of architectural structures. To manage the complex-
ity of the problem, many state-of-the-art methods sacrifice this
latter aspect and employ restrictive priors such as the 2.5D assump-
tion [Ochmann et al. 2016], resulting in methods that can only
faithfully model environments with vertical walls and horizontal
floors and ceilings. Some full-3D methods lift such limitations and
allow to model wall structures with arbitrary orientations, but their
complexity either makes them only applicable to small environ-
ments [Boulch et al. 2014] or requires the use of strategies that can
remove small-scale structures [Mura et al. 2016].

We present an approach that exploits the simple fact that indoor
environments are subdivided into separate rooms to make the use
of full-3D methods feasible on large-scale inputs. We show that
performing the room detection – a standard step in many modeling
pipelines [Mura et al. 2016; Ochmann et al. 2016] – at the begin-
ning of the processing pipeline allows to reconstruct each room
separately, drastically reducing the complexity of the problem and
enabling the use of more expressive formulations.

2 ROOM-BASED MODELING PIPELINE
Our pipeline (Fig. 1) takes as input a 3D point cloud with oriented
normals and abstracts its planar parts into a set of bounding rectan-
gles [Mura et al. 2016]; the output consists in a set of 3D polyhedra,
each describing the boundary surface of a room of the environment.

2.1 Room Detection
Unlike most recent approaches [Mura et al. 2016; Ochmann et al.
2016], which perform the room detection at a late stage in their
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pipelines and rely on viewpoint information in the input model, we
detect the rooms from the initial planar abstraction and without
using the locations of the device at acquisition time.

To do so, we generate a set of synthetic viewpoints by embedding
the bounding rectangles in an octree of a pre-defined resolution
(25cm in our tests) and by selecting the centers of the leaf cells
for which most of the visible scene, as defined by the bounding
rectangles, corresponds to front-facing rectangles. In this context,
the rectangles act as proxies for the structures of the scene; their
winding is derived from the normals of the input 3D points.

We then compute for each viewpoint Pi and rectangle R the area
of the surface ofR seen by Pi , whichwe denote byvis (Pi ,R). This in-
formation allows to group the viewpoints based on their visible sur-
face overlap, using a state-of-the-art procedure based on theMarkov
cluster algorithm [Mura et al. 2016]. The result (shown in Fig. 1(b))
is a set of nrooms clusters of viewpoints C = {C1, . . . ,Cnrooms }, each
providing an estimate of the spatial occupancy of a room.

2.2 Room-based Grouping of Rectangles
In the previous step, we used the values vis (Pi ,R) to cluster the
viewpoints according to the room to which they belong. Con-
versely, in this step such values are used to define the visibility
vis (Ck ,R) of a rectangle R from a cluster of viewpoints Ck , which
in turn allows to define the probability P (R,Ck ) of R being rel-
evant to the modeling of the room of Ck . In particular, we de-
fine vis (Ck ,R) = maxPi ∈Ck vis (Pi ,R) and compute P (R,Ck ) as
follows:

P (R,Ck ) =
vis (Ck ,R)∑nrooms

i=1 vis (Ci ,R)

Based on these values, we compute the set Rk of rectangles
that will be used to reconstruct the room defined by cluster Ck as
Rk = {R |P (R,Ck ) > θ }, where θ (set to 0.25 in our tests) defines
a trade-off between efficiency and reconstruction safety. This soft
assignment of rectangles to the clusters of viewpoints (shown in
Fig. 1(c), where each rectangle is colored based on the cluster from
which it is most visible) ensures that primitives that are barely
visible from the cluster of a room do not burden its reconstruction.

2.3 Room Reconstruction
Each set Rk is used to reconstruct a 3D mesh that bounds the space
occupied by a room. Following a well-established scheme [Boulch
et al. 2014], we reconstruct this mesh by labeling the cells of a cell
complex built from the rectangles in Rk as inside or outside space
and by selecting the facets that separate cells with a different label.
Our cell complex is based on a 3D Binary Space Partitioning (BSP)
constructed from a set of 3D planes that correspond to the main
surfaces of the environment and that are computed by clustering
the rectangles in Rk . A 3D BSP allows to represent architectural
(planar) elements with arbitrary orientations, but incurs in a sig-
nificant overhead for its construction; this limits its applicability
to small environments [Boulch et al. 2014] or requires the use of
aggressive pruning strategies to reduce the number of planes used
in its construction [Mura et al. 2016].

Since our room-based pipeline considers each room separately,
the set of planes used to construct the 3D BSP remains small, thus

making the use of this structure feasible without requiring error-
prone techniques to reduce the number of primitives used in the
computation. In particular, we prune from Rk only those rectangles
that are clearly detached from the ceiling and wall structures (e.g.
furniture in the center of a room), without relying on more aggres-
sive strategies [Mura et al. 2016], and extract the dominant planes
for the construction of each BSP using a conservative version of
the PEARL algorithm. The extraction of the shape of each room
from its cell complex employs a state-of-the-art formulation [Mura
et al. 2016], adapted to our binary labeling setting.

The result of the room-based reconstruction is shown in Fig. 1(d).
Since some of the detected rooms can correspond to sub-spaces
of a same environment (e.g. a long staircase), we merge spatially
overlapping rooms in a post-processing step, which yields the final
room models (Fig. 1(e)).

3 RESULTS AND DISCUSSION
As shown in Fig. 1(e), our room-based pipeline can produce accurate
models of large multi-room interiors with complex shapes. Note,
in particular, the presence of details like steps and fixtures and the
successful recognition of the individual rooms, including the large,
central staircase, correctly reconstructed as a single environment.

Even more interestingly, the entire processing of the input model
(9.5M points and 827 rectangles) took only about 2 minutes (125.6s)
on a MacBook Pro with an Intel Core i7 (2.5GHz) and 16GB DDR3
RAM. This is made possible by our room-based strategy approach,
which avoids the bottleneck of the construction of a single, global
3D BSP-based complex. We specifically compared the computa-
tional cost of the construction of this structure with that of building
the nrooms = 13 cell complexes created by our method. The overall
time spent in this computation by our algorithm was 95.8s (split
among multiple threads), with the largest complex (built from 119
input planes) requiring 32.4s. On the other hand, the construction
of the global BSP, built from 602 planes, was aborted after the in-
sertion of the first 460 planes and over 8 hours of computation, as
it exceeded the memory capabilities of our test machine.

These results show that our strategy effectively avoids the bot-
tleneck of constructing a global 3D BSP while still producing a
reconstruction that captures the full-3D nature of an environment.
Some aspects remain however open to further research. In partic-
ular, modeling each room separately implies that the final model
is produced without using any regularizers that account for the
interactions between adjacent sub-environments; this is particu-
larly critical when merging spatially overlapping rooms that are
initially reconstructed as separate environments (currently done
in post-processing). Moreover, we want to adopt a more optimized
strategy for the generation of the viewpoints from the input model.
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