Housekeeping

• Guest: David C. Parkes:
 • Talk today: 17:15-18:15 (IfI Kolloquium)
 → Mechanism Design for Kidney Exchange

• Exam topics + questions → on Monday

• Last lecture: review session
 → prepare questions!

• Homework assignments:
 – Recommender systems → due now
 – Very last hw → out now, due in one week

• Questions? Concerns?

Prof. Dr. Sven Seuken - University of Zurich
Recap: Transitive Trust Mechanisms

• What is transitive trust?
• Example domains?
• The mechanism design view?
• Vs. Reputation Systems?
• Vs. Recommender Systems?
• Manipulability vs. Informativeness
 – Shortest-Path vs. PageRank?
Today’s Topic: Electronic Currencies

• Barter Economies

• Advantages Using Currency:
 – Transferable: solves “double coincidence of wants” problem
 – Divisible
 – Storable/durable

Prof. Dr. Sven Seuken - University of Zurich
Gold standard vs. Fiat Money

• Gold standard
 – E.g., trade with gold coins...
 – …or government promises exchange rate with gold
 – Fixed amount of currency
 – Intrinsic value

• Fiat currency
 – No intrinsic value
 – Based on trust in government/central bank
 – Central bank can “print money”
Electronic Currencies

• Not issued by government or central bank
• No central entity (in contrast to Visa or Paypal)

• Advantages:
 – Costs
 – Privacy
 – Decentralization
 – Trust

• Challenges:
 – Money Printing
 – Double Spending
 – Trust

Prof. Dr. Sven Seuken - University of Zurich
Credit Networks

• Idea: issue an “IOU” (I owe you)
• Requires bilateral trust
 – For B to accept an IOU from A, B must trust A
• Can make use of pre-existing trust (e.g., social network)
• Can build up trust
 → bilateral (simultaneous) work exchanges
Public-Key Cryptography

• Each user i has a (PK_i, SK_i) pair
 – Public key PK_i known to everyone
 – Private (secret) key SK_i known only to user i

• Possible operations
 – **Sign** a document X with private key
 \rightarrow every user can verify who signed the document
 – PK_i can be **associated** with document X
 \rightarrow user i can use SK_i to prove that X belongs to him
iOwe

• Iotas:
 – Can be created by everyone
 – Can be transferred
 – Can only be redeemed at original creator
 – Based on trust

• Three operations:
 – Creating iotas: $I = \langle A, resource, expiry - time, nonce \rangle$
 – Spending iotas:
 • $spend_A(I, PK_B)$ produces $I_{A\rightarrow B} = [I, PK_B]SK_A$
 • $spend_B(I_{A\rightarrow B}, PK_C)$ produces $I_{A\rightarrow B\rightarrow C} = [I_{A\rightarrow B}, PK_C]SK_B$
 – Redeeming iotas: spending iota at original creator
iOwe: Examples

(a) 500 KB 500 KB

(b) 500 KB 0 KB

(c) 0 KB 0 KB

iOwe 500KB A→B

iOwe 500KB A→B→C

iOwe 500KB A→B→C→A

Prof. Dr. Sven Seuken - University of Zurich
Challenges in iOwe

• Attacks:
 – Double-spending attacks
 – Sybil attacks
 – Step-omission attacks

• Policies against Manipulation
 – P1: Grim-trigger on Double-spenders
 – P2: Chain-of-Trust
 – P3: Grim-trigger on step-omitters
 – P4: Threshold-trigger on alleged step-omitters
Drawbacks of iOwe

1. Policies are not centrally enforced?
 → compare to Bitcoin?
 → the real problem: no incentive to follow policies!
2. Necessity to bootstrap trust bilaterally
3. No transitive trust → chain-of-trust policy
4. Each iota has a different creator → different value
5. Finding and generating public/private keys
6. Saving the whole chain requires lots of memory
Bitcoin

• Ideas:
 – No central entity (as in Bitcoin)
 – Expensive to create currency: proof-of-work
 – Prevent double spending by using a P2P network that checks all transactions
 → provide an incentive for checking transactions!
Hash Functions

- Input: variable length (long)
- Output: fixed length (short)

→ "Collisions" are very rare

- One-way functions
 - Given a key, easy to compute the hash
 - Given a hash, very hard to compute a corresponding key

- Proof-of-work Idea:
 - Take a document X, add a "nonce" value n → compute hash
 - Require that the hash begins with "l" 0's
 - Trial and error to find nonce n that produces desired hash

Prof. Dr. Sven Seuken - University of Zurich
Bitcoin Mechanism

1. Transaction

2. Distributed Time-Stamping
 - Blocks
 - Block Chains

3. Incentives:
 - Mining Coins
 - Transaction Fees
Bitcoin Transactions

• Transferring one coin from user A to B
Definition 18.2 (Acceptable Blocks). Given a set of transactions \(t \), a previous hash \(h \), a nonce value \(n \), let \(B(t; h; n) \) denote the corresponding block and \(H(B(t; h; n)) \) denote the hash value of that block. The block is acceptable if and only if the hash string \(H(B(t; h; n)) \) starts with at least \(l \) entries that are the `0' character.
Incentives

• All users in the network help to find new blocks → “time-stamp” transaction!
• Finding a new block is costly!

• Incentives:
 – “Mining” new coins (out of thin air)
 – Transaction fees
Attacks on BitCoin

• Possible Attack:
 – User A gives 1 BTC to user B
 – A waits until the transaction is verified (new block)
 – A gives the same BTC to C
 – A creates two new blocks:
 • One block with the new transaction (C instead of A)
 • One more block, to be the longest block chain

→ unlikely to succeed: competing with the whole network
→ “vote” on correct transactions with one vote per CPU!
Strengths of Bitcoin

• New market participants can easily enter (Nico)
• Independent of governments (Andrea)
• No single centralize entity (Malte)
• Coins are unique and cannot be copied (Evgeny)
• Decentralized (Alex)
• You can’t just create your own money (Basil)
• Very robust against attacks (Jan)
• All users eventually agree on all transactions (Jessica)
Weaknesses of Bitcoin

• No central (trusted) entity (Alex)
• Currency is costly to generate and the total is fixed (Martin)
• Possibility of security problems (Andrea)
• Your electronic wallet could be stolen (Nico)
• Mining and transaction delays are confusing for users (Balz, Malte)
• The 10 min delay prevents some useful transactions (Jan)
• System is complex to understand (Andrin)
• No transparency regarding value of coins (Basil)
• No association between transactions and real people (Evgeny)

• Every transaction will eventually be known to each user
• Scalability
• New users must first download the whole block chain
• In the case of double spending, lots of transactions must be canceled
Would you use Bitcoin?

• YES!
 – I trust Bitcoins more than regular money (Evgeny)
 – Independence of Swiss Franc (Andrea)
 – Transaction fees (Basil)
 – Exchange rates (Basil)

• NO!
 – I trust the government/central bank (Jessica, Martin)
 – Risk due to currency fluctuations (Alex)
 – Transaction fees are low enough (Alex, Jessica)
 – PayPal/Credit cards work fine (Alex, Martin)
 – Very few stores accept Bitcoins (Andrin, Evgeny, Malte, Martin)
 – I don’t do lots of online shopping (Balz, Jessica, Mengia)
 – It doesn’t seem to be safe against hacking (Jan)
 – I don’t worry about my privacy yet (Jessica)
 – I would need a powerful computer to mine (Malte)
 – Exchange of Bitcoins to Euros (Malte)
 – How would I earn Bitcoins? (Nico)