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In this appendix we review some of the technical background necessary to understand the
content in the main chapters of the book.

100.1 O()-Notation and Polynomial Worst-Case Time Complexity

In this section, we briefly review the big-O-notation for the analysis of asymptotic time complexity
of an algorithm. Let = describe the size of the input to an algorithm. For example, this could
be the number of words in a text, the number of entries in a table, or the number of variables in
a linear equation. Let T'(x) denote the worst-case time complexity of an algorithm, which is the
mazimum amount of time taken on any input of size x. Equivalently, by a re-normalization into
basic computational steps, each of which takes no more than some constant amount of time, 7'(x)
can also be defined as the maximum number of basic computational steps taken on any input of
size z.

The time complexity of an algorithm is often expressed asymptotically using big O notation.
For example, an algorithm whose time complexity is T'(x) = 222 + 100z'/2 has asymptotic time
complexity of O(z?); in this case, we can write T'(z) = O(z?) or equivalently T'(z) € O(z?). In
typical usage, big O notation hides constants and if T'(z) is the sum of several terms, then using
big O notation we only keep the term with the largest growth rate. Here, we ignore the term z/2
because it is dominated by term z? as = gets large, and we ignore the factor 2 in front of z2.

Definition 100.1 (Big O-Notation). Let = describe the size of the input to function T(-). We
write:

T(x) € O(y(x)) or T(z) = O(g(x))
if there exists a positive real number k and a real number xg such that:
forallx >z : T(x) < k-g(x).

The big-O-notation is used to describe the asymptotic time complexity because it focuses on
the grow rate of the function when the input size becomes very large (formally, as * — oc). For
these very large input sizes, the term with the largest growth rate will dominate.

Given this, an algorithm is polynomial time if the running time is upper bounded by a polynomial
expression in the size of the input. Equivalently, we can say:

Definition 100.2 (Polynomial Time Complexity). An algorithm has worst-case polynomial time
complexity if T(x) € O(z¥) for some constant k.



Polynomial-time computation is the usual yard-stick for efficient computation in theoretical
computer science. We normally say that an algorithm is efficient if it runs in worst-case polynomial
time, and we say it is inefficient otherwise. Of course this hides extremely important practical
details, including 1) the multiplicative factors as well as 2) the exponent k that describes the
asymptotic growth rate. For example, even if an algorithm has time complexity T'(z) = 1,000, 000 -
22 we write T(z) € O(2?), and say that the algorithm is efficient. Furthermore, if an algorithm has
time complexity T(z) = 2°% € O(2%%?), the algorithm formally still has a polynomial worst-case
time complexity. But it may not be practicable to run the algorithm, even for medium-sized x,
because the asymptotic growth rate is too high.

Nevertheless, this distinction between algorithms that have a worst-case polynomial time com-
plexity and those that do not, has proven very useful in computer science. For most of the algo-
rithms with worst-case polynomial time complexity that we study, the multiplicative factors and
the exponents are relatively small. In contrast, algorithms with an exponential running time such
that T'(xz) = 2”7 are usually infeasible to run, except for very small input sizes.

100.2 NP-Completeness

In this section we review some basic concepts from computational complexity theory. A decision
problem is a problem with a Yes or No answer. Example decision problems studied in computer
science are

e “given a Boolean formula, is there a satisfying truth assignment?”

e “given a graph, is there a way to color each vertex with one of k colors such that no adjacent
vertices share the same color?”

e “given a set of items, each with some weight and value, and a bag with some capacity, is there
a subset of items with total value greater than some target value, and with total weight that does
not exceed the capacity?”

These correspond to the decision problems SATISFIABILITY, GRAPH COLORING and 0-1 KNAP-
SACK. Decision problems have a yes-or-no answer. Instances of a decision problem are either
“yes”-instances (the answer is Yes) or “no”’-instances (the answer is No.)

Computational complexity theory provides the following distinctions in regard to the complexity
of different decision problems:

e A polynomial decision problem (the problem is in P) is one for which there exists a worst-
case polynomial time algorithm that answers Yes on every “yes”-instance and No on every
“no”-instance.

e A non-deterministic polynomial decision problem (the problem is in NP) is one for
which there exists a worst-case polynomial time algorithm that can wverify that the answer is
Yes on every “yes”-instance, given a proof as input in addition to the instance; e.g., for GRAPH
COLORING, the proof would be an assignment of a color to each vertex, and the algorithm would
check that no pair of adjacent vertices have the same color.!

e An NP-hard decision problem (the problem is NP-hard) need not be in NP, but is at least
as hard to solve as the hardest problems in NP.? In particular, a problem A is NP-hard if

!Note that (i) to be in NP a problem does not require an easy-to-verify proof for “no”-instances (when this exists,
it is a co-NP problem); (ii) the size of the proof must be polynomial in the size of the input if it is to be checked in
polynomial time; and (iii) there is an equivalent definition in terms of a non-deterministic theoretical computational
machine (a Turing machine), and it is from this that the name NP derives.

2For example, the class NP-hard also contains non-decision problems such as optimization problems (e.g., find the



an algorithm to solve the problem in worst-case polynomial-time would imply an algorithm to
solve any problem B that is in NP in worst-case polynomial time.

This would be achieved through a reduction, where an instance of B is encoded as an instance
of A such that a solution to A gives a solution to B, and where the instance of A is at most
polynomially larger than the instance of B.

e An NP-complete decision problem (the problem is NP-complete) is one for which the problem
is both in NP and also NP-hard.

Intuitively, problems in P are “easy” to solve. But what about problems in NP? On the one
hand, there is at least a fast way to verify that a “yes”-instance is indeed a yes instance. Certainly,
every decision problem in P is also in NP. One can simply use the polynomial time algorithm
that solves the decision problem as the polynomial-time verifier. But what about polynomial-time
algorithms to solve the hard problems in NP? This leads us to the following:

Conjecture 1. P # NP.

This famous conjecture states that the class P is a strict subset of NP, which in particular
requires that no problem that is NP-hard is in P. To see this, notice that if a problem A that was
NP-hard was in P then by the definition of NP-hard, all problems in NP could be solved by the
polynomial-time algorithm for A.

Proving that “P # NP” is the principal unsolved problem in theoretical computer science
today. This conjecture is widely believed for two reasons. First, a large number of different NP-
complete problems can be reduced to each other, in the sense that if one can be solved in worst-
case polynomial time, then all others can also be solved in worst-case polynomial time. Second, a
great deal of effort has been dedicated to finding efficient algorithms for the various NP-complete
problems, but none has been found so far.

Now remember our discussion of what constitutes an efficient algorithm and what constitutes
an inefficient algorithm. We can now say, that for a problem that is in P, there exist efficient
algorithms for solving it. And under the assumption that P # NP, we can say that for a problem
that is NP-hard, there does not exist an efficient algorithm for solving it.

subset of items that maximizes total value is the “optimization variant” on the 0-1 KNAPSACK problem.)



