
1. Introduction to Economics and
Computation

What do economics and computation have to do with each other, and what can be
gained through thinking about economics and computation at the same time?

In this chapter, we introduce the main themes of the book, namely the interplay between
economic and computational considerations and especially the way in which (i) many socio-
economic systems are now computational (with social and economic transactions mediated
through computation) and (ii) many computational systems are also economic systems in that
they are operated by multiple, often self-interested, parties.

Economics can be described as the study of decision making by multiple actors, each with
individual preferences, capabilities, and information, and motivated to act in regard to these
preferences. Fundamental to economics is to understand what outcomes can be achieved in
systems with multiple actors (e.g., what resource allocations, production decisions, actions)
under incentive constraints.

Computer science can be described as the study of the representation and processing of
information for the purpose of specific calculation tasks. Fundamental to computer science is
to understand what types of computation can be carried out efficiently, under time, resource
and communication constraints.

Taken together, by studying topics at the intersection of economics and computer science
(“EconCS” in short) we have in mind,

the analysis of existing systems, and the design of new systems, whose performance
depends on addressing both incentive constraints and computational constraints.

We emphasize in particular the need for both economic and computational thinking for the
purpose of design. Given a focus on systems involving multiple users or firms, it is essential
to consider the effect of design on the behavior of participants. Design influences behavior,
which in turn determines the properties of a system.

In the next sections we consider three concrete examples where economic and computational
thinking are important. These will lead into a broad discussion of various touch-points at the
intersection between economics and computer science.

1.1. The Braess’ Paradox

In our first example we analyze a network flow problem. This could be a computer network
to route Internet traffic, or a network of streets to route cars from one location to another.
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Figure 1.1.: The Braess’ Paradox: Traffic flow in equilibrium.

Consider the network shown in Figure 1.1. A flow of x = 2000 units needs to move from
Start to End. We first consider the network where the dashed line connecting points A and
B is not present. Each unit of flow is associated with a single user and can take a different
route, in this case via A or B.

The edges in the network have different delay functions. The time it takes to get from Start
to A depends on the total flow xA on that edge, in particular, t = xA

100 . The time it takes to
get from A to End is fixed, with t = 25. The second route is symmetric such that the time it
takes to get from Start to B is fixed, with t = 25, and the time it takes to get from B to End
is t = xB

100 .

The first question we ask is: what is the system optimal flow of traffic, and what will be
the travel time for each individual user? By symmetry of costs, the optimal traffic flow splits
50:50, such that xA = xB = 1000. This results in a total traveling time for each user of 35
minutes.

But what if we consider that users are self interested? For this, we model an incentive
constraint : each user will take the route that minimizes his or her own travel time given the
routes adopted by other users. But we immediately see that with 1000 users on each route,
no user can improve their own travel time. If a user who previously took route A switches to
route B, the number of users on that route increases to 1001, and the resulting travel time
increases to T = 25 + 1001/100 = 35.01. Thus, each user is best off staying with their current
route. The system is in equilibrium.

Now, we add a new edge, namely the dashed line connecting A with B. The time to travel
this edge is t = 0. Thus, users now have an additional route from Start to B, namely by going
Start-A-B. The original travel flow is no longer an equilibrium. No user would ever want to go
from Start to B, because this takes 25 minutes and even if all 2000 users take the route from
Start-A-B, this takes only 20 minutes. The same reasoning holds true for A to End : taking
the route A-B-End will always be better.

Thus, each user choose to go from Start-A-B-End, whatever the actions of other users. This
is a dominant strategy, and defines the equilibrium of the new system. The paradox is that
the travel time for each user has increased from previously 35 minutes to now 40 minutes. By
adding a new route with zero delay, the travel time has become worse for everyone! This is
the famous Braess’ Paradox named after the mathematician Dietrich Braess.
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1.2. Using an Auction for Sharing Compute Resources

The Braess’ Paradox makes one thing crystal clear: incentives matter ! The rational self-
interested behavior of individuals can lead to socially sub-optimal outcomes in equilibrium.
This is a kind of “tragedy of the commons”: individual actors use too much of a commonly-
shared resource (like a path on a routing network) so that the end result is bad for everyone.
Thus, when designing computational systems where the actions of multiple self-interested
participants determines the overall outcome, it is important to take into account incentive
constraints on the design as well as computational constraints.

Since the advent of the Internet, such systems are ubiquitous. Consider for example e-
commerce platforms (eBay, Amazon), online advertising markets (Google, Yahoo!, Microsoft),
social and micro-blogging networks (Facebook, Twitter), and Web 2.0 platforms (Wikipedia,
Yelp, Tripadvisor, Digg). However, the design of computational systems with multiple partic-
ipants was a challenge even before the Internet. We see this in the next section.

1.2. Using an Auction for Sharing Compute Resources

Early computers were very costly, shared amongst many users, and in great demand. In the
1960’s, researchers at Harvard University used an auction system to determine who would gain
access to the PDP-1, the world’s first interactive, commercial computer.

Users could mark bids in integer amounts of currency for a block of time on a long roll of
transparent paper, starting and ending on quarter hours, and with different colors to indicate
the bid amount. The paper was moved up each day so that the next two weeks were always
displayed. A user could out bid a current bid (including one of their own bids) by bidding for
a block of time at a higher hourly rate, by writing a new bid above the current bid on the
schedule. See Figure 1.2.1

Different users were allocated different amounts of currency, this budget allowing for a simple
priority scheme. A user’s outstanding bids for future time could not exceed a user’s allocated
budget. Bids could be canceled and the currency re-used elsewhere, but a user could not lower
a bid, or bid again at some later instance on a block of time where a bid had been canceled.
Once an allocation was made to a user and payments collected, the currency was returned to
the user and could be used again.

Other rules were designed to preclude fragmentation of time on the shared machine, so that
users received large enough contiguous blocks of time. For example:

(i) out-bidding part of an existing bid could only be done at the beginning or end of a block
of time; e.g., a bid of $2 for [1:00,3:00] could be out-bid with a bid of $3 for [12:30,1:30],
but not with a bid of $3 for [1:30,2:30],

(ii) out-bidding part of an existing bid that was holding an hour or more could only be done
while leaving the existing bid with at least an hour on the machine; e.g., a bid of $3 for

1For example, the bid by KSL on Tuesday at 3 Yen (the name given to the virtual currency) for 13:00-15:00
is at rate 3/2 per hour. This out bids the bid by CJ at 1 Yen for 13:00-14:30 (rate 1/1.5) and the first 30
mins of the bid by TM for 14:30-18:00 at 1 Yen (rate 1/3.5). The effect is that the bid of CJ is no longer
active and the bid of TM is retained at 1 Yen for 13:00-18:00 (rate 1/3).
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Figure 1.2.: Bidding in the PDP-1 auction (from Sutherland 1969)

[12:30,2:00] but not $3 for [12:30,2:30] would be allowed given an existing bid of $2 for
[1:00,3:00].

In summarizing the useful properties of the PDP-1 auction, Ivan Sutherland, the designer
of the system, remarked:

“We have found that under the auction system... our computer utilization is
very high... The computer is never idle, as often happens under other alloca-
tion schemes, merely because everyone has used up his current monthly allotment
of time. If the computer ever is idle, its price automatically becomes attractively
low... Although users complain when their bids are preempted, they are generally
glad to have a choice between short periods of expensive prime time and long periods
of time at less desirable periods...”

By “preemption,” Sutherland is referring to the possibility that bid can be out-bid, perhaps
leaving some part of it standing. Sutherland is making the basic case for the use of economic
approaches for resource allocation within multi-party computational systems. The auction
design allowed users to express the intensity of preference and heterogeneity in regard to time
of day and length of time. Prices provided coordination, such that anyone could use the
machine when it was under-utilized. At other times those with the highest value could gain
access. The effect was to promote allocative efficiency, those with the most value could gain
access to the resource, and avoid a tragedy of the commons.

Strategic behavior was observed by users of the PDP-1 auction. One example was through a
particular pattern of submitting multiple, contiguous bids. The rules of the auction interpreted
multiple bids by the same user on consecutive blocks of time as if they were a single bid from
the perspective that they could only be out-bid at the beginning or end according to rule (i).
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1.3. Using an Auction to Allocate Advertisements

This was intended to allow a user to express a preference for an early portion of time through
a bid $3 for [1:00,1:30] and $1 for [1:30,3:00]. But this also allowed for strategic behavior.

Let’s suppose a user wants to obtain time block [9:00,10:00] for at most $2. Rather than
bid $2 for [9:00,10:00], the user could bid $1 for [9:00,9:15] and $1 for [9:15,10:00]. With the
first bid, the user could be out-bid by a bid of $3 for [9:00,10:00]. But this bid is not possible
under rule (ii), since it would leave only 15 minutes (the bid $1 for [9:00,9:15]) would stand.
Instead, another user would need to bid $2 for [9:00,9:15] and $2 for [9:15,10:00], for a total of
$4. Thus, by submitting multiple bids the user gains more protection against being out-bid.2

There are a multiple reasons why a useful design stance is to preclude the possibility of
beneficial strategic behavior. One is to make a system easier to use, so that each user can
interact as if he or she is the only user, and straightforwardly express preferences for resources.
Second, there are fairness considerations, since not all users may be aware of the possibility of
strategic behavior. Third, strategic behavior may lead to inefficient resource allocation where
resources are not allocated to those with the highest value. Fourth, the need to adapt bids in
response to what other users are doing can place overhead on system infrastructure, with bids
continually being modified to gain advantage. We will revisit this concern in the next section,
in the context of ad auctions.

1.3. Using an Auction to Allocate Advertisements

Alongside the “organic” search results, which are links to content that an Internet search engine
considers to be most relevant for a user query, are sponsored search results. For example,
Figure 1.3 shows 3 ads above and 1 ad to the right in response to a query for “flowers.” Which
ads are displayed to a user is determined via an auction.

Auctions are suitable for selling items without a standardized value. This is the case when
selling access to users entering queries into a search engine. Not only is there an essentially
unlimited number of different queries, but the value of advertisers can depend on context such
as time of day, location, proximity of holidays, and so forth. Ad auctions, for ads adjacent to
search results but also for user attention more broadly (e.g., on social network platforms or
news sites) have become the main driver of revenue for large Internet firms.

Multiple ad slots are offered for sale in sponsored search, both above and to the right of
organic results. Higher slots tend to be more desirable.

Three typical design components of ad auctions are,

(i) bids are placed per-click, with payment only collected from an advertiser in the event of
a click,

(ii) bids are evaluated in terms of expected value, with estimates made of the quality of an
ad (the probability that the ad will receive a click from the user if allocated in slot 1), and
bids with higher expected value receiving higher slots, and

(iii) the payment in the event of a click is not the bid price but a second price, namely the
smallest bid amount at which the advertiser would have retained the same slot.
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Figure 1.3.: An example of sponsored search listings. The ads are shown above and to the
right of the organic search results.

Earlier auction designs were first price, or pay-your-bid. This means that in the event of
being allocated a slot and receiving a click from a user, the advertiser would pay the amount
of its bid.

Strategic behavior is beneficial in such auctions. For example, in order to maintain position
in a particular slot while pay as little as possible an advertiser should try to bid just enough
to maintain position over the next highest bid. Advertisers quickly realized this and adopted
“bidding robots” in order to adjust bids in response to other bids. Early auctions didn’t
estimate the quality of ads, and simply ranked bids by bid amount, with the highest bid
receiving the highest slot. Moreover, early auctions published bid amounts. Based on this, it
was a simple matter to write a program to monitor an auction and update bids to maximize
profit.

Figure 1.4 (a) plots the highest bid submitted for a specific keyword in the Overture search
engine from 12:15am to 2:15pm on July 18, 2002.3 The top two bidders are engaged in a
bidding war. Between A and B the two bidders continually out bid each other. At B one of
the bidders stops competing for the top slot and bids just enough to retain the second slot
instead. By C the other bidder has responded by just bidding enough to gain the top slot, and
the cycle begins again. Figure 1.4 (b) shows this sawtooth dynamic continuing for the week
following July 18.

Let’s consider a simplified explanation for the observed pattern:

Example 1.1. Let’s consider an auction with two slots and where the clickthrough rate (CTR)
on slot 1 is 0.1 and slot 2 is 0.02 (irrespective of the ad.) Let CTRj denote the CTR in slot j.
Advertisers have per-click values of $15, $11 and $5.99, for advertisers 1, 2 and 3 respectively.

2User G can be seen to adopt this strategy in Figure 1.2.
3The first sponsored search auctions were introduced by Goto.com in 1998, later re-branded as Overture.
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1.3. Using an Auction to Allocate Advertisements

a: 14 hours b: 1 week

Figure 1.4.: Sawtooth Bidding Pattern in First-Price Sponsored Search Auctions (from Edel-
man and Ostrovsky 2007).

If advertiser i with value vi for a click wins slot j with CTRj and pays bid bi, its expected
profit is CTRj(vi−bi), i.e., the difference between value and bid, multiplied by the probability of
receiving a click. Typical best-response dynamics between advertisers 1 and 2 (with advertiser
3 always bidding $5.99) are:

b1: 6.01 6.01 6.03 6.03 6.05 ... 9.98 9.98 10.00 10.00 6.01 ...
b2: 6.00 6.02 6.02 6.04 6.04 ... 9.97 9.99 9.99 6.00 6.00 ...
b3: 5.99 5.99 5.99 5.99 5.99 ... 5.99 5.99 5.99 5.99 5.99 ...

In period 1, advertiser 1 wins slot 1 for $6.01 and advertiser 2 wins slot 2 for $6.00. As-
suming that advertisers 1 and 3 leave their bids unchanged, then advertiser 2 can now do the
following analysis:

• Bid $6.00 again: win slot 2, for expected profit of 0.02($11.00− $6.00) = $0.1.

• Bid $6.02: win slot 1, for an expected profit of 0.1($11.00− $6.02) = $0.498.

Given this, the best response is to bid $6.02 to win slot 1, since the expected profit is larger
in that case. In the next round, advertiser 1 faces a similar decision, coming to the conclusion
that a bid of $6.03 is optimal. This leads to a cyclic bidding pattern, which continues until the
bids reach $10.00. At that point, the situation changes for advertiser 2. Bidding $10.01 to win
slot 1 would lead to an expected profit of 0.1($11.00− $10.01) = $0.099, while bidding $6.00 to
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win slot 2 would lead to an expected profit of $0.1. Thus, now a bid of $6.00 is best, and the
cycle repeats.

This bidding war reduces allocative efficiency, with the top slot allocated to the advertiser
with the second highest value half of the time. Although the effect on revenue could in
principle be positive or negative, in practice it was estimated to be at least 7% relative to a
more stable design. In addition, these bidding dynamics placed a lot of “churn” on the auction
servers. Advertisers were making use of the robot bidders, and thus millions of advertisers
were continuously sending messages to the auction servers to update their bids.

The design feature typical to current ad auctions, where the payment in the event of a click
is set to exactly the minimal value the advertiser could bid and retain the same slot, removes
the need for this bid dynamic.4 Once the search engines switched to these “generalized second
price” (GSP) auctions, there was significantly less churn on the auction servers. Changes in
bids in order to minimize the payment for a given slot were no longer necessary.

The basic idea in the GSP auction, of charging a price that depends on that of the next
highest bid, goes back to the birth of auction theory.

For expositional purposes, let’s suppose we’re selling a single space for an ad on the front
page of a newspaper. In a first price (or pay-your-bid) auction, bids are collected and the
space is sold to the highest bidder for the amount of his bid. In a second price auction, bids
are collected and the space is sold to the highest bidder for the amount of the second-highest
bid. Let’s consider a simple example of a second-price auction. If bidders have values $1,700,
$1,500 and $1,000, then the space is sold to to bidder 1, but in a second-price auction for an
amount of $1,500. The optimal strategy for an advertiser is to bid his true value (or willingness
to pay), irrespective of the other bids. Suppose that the bid amounts in the example reflect the
bidders true values. Bidder 1 can do no better than bid $1,700, and in particular, a smaller bid
does not change the amount he pays (and could lead to losing the auction.) Bidder 2 can do
no better than bid $1,500, and in particular a bid that is greater than $1,700 leads to winning
the space for $1,700, which is undesirable.

In fact, it is a simple exercise to formally establish that in a second-price auction for a single
item, each bidder’s optimal strategy is to bid his true value no matter what the bids from
others. Bidding truthfully is a dominant strategy. This is in stark contrast to the strategic
properties of a first-price auction, where each bidder should try to estimate the bids of others,
and bid to maximize profit given these beliefs. This property of a second-price auction is
known as strategyproofness.

But doesn’t a second price auction reduce the auctioneer’s revenue? For standard models
of bidder valuations, the answer is “no.” The simple reason is that bidders in a second price
auction bid truthfully, whereas bidders in a first price auction shade down their bids. It turns
out that the amount by which the winner shades down his bid in the equilibrium of a first-price
auction is equal to the expected difference between the highest bid and the second highest bid
in a second-price auction. The two auctions have the same expected revenue.

4The feature was first adopted by Google in 2002, and shortly thereafter by Yahoo!/Overture, and as of 2012
is used by all major search engines.

8 Copyright © 2013 D.C. Parkes & S. Seuken. Do not distribute without permission.
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1.4. Economics and Computation: A Rich Tapestry

Ad auctions are one of the most prominent current examples of where economic and computa-
tional thinking come together. However, there is a long established, rich tapestry of interaction
between economics and computer science. Beginning as early as the 1920’s, pioneers such as
John von Neumann contributed some of the most basic theory of economics including equi-
librium concepts for simple situations of strategic interdependence, while at the same time
providing the architectural basis for modern computers.

Out of these cross-currents have emerged many new ideas, both practical and theoretical.
Disruptive e-commerce and social-computing technologies continue apace, including systems
of peer production such as Wikipedia and Quora, crowdsourcing platforms such as oDesk and
Amazon Mechanical Turk, social networks such as Facebook, micro-blogging systems such as
Twitter, and reputation and recommendation systems such as those of eBay, Amazon and Tri-
pAdvisor. Computational finance is another area where computational and economic thinking
collides, with markets that were originally designed for human traders populated with high
frequency, algorithmic trading programs, leading to concerns in regard to emergent system
failures such as flash crashes.

From a more theoretical perspective, computational thinking can inform economic thinking.
For an example, consider the essential idea from economics of an equilibrium, wherein every
participant is best-responding to the actions of everyone else. For a very simple example, con-
sider the traffic routing problem, where an equilibrium constituted a particular flow of traffic
such that no user has an incentive to change his route. But what about the computational
difficulty in identifying an equilibrium? If it is too hard to identify an equilibrium, then per-
haps we should be suspicious that equilibria can be descriptive of behavior. For this reason,
it can be useful to apply a computational lens to concepts that are fundamental to economic
thinking, such as equilibria. Indeed, some have observed that “if your laptop can’t compute it
then neither can the market”, expressing the concern that economic theories should not require
market systems to solve intractable computational problems. Computational advances are also
being made in how to represent (or describe) very large situations of strategic interdependence
in the first place. This is a necessary precursor to being able to compute equilibrium outcomes.

We outline in the following sections some examples of computational systems with economic
characteristics, economic systems with computational characteristics, and then a number of
cross-cutting issues related to networks, models of user motivations, and broader considerations
such as those of privacy and security.

1.4.1. Computational Systems with Economic Characteristics

The Internet itself. The Internet is owned and operated by commercial entities, and thus
exhibits the characteristics of both an economic and a computational system. Distributed
algorithms that are used for determining the way traffic passes through the fiber-optic networks
of the Internet can be configured to prefer some routes over others according to business
preferences. In particular, the so-called autonomous systems (AS’es) are the business entities
that exchange traffic, with traffic flowing across interconnections between their networks before
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ultimately reaching a destination machine. In some cases, the AS’es are reasonably balanced in
size and they form what are called peering agreements and do not charge each other for traffic
flows. In other cases, AS’es reach agreements to make payments based on traffic flows (e.g.,
“you pay me when I transit traffic on your behalf.”) Through the Border Gateway Protocol
(BGP), information is exchanged between AS’es to advertise the different routes that can be
taken over the Internet in order to reach a particular destination. Rather than provide a
specific algorithm for determining a path, the actual routes determined through BGP depend
on how individual routers are configured. For example, an AS might configure its routers to
prefer a longer (higher latency) path if this avoids making a payment. Another AS might
configure its routers to selectively advertise some paths and not others. This raises questions
in regard to the effect that incentives and self-interest have on the robustness of the Internet.

Internet search. Algorithm design for the ranking of Internet search results is a problem
that is both computational and economic in nature. The position of a website in the rank-
ing of search results is extremely important in driving traffic to a site. For this reason, an
entire “search engine optimization” industry is dedicated to influencing search results. This
is paradigmatic of one of the new considerations that economic thinking brings to computer
science. The design of an algorithm can influence the inputs to the algorithm. Traditionally,
we think about the inputs to algorithms as coming from some known distribution, or being
selected to provide hard instances. But when algorithms are used in economic domains, ra-
tional self-interested participants can become motivated to try to change the inputs in order
to change the outputs in their own favor. For this reason, consideration to the impact that
participants can have on outputs, by changing inputs, becomes of first-order importance.

Peer-to-peer systems. In a peer-to-peer (P2P) system, each computer both contributes and
consumes resources. This enables scalable systems at scale without the deployment of massive
amounts of centralized infrastructure. A well known example is the BitTorrent protocol for
file sharing, which splits a large file into a bunch of smaller pieces, and allows machines to
exchange pieces until the entire file can be put together. Voice-over-IP platforms such as Skype
employ P2P technology: a user’s machine routes calls for other users, while benefiting from
the network for his or her own calls.

A fundamental problem in P2P systems is free-riding: a self-interested user would prefer to
consume but not contribute resources. Whereas earlier file-sharing protocols such as Gnutella
and Kazaa failed to successfully align incentives, the BitTorrent protocol incorporates basic
reciprocation. Each peer divides its upload bandwidth resource into “slots” and allocates slots
preferentially to peers that are providing high bandwidth in return. In this way, users are
generally able to improve their own download speed by sharing some bandwidth for upload—
and the system provides better incentive alignment.

Social computing systems. Social computing systems and the social web, such as social news
aggregators (e.g., Digg, Reddit), collaborative content systems (e.g., Wikipedia), online com-
munities and Q&A systems (e.g., Flickr, Quora, Yahoo Q&A, etc.), prediction markets (e.g.,
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Hollywood Stock Exchange, intrade), and social networks (e.g., Facebook, Google+), weave
together socio-economic incentives and algorithms for ranking, organizing and search, in order
to promote useful user actions and contributions. For example, the social news aggregator
Digg considers user votes along with the recency of an article in deciding how to rank articles.
Yahoo! Q&A employs a point-based economy, where users earn points by answering questions
and spend points by posting questions, with leader-boards used to incentivize contributions.
Wikipedia allows user contributions to be acknowledged through virtual awards such as “barn-
stars.” Social networks are designed to align incentives for sharing information and content,
for example with the tagging of photos with a person’s name providing a mechanism by which
photos are shared with friends.

1.4.2. Economic systems with Computational Characteristics

Ad Exchanges Ad exchanges are increasingly used for selling display ads adjacent to content
on web pages. Publishers such as online news sites notify an exchange when a user loads a
page. In realtime, the exchange makes a “call out” to multiple ad networks, each representing
multiple advertisers. This call out can provide information in regard to the web site in addition
to user behavioral and demographic information. Each network submits a bid and the highest
bid wins and gains the right to place an ad on the page. On social networks, advertisers
can also target information about a user’s profile (e.g., the user is a friend of someone, or
likes a particular entity, such as a brand or artist.) All aspects of these markets are typically
automated and thus computational, including the processes for (i) determining whether to
send an ad opportunity to an exchange, (ii) determining who is the winner and how much to
charge, and (iii) determining how much to bid.

Wireless Spectrum Auctions. Wireless spectrum is increasingly congested, and sold by gov-
ernments in high stakes combinatorial auctions (CAs). A combinatorial auction is used to sell
multiple items where items can be both substitutes and complements to bidders. For example,
a bidder might want to bid on a package of spectrum licenses in a contiguous region in order
to put together a large and coherent network. A combinatorial auction would allow a bidder
to submit a package bid, indicating that the bidder is only interested in winning every item.
In this way, bidders avoid the risk of financial exposure, where they are left with only a part
of a desired package. In addition to economic challenges, CAs are interesting computationally
because the problem of determining winning bids is difficult to solve. The way to think about
why this is a hard problem is that the auctioneer must find a good way to fit together bids
on different packages of items. Another challenge with CAs is in designing bidding languages
that are expressive but compact. It is not possible to submit a distinct bid for every package
because the number of such packages grows exponentially in the number of items.

Prediction markets. Prediction markets are designed for the purpose of aggregating the
information of multiple parties in order to form an accurate prediction about an uncertain
future event. For example, the price of an asset that pays $1 if a category-5 hurricane will hit
Florida in 2012 can provide a probabilistic forecast of this catastrophic event. If the price is
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Figure 1.5.: Prediction Market for whether Obama will be re-elected in the 2012 US Election

$0.3, it implies a consensus belief that this is an event that will occur with probability 0.3. The
Iowa Electronic Market forecasts the outcomes of political elections, and intrade.com predicts
events ranging from the outbreak of avian flu to whether Barack Obama will be re-elected
president. See Figure 1.5. Prediction markets are also used within organizations, for example
to predict whether a target date for a software release will be met. There is a broad range
of associated computational challenges: both in the design of languages to allow traders to
express complex information (“if event A does not occur then I think event B will occur with
probability 0.7”), and in algorithms to generate prices for trades of conditional contracts such
as this.

Matching problems. Matching problems include those of matching students to schools, doc-
tors to hospitals, students to dorm rooms, and patients to organ-transplant donors. Some of
these problems have reasonably straightforward algorithmic properties. For example, deferred-
acceptance algorithms match students to schools based on preference lists submitted by stu-
dents and priorities provided by schools, and can be run quickly to determine a match. In
particular, the number of algorithmic steps increases only quadratically in the number of stu-
dents and schools. On the other hand, some of these matching problems are computationally
intractable. In kidney paired-donation, the participants are patient-donor pairs, where the
patient needs a kidney and the donor a friend or relative, willing to donate a kidney but in-
compatible with the patient. A feasible match is a set of disjoint cycles on pairs, such that
each pair is involved in at most one cycle. For example, a two-cycle could be A → B → A.
A three-cycle could be A → B → C → A; the way to read this is that the donor of pair A
donates to the patient of pair B, the donor of pair B to the patient of pair C, and the donor
of pair C to the patient of pair A. Whereas the problem of finding disjoint two cycles that
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include a maximum number of pairs is tractable, the problem of finding disjoint two or three
cycles that include a maximum number of pairs is intractable.

Recommender and Reputation systems. Successful e-commerce models such as Amazon
and Netflix rely heavily on computational approaches to make recommendations to users. To
enable consumers to find the products they want, it is essential to provide them with access to
the so-called “long tail” of the product distribution since users often have very idiosyncratic
interests, in addition to being interested in popular items. One kind of recommender systems
uses collaborative filtering, where the feedback of other users is used to predict which items a
user might like. Intuitively, if in the past, user A liked items that user B liked and disliked
items that user B disliked, then user B’s ratings are likely a good predictor for how much
user A will like a new item. In addition to providing high value recommendations to users,
recommender systems should be robust to manipulation through such behaviors as submitting
false feedback to unfairly boost a hurt a particular product.

Whereas recommender systems are designed to aggregate largely subjective information
(what one agent likes need not be liked by another agent), reputation systems are designed
to aggregate objective information (e.g., whether or not a seller shipped a good). Reputa-
tion systems collect reports from users in regard to their experience, and automate traditional
“word-of-mouth” information propagation. On one hand, reputation systems are computa-
tional because algorithms are used to aggregate information. On the other hand, reputation
systems are vital to the well-functioning of Internet markets and the design of useful feedback
systems is quite a subtle problem. For example, an early reputation system on eBay suffered
from a problem where a buyer might be reluctant to give negative feedback because of a
threat of retaliation from the seller, with the seller threatening to retaliate by leaving negative
feedback about the buyer.

1.4.3. Cross-cutting: Networks, Motivations and Systemic Issues

The intersection of economics and computation also includes cross-cutting issues, for example
in regard to networks and network structure and dynamics, in regard to models of user moti-
vations, and in regard to concerns of privacy, security and the design and robustness of virtual
currency systems.

Networks. Networks are central to many computational and economic systems. Consider
information networks such as the world wide web, communication networks such as the in-
terconnected AS’es of the Internet, social networks and friend graphs, and trading networks
representing trading relationships in markets. Some areas where EconCS thinking is especially
relevant include:

(i) Network dynamics: How do networks grow, and can economic models of behavior explain
the emergent structure of networks and also provide guidance as to how to design incentives
in order to promote particular kinds of network structures?

(ii) Transactions: How does network structure affect the bargaining power of different partic-
ipants, measured as the amount of value created in a transaction that goes to each participant?
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(iii) Information dynamics and influence: Which participants are the most effective in in-
fluencing the beliefs of other users; e.g., in influencing other users to make a purchase decision
for the purpose of viral marketing? Given a network that represents positive feedback between
pairs of users, then how robust are different methods to compute aggregate scores to strategic
behavior through false reports or other methods?

(iv) Platform-mediated networks: Some platforms directly mediate the formation and use
of networks, by controlling how they grow, how costs or benefits are distributed to new par-
ticipants, and by making some kinds of actions easy while precluding other kinds of actions.
Fundamental challenges that affect many platform-mediated networks include those of mobi-
lization (i.e., how to provide value to an initial user base), network externalities (e.g., how to
promote actions that provide value to other users), and platform control (e.g., how to evolve
a network.)

User Motivations. Traditional economic models generally assume the selfish-rational actor
model, with participants where only care about themselves and take actions to maximize their
own happiness. This provides a precise and simple model, and is useful in many e-commerce
domains. On the other hand, it does not seem to explain very well contributions made by users
to Wikipedia or Yahoo! Answers. For this reason, it is useful to consider additional models
of user motivations, including those of other-regarding preferences such as inequity aversion,
reciprocity, and altruism. Understanding these kinds of motivations leads to new design pat-
terns, such as providing mechanisms for social recognition that can come from design elements
such as the barnstars in Wikipedia. Another consideration is that of bounded rationality—
neither people nor firms are the idealized, rational (optimizing) economic agent of economic
theory. Here too, alternative models of user behavior can drive new design considerations. For
example, if users tend to over-weight present welfare relative to future welfare then what is
the implication of this when seeking to promote investment in anti-virus and other security
technology?

Systemic Issues. There are three additional cross-cutting issues worthy of comment:

(i) Security of Computer and E-commerce Systems: On one hand, such concerns as phishing,
spoofing, and spamming have a significant impact on the effectiveness of e-commerce and social
network systems. Moreover, the security of computational systems such as personal computers
can be viewed through an economic lens. For example, the costs of a denial-of-service attack
on a web site are felt by the owners of the site rather than the users whose machines have
been compromised and are used to launch the attack.

(ii) Decentralized currency systems: Money is valuable because it addresses the inefficiencies
that arise from the “double coincidence of wants” that affects barter systems (“I want your
bread but you don’t want my salt.”) There is interest in developing decentralized currency
systems, so that there is no center that can control, monitor, and tax transactions. The main
challenges are to prevent the arbitrary “printing” of new money and the “double spending”
of the same money. One approach is through credit networks, that allow anyone to create
new currency but limit currency exchange to paths along which there is mutual trust, and
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systems based on cryptography that make it costly to create new currency and prevent double
spending through a replicated (anonymized) ledger of transactions.

(iii) Privacy: On one hand, data about individuals allows for personalization and advertis-
ing, and broader sharing of data (e.g., in regard to medical treatment and health outcomes
could provide substantial societal benefit.) On the other hand, the continued aggregation of
data about individuals leads to concerns in regard to privacy and possible unintended, and
unanticipated consequences. For this reason, there is interest in developing computational
responses to protecting privacy, including methods to aggregate or add noise to data in order
to reduce the possibility that information about any one individual is revealed. Can economic
thinking even be used to provide a way forward, with markets developed in which users can
sell personal information in return for personalized services, payments, content and so forth.

1.5. Notes

In “Computational challenges in e-commerce,” Communications of the ACM 52, 2009, pages
70-74, Feigenbaum, Parkes and Pennock provide a related discussion that is specific to e-
commerce. Al Roth has written about the economist as an engineer, the comment on “your
laptop computing” is due to Kamal Jain, and Tuomas Sandholm, Noam Nisan and Joan
Feigenbaum have all provided good scholarship related to the general discussions in this chap-
ter. “Networks, Crowds and Markets” by Easley and Kleinberg (Cambridge University Press
2010) provides a broad treatment of similar topics, but with more emphasis given to social
science and network science. “Algorithmic Game Theory”, edited by Nisan et al. (Cambridge
University Press 2007) provides an advanced treatment of a number of specialized topics re-
lated to EconCS.
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