Analysis of Tensor Approximation for Compression-Domain Volume Visualization

Rafael Ballester-Ripoll, Susanne K. Suter, Renato Pajarola

rballester@ifi.uzh.ch

29th April 2016

Table of Contents

Background and Motivation

Introduction to Tensor Approximation

3 Tensor-Based Compression

Section 1

Background and Motivation

Context

- Large-scale interactive visualization: complex data over regular grids
 - Computer tomography, simulations, etc.
 - We tolerate (and encourage) approximations
- In volume rendering: data sets of size I^3 , with I large (e.g. 2048).
 - Possible added dimension(s): features (RGB color, X-ray density), time, etc.
- Asymmetric pipeline:
 - Slow decomposition is acceptable (offline stage)
 - But fast reconstruction is critical (online stage)

Example Volumes

Tensor Approximation in Computer Graphics

- Texture synthesis [VBP+05,CSS08,WXC+08]
- Multiresolution rendering [SIM+11,SMP13,BGG+14]
- Micro-tomography compression [BSP15, BP15]
- Bidirectional texture functions [WWS⁺05,WXC⁺08,RK09,TS12,Tsa15]
- Bidirectional reflectance distribution functions [RSK12]

Section 2

Introduction to Tensor Approximation

What is a Tensor?

- For us, a *multidimensional array*:
 - A vector is a 1D tensor
 - A matrix is a 2D tensor
 - Etc...

In a Nutshell

- Let us express a tensor as a sum of simpler terms
- Main ingredient: separable (rank-1) components
- Example in 2D (outer product $u \circ v$)

CP Decomposition

• One factor matrix per dimension

• Coefficients in a diagonal form

Formula:

$$\mathscr{A} = \sum_{r=1}^{R} \lambda_r \cdot \left(u_r^{(1)} \circ_r^{(2)} \circ_r^{(3)} \right)$$

Tucker Decomposition

- Generalization of CP
- We can enforce orthonormality
- Here, most space is used by the core

Tucker Decomposition

Formula:

$$\mathscr{A} = \sum_{r_1 = 1, r_2 = 1, r_3 = 1}^{r_1 = R_1, r_2 = R_2, r_3 = R_3} \mathscr{B}_{r_1 r_2 r_3} \cdot (u_{r_1}^{(1)} \circ u_{r_2}^{(2)} \circ u_{r_3}^{(3)})$$

- Tensor-times-matrix notation: $\mathscr{B} \times_1 \mathbf{U}^{(1)} \times_2 \mathbf{U}^{(2)} \times_3 \mathbf{U}^{(3)}$
- Distance preservation:

$$\left\{\begin{array}{l} \mathscr{A}_{1} \approx \mathscr{B}_{1} \times_{1} \mathbf{U}^{(1)} \times_{2} \mathbf{U}^{(2)} \times_{3} \mathbf{U}^{(3)} \\ \mathscr{A}_{2} \approx \mathscr{B}_{2} \times_{1} \mathbf{U}^{(1)} \times_{2} \mathbf{U}^{(2)} \times_{3} \mathbf{U}^{(3)} \end{array}\right\} \Rightarrow \mathscr{B}_{1} \approx \mathscr{B}_{2}$$

Decomposition Algorithms

- CP: challenging problem → algorithms only work well in practice
- Tucker: there are error bounds
 - Algorithm gives intuition \rightarrow let us look at it

Fibers

• In 3D: columns, rows, tubes

• Apply principal component analysis (PCA)

Unfoldings

• We do PCA per fiber

Multilinear Transforms

- Orthogonal basis of R vectors
- Fibers are compressed one dimension at a time

This basis is precisely the matrices we want

In Context...

Discrete Cosine Transform

Haar Wavelets

Tucker Decomposition

• We leave it free \rightarrow find **optimal** matrices

Advantages of Tensor Approximation

- Optimal bases \rightarrow competitive compression rates
 - Good for out-of-core solutions
 - Often, the compressed data fits entirely in the GPU
- For many dimensions, virtually the only way to go
- We can operate on the factor matrices:
 - Translation
 - Stretching
 - Projection
 - Convolution
 - Frequency-domain transforms
- Example: DCT on the factors + Reconstruction = Reconstruction + DCT on the result

Spatial Selectivity

• To reconstruct the subregion $[i_1, j_1] \times [i_2, j_2] \times [i_3, j_3]$:

Section 3

Tensor-Based Compression

Smooth Feature Compression

- At high compression rates, tensor approximation is good at preserving visual features
- One way to see it: isosurfaces
 - For example, spheres are isosurfaces of multivariate Gaussians (rank-1)

Metaballs: isosurfaces of a rank-1 function

Example: CP

VISUALIZATIONAND MULTIMEDIALAB

Example: Tucker

Volume Compression

- Quantization [SMP13]
- Thresholding [BP15]
- Truncation [SMP13,BP15,BSP15]

Quantization

• Coefficients are roughly logarithmic:

- Logarithmic quantization works best
 - E.g. 8 bits + 1 sign bit

Tucker Thresholding

- Make small elements 0
- Run-length + Entropy encoding

- During visualization, **reduce** ranks as needed
- Very fast to apply

• Rank selection for interactive level-of-detail [SMP13]: Tucker core from $\mathbb{R}^{R_1 \times R_2 \times R_3}$ to $\mathbb{R}^{R'_1 \times R'_2 \times R'_3}$

Different ranks select different features

• Example: bonsai (256³), from 1 to 256 Tucker ranks

CP Rank Truncation

• Truncation problems

One Solution

• Use incremental compression

Tucker vs. Wavelets (Bonsai)

Tucker vs. Wavelets (Foot)

Tucker vs. Wavelets (Skull)

Tucker vs. Wavelets (Wood)

Tucker vs. Wavelets (Wood)

Software and Methods

• C++: vmmlib

- MATLAB: Tensor Toolbox, Tensorlab
- Decomposition:
 - Up to 2048^3 is fine
 - After that, there are incremental algorithms
- Reconstruction:
 - Must be fast. We have also a CUDA implementation

Future Work

• Tensor Train (TT): more recent model [Ose11]

- Even better suited for many dimensions
- Fast random-access

Conclusions

- Tensor approximation generalizes:
 - Frequency-based transforms
 - Separable wavelets
- Good compression quality
- Good at selecting features
- Designed to overcome the curse of dimensionality
 - The more dimensions, the better the advantage

Thank you!

[VBP⁺05] D. Vlasic, M. Brand, H. Pfister, J. Popović: Face transfer with multilinear models.

[WWS^{+05]} H. Wang, Q. Wu, L. Shi, Y. Yu, N. Ahuja: Out-of-core tensor approximation of multi-dimensional matrices of visual data.

[CSS08] R. Costantini, L. Sbaiz, S. Süsstrunk: Higher order SVD analysis for dynamic texture synthesis.

[WXC⁺08] Q. Wu, T. Xia, C. Chen, H.-Y. Lin, H. Wang, Y. Yu: Hierarchical tensor approximation of multidimensional visual data.

[RK09] R. Ruiters, R. Klein: BTF compression via sparse ensor decomposition.

[SIM⁺11] S. K. Suter, J. A. Iglesias Guitián, F. Marton, M. Agus, A. Elsener, C. Zollikofer, M. Gopi, E. Gobbetti, R. Pajarola: Interactive multiscale tensor reconstruction for multiresolution volume visualization.

[Ose11] I. Oseledets: Tensor-train decomposition.

[TS12] Y.-T. Tsai, Z.-C. Shih: K-clustered tensor approximation: a sparse multilinear model for real-time rendering.

[RSK12] R. Ruiters, C. Schwartz, R. Klein: Data driven surface reflectance from sparse and irregular samples. [SMP13] S.K. Suter, M. Makhynia, R. Pajarola: TAMRESH: Tensor approximation multiresolution hierarchy for interactive volume visualization.

[BGG⁺14] M. Balsa Rodríguez, E. Gobbetti, J. A. Iglesias Guitián, M. Makhinya, F. Marton, R. Pajarola, S. K. Suter: State-of-the-art in compressed GPU-based direct volume rendering.

[Tsa15] Y.-T. Tsai: Multiway K-clustered tensor approximation: toward high-performance photorealistic data-driven rendering.

[BP15] R. Ballester-Ripoll, R. Pajarola: Lossy volume compression using Tucker truncation and thresholding.

