Computation and Economics - Spring 2012
Assignment #3: File Sharing

Professor Sven Seuken
Department of Informatics, University of Zurich
Out Thursday, March 8, 2012
Due 14:00 sharp: Monday, March 19, 2012
Submissions should be made to econcs.uzh.spring12@gmail.com.
For submission format, check description below.

[Total: BSc 100 Points, MSc 120 Points] This is a group-assignment to be completed by groups
of up to 2 students each. While you are permitted to discuss your clients with all students as
much as you like, each group must write their own code and explanations. In addition, there will
be a small bonus for clients that perform well in the class tournament. If you want a partner and
don’t have one, post to piazza. Your submissions should be made via email to the course email
address as attachments: Code in .py-files and writeup of analysis as PDF, sending .zip-archives is
also ok.

Goal

In this assignment you will program a number of clients for the BitTorrent protocol and test them
in a simulation environment. You will get points for implementing the strategies and your writeup
(conciseness, reasoning, analysis).

Setup

Tools: Make sure Python 2.7.2 works on your computer system (http://python.org/download/).
The simulator code will not run in version 3!

Obtaining materials: Download the BitTorrent .zip-archive from the class website and make
sure you have all the relevant files: dummy.py, history.py, messages.py, peer.py, seed.py,
sim.py, start.py, stats.py, util.py.

Generating .py-files: Pick a cool group name, perhaps based on your initials, so it will be unique
in the class. Run python start.py NAME, substituting your group name for NAME. This will
create appropriately named template files for your clients. For example, if your group name
was ”abxy”:

> python start.py abxy
Copying dummy.py to abxystd.py...



Copying dummy.py to abxytyrant.py...
Copying dummy.py to abxypropshare.py...
Copying dummy.py to abxytourney.py...
All done. Code away!

In each of the files, you will need to change Dummy in line 16 (where it says class Dummy (Peer) )
to your group name and the client specification (e.g. AbxyStd, AbxyTyrant, AbxyPropShare,
AbxyTourney).

The simulator: You are given a BitTorrent simulator. It has the following general structure:

Time proceeds in integer rounds, starting at 0 (0, 1, 2, ...).

There is a single file being shared, composed of num-pieces pieces, each of which is
composed of blocks-per-piece blocks.

There is a set of peers, which should include at least 1 seed. Seeds start with all the
pieces of the file and have the maximum upload bandwidth. Other peers start with none
of the pieces.

Each peer has an upload bandwidth, measured in blocks per round. This is chosen
uniformly at random from a specified range (except for seeds, who have the maximum
bandwidth). Download bandwidth is unlimited.

Each round proceeds as follows:

1.

Each peer must provide a list of request objects, each asking for blocks from a
particular piece from a particular other peer. This is the requests-function.

. Each peer is passed the requests it has received in this round, and asked to return a

list of upload obejcts which specify how much of its upload bandwidth to allocate
to any given peer. This is the uploads-function.

These lists are checked for consistency, i.e. requests must ask for pieces the peer
has, uploads must add up to no more than the peer’s bandwidth cap, etc.

Peers who are being uploaded to get their blocks. Multiple requests are satisfied in
order until the shared bandwidth is exhausted. For example, if peer 1 requests the
last 7 blocks of piece 12, and also piece 11 starting at block 0, and peer 2 includes
Upload(from_id=2, to_id=1, bw=10) in its list of uploads, peer 1 will get the last
7 blocks of piece 12, and the first 3 of piece 11.

The events of this round are saved in a history object, which is available in future
rounds.

e The simulation ends once all peers have all the pieces or the maximum number of rounds
max-round is exceeded.

Building clients: Familiarize yourself with the provided code. You should not need to change any
of the provided files, only modify the ones created by start.py. The only files you should
need to read in any detail are messages.py and dummy . py, along with a skim of history.py.

Testing clients: Here is an initial test command to run. It sets a bunch of simulation parameters,
and creates 1 seed and 2 dummy clients.



> python sim.py --loglevel=debug --num-pieces=2 --blocks-per-piece=2
--min-bw=1 --max-bw=3 --max-round=5 Seed,l1 Dummy,2

Make sure you understand the output.

> python sim.py -h will show all the command line options.

When analyzing the performance of your clients, you can set the log level to info. Use
--iters=... to extract statistics for multiple runs of the same setup. A good starting point
for your testing may be

python sim.py --loglevel=info --num-pieces=128 --blocks-per-piece=32
--min-bw=16 --max-bw=64 --max-round=1000 --iters=32 Seed,2 AbxySomeclient,10

but we encourage you to try varying parameters.

Problem Set

1. [45 Points, MSc +10 Points] Designing your clients:

(a) [10 Points] Implement the BitTorrent reference client as described in the notes, includ-
ing rarest-first, recipocation and optimistic unchoking. This should be class TeamnameStd
in teamnamestd.py. Not all the details are in the notes, so you will have to make some
assumptions.

(b) [15 Points| Implement the BitTyrant client. This should be class TeamnameTyrant
in teamnametyrant.py. You may have to introduce additional accounting and book-
keeping procedures beyond what is provided by peers and history.

(c) [MSc 10 Points] Implement the PropShare client as described in the comments-section.
This should be class TeamnamePropShare in teamnamepropshare.py.

(d) [20 Points] Write a client for the class competition in class TeamnameTourney in
teamnametourney.py.

i. [10 Points] Write a client that does not freeze the simulation.

ii. [10 Points] Win the tournament: We will run the tournament in a neighbourhood
containing one instance of each group’s tournament client and 2 seeds. This setup
will be run 256 times. Points will be awarded according to rank by average time
to complete the download of the entire file. L.e. if 10 clients particpate, the fastest
client will recieve 10 points, the second 9, and so on, and so on...

Likely parameters for the competition are

python sim.py --loglevel=info --num-pieces=128 --blocks-per-piece=32
--min-bw=16 --max-bw=64 --max-round=1000 --iters=256 Seed,2 Clientl,1
Client2,1

but they may vary depending on runtime of the clients.

Your client can access the simulation configuration via self.conf (see the bottom

of sim.py for the available parameters), so you shouldn’t hard-code any of these

values.



2. [55 Points, MSc + 10 Points] Analysis: Provide your answers based on test runs with
the clients you programmed. When asked for comparative performance results, provide some
evidence (e.g., simple statistics) for the results you are reporting/describing.

(a)
(b)
()

[10 Points| For the standard client explain what assumptions or decisions you had to
make beyond those specified in the notes.

[10 Points] Write a concise summary of the strategies you used for the tournament
client, and why you chose them.

[15 Points, MSc + 5 Points] Outperforming the standard client:
i. [8 Points] How does the BitTyrant client do in a population of standard clients?
ii. [7 Points] How does the Tourney client do in a population of standard clients?
iii. [MSc 5 Points] How does the PropShare client do in a population of standard

clients?

Look at the relative ranking of the clients and the percentage improvement (or impair-
ment) in the number of rounds it takes the client to get the complete file.

[15 Points, MSc + 5 Points] Overall performance of populations:
i. [15 Points] How does a population of only BitTyrant clients perform? What about
a population of only Tourney clients?
ii. [MSc 5 Points] How does a population of only PropShare clients do?
Look at the time it takes to get the file out to all clients (i.e., when does the last client

complete downloading the whole file), as well as the average download time for the
individual clients.

[5 Points] Write a paragraph about what you learned from these exercises about Bit-
Torrent, game theory, and programming strategic clients? (We aren’t looking for any
particular answers here, but are looking for evidence of real reflection.)

Comments

Python features: Useful python features / functions / modules that you may want to google and

maybe use:

e random: shuffle, choice, sample

e min, max, map, filter, zip

e set

e list and dictionary comprehensions

Programming in Python: For general information on Python and tutorials, check out
http://docs.python.org/tutorial/.

Design:

e Make sure you sort things correctly (you’ll often want decreasing instead of the
default increasing)



e Beware of symmetry. All peers know about all the others, and there’s no lying about
available pieces modeled, so silly things can happen; e.g., if all your tit-for-tat peers use
the same deterministic algorithm for choosing which piece to request next, you may have
a situation where everyone always has the same pieces, there’s nothing to trade, and the
system devolves to very slowing downloading of everything from the seed.

e Debug using small numbers of peers, pieces, and blocks so you can see what’s happening.
Realize that the relative performance of different strategies is different at very small scales
(e.g. tit-for-tat will not kick in if you only have 2 pieces).

Debugging: Make sure your clients work with the unmodified simulator. If you changed anything,
re-download the simulator and double check that your clients work with it.

Manipulations: The code is designed so that it’s very hard to mess up the main simulation
accidentally, but because everything is in the same process, it is still possible to cheat by
directly modifying the simulation data structures and such. Don’t!

Also don’t use the specific ids of peers in any of your decision making, e.g.
if peer.id.startswith("MyClient"): special-case-code.

Bugs: If you find bugs in the code, let us know.

Porportional Share Client: The PropShare client allocates upload bandwidth based on the
downloads received from peers in the previous round: It calculates what share each peer
contributed to the total download and allocates its own bandwidth proportionally. In ad-
dition it reserves a small share of its bandwidth for optimistic unchoking (e.g., 10%). For
example

In round k the client received 4,6, 1,9 blocks from peers A, B, C, D, respectively

In round k + 1 peers A, B, E, F request pieces from the client

The client allocates 41—6 -90% = 36% and % -90% = 54% of it’s upload bandwidth to
A and B, respectively

E is randomly selected and allocated 10%



