Reconstructing Complex Indoor Environments with Arbitrary Wall Orientations

Claudio Mura Oliver Mattausch Renato Pajarola

Contact: { claudio | mattausch | pajarola }@ifi.uzh.ch { ajaspe | gobbetti }@crs4.it

Introduction
We present a pipeline for reconstructing a 3D model representing the architecture of an indoor environment from a set of point clouds obtained by laser range scanning. Current approaches typically make restrictive assumptions (e.g., Manhattan-world property) on the type of environments considered. To avoid such limitations, we represent the input scene as a tetrahedral complex, whose facets can adhere to wall structures with arbitrary orientations. The final model is obtained by applying a heat diffusion process to the complex, using a formulation that accounts for clutter and occlusions in the input data.

Proposed Pipeline

Input model (3D point clouds) ➔ Tetrahedralization ➔ Segmentation ➔ Final model (watertight mesh)

Tetrahedralization
We partition the space surrounding the input scene using tetrahedral cells, following the approach in [1]. We first detect planar patches in the input point clouds, then we cluster them using mean-shift to find a set of dominant planes. The intersections of such planes are used to compute a Constrained Delaunay Tetrahedralization (CDT), recently proposed in [3] for the reconstruction of urban scenes.

Segmentation
To obtain the final model, we apply a heat diffusion process to the dual of the complex and use a recursive binary clustering to extract groups of tetrahedra corresponding to individual rooms, as described in [2].

Note that s_{ij} can be computed efficiently using the standard rasterization pipeline. In this setting, a per-pixel weight can be included to give more importance to the covered surface and to account for the distance from an occluding patch to the facet.

This formulation prevents heat from flowing across facets that are likely to lie on wall structures. This way, heat can propagate more quickly among tetrahedra that belong to the same room of the environment. Groups of tetrahedra with coherent heat level can be then extracted by clustering.

References

The input point clouds (left) and the results of the clustering of the detected planar patches (right, where each color represents a different orientation).

A constrained tetrahedralization is used to ensure that the wall structures (that must lie on the dominant planes) are represented by facets of some tetrahedra. To obtain the constraint triangles, we consider for each dominant plane the intersection points that lie on it and compute their triangulation on the plane itself.

The input point clouds (left) and the results of the clustering of the detected planar patches (right, where each color represents a different orientation).

The tetrahedral space partitioning superimposed on the model. The grey spheres correspond to the intersections of the dominant planes.