
Software Engineering HS’14

Lecture: Software Design

Thomas Fritz & Martin Glinz

Many thanks to Philippe Beaudoin, Gail
Murphy, David Shepherd, Neil Ernst,
Meghan Allen, and Elisa Baniassad

n  Introduction to Design

n  Architectural Design

n  Detailed Design

n  Modular Design / Design Principles

n  Design Patterns

2

High Level Overview of the Design Unit

By the end of this unit, you will be able to:

n  Describe the context (goals and constraints) of the activity
of software design and the process for developing it

n  Define what is meant by “architectural style” and describe
characteristics of main styles

n  Understand the use of diagrams in software development

n  Create a design for a given system and specify it in
correct UML class/sequence diagram syntax

3

Learning Goals

n  Why might a designer
decide to design such
a jacket?

n  What might have

influenced the
designer?

4

What is Clothing Design?

Picture from www.arcteryx.com

from G. Murphy

n  Münchner Allianz Arena,
built for FC Bayern and
TSV1860 (2002-2005)

n  Inputs?
n  Constraints?

5

What is Building Design?

Picture from http://de.academic.ru/pictures/dewiki/65/Allianzarenacombo.jpg and www.faz.net

6

What is software design?

Requirements specification was about WHAT
the system will do

Design is about HOW the system will perform
its functions

What is design? What makes something a
design problem? It’s where you stand with a
foot in two worlds – the world of technology

and the world of people and human purposes –
and you try to bring the two together.

- Mitchel Kapor, A Software Design Manifesto (1991)

7

What is design?

from G. Murphy

Design disciplines are concerned with making
artifacts for human use. Architects work in the

medium of buildings, graphic designers work in
paper and other print media, industrial designers

on mass-produced manufactured goods, and
software designers on software. The software
designer should be the person with overall

responsibility for the conception and
realization of the program.

8

Kapor goes on to say…

from G. Murphy

n  Mainly focusing on technological (developer/
engineer) view of software design

n  How do we realize the conceived product?

n  Inputs include requirements (functional and non-
functional), developer’s experience

n  Constraints include development organization,
technical platform

n  Goals: decomposition and determination of
relationships, communication and more

9

Software Design in this course

from G. Murphy

10

Where does it fit in the process?

Requirements Design Code Test

11

Design to Bridge the Gap

Requirements

Code

DESIGN	
-‐  Architectural	
-‐  Detailed	

Facilitates communication

Eases system understanding

Eases implementation

Helps discover problems early

Increases product quality

Reduces maintenance costs

Facilitates product upgrade

12

Why Design?

13

Cost of not planning…

14

Another example of poor planning

“Treat design as a wicked, sloppy, heuristic process.
Don’t settle for the first design that occurs to you.
Collaborate. Strive for simplicity. Prototype when you
need to. Iterate, iterate and iterate again. You’ll be
happy with your designs.”

McConnell, Steve. Code Complete. Ch. 5

15

How to approach Design?

Study and understand the problem from different viewpoints

Identify potential solutions and evaluate the trade-offs

Develop different models of system at different levels of
abstraction: start global, subdivide (top-down), iterate
(design is often a combination of top-down and bottom-up)

16

How to approach Design?

Architectural design
q  Overall structure: main components and their

connections; determining which sub-systems
you need (e.g., web server, DB…)

Detailed design
q  Inner structure of main components
q  Take programming language into account

17

Two common phases of Software Design

The fundamental concepts or properties of a system
in its environment embodied in its elements,
relationships, and in the principles of its design and
evolution.
IEEE Standard 1471-2011

The structure or structures of the system, which
comprise software elements, the externally visible
properties of those elements and the relationships
among them.
Software Architecture in Practice (2nd edition), Bass, Clements, Kazman

18

Software Architecture

A software architectures for a system describes
n  Subsystems and components that comprise the system

(client/server, web service, software package, …)

n  Overall structure of those components and subsystems
(e.g. pipe and filter, blackboard, MVC, …)

n  Connectors
(interactions and rules that govern interactions, e.g. client-server
network protocol, procedure calls)

n  Constraints
(environmental constraints, quality attributes or non-functional
requirements)

19

Software Architecture

Architectural styles constrain architectural design decisions
and dictate qualities the system will have
n  e.g., modifiable? secure? scalable? reliable? Etc.

Architectural style is a name given to a common architectural
design. Architectural pattern is a way of solving a common
architectural pattern. (sometimes used interchangeably)

Both provide common language of software architecture

20

Architectural Styles & Patterns

from G. Murphy

21

Common Architectural Styles & Patterns

from E. Baniassad

model view controller

layered pipe-and-filter

blackboard

client/server

Components: filters that read input data stream and
 transform it into output data stream

Connectors: pipes that provide output of filter as

 input to other filter

Advantages: simple, no complex interaction, high

 reusability, portability
Disadvantages: require common data format, no

 shared state, redundancy in (un)parsing
Example: unix shell (ls –l | grep key | more …)

22

Pipe-and-Filter

Components: server subsystem provides services to

 multiple instances of client subsystem;
Connectors: network; client typically request services

 from server

Advantages: distribution, scalability
Disadvantages: responsiveness (if network is slow),

 robustness (if server goes down)

23

Client/Server

24

Web Architecture (Client / Server Style)

Web	 Browser	

Web	 Applica:on	
Server	

Data	 Web	 Browser	

Web	
Services	

25

Google App Engine

Web	 Browser	
Web	 Applica:on	

Server	
(Google	 App	 Engine)	

Data	

Web	
Services	

JDO

RPC

Javascript +
HTML

Java (servlets)

26

Model View Controller

Components: model contains core functionality and

 data, views display information to the
 user, and controllers handle user input

Connectors: change-propagation mechanism
 (observer)

Advantages: interactivity, expandability, separation of

 model vs presentation
Disadvantages: very small scale (heavy design), might

 get complex

n  In groups of two, find an example of a use of
the Model-View-Controller pattern

27

Class Activity

n  Several ways to depict architecture, depending on what
is important

n  UML Component Diagram to depict components and
interfaces

28

UML Component Diagram

Email"
Management"receive Email"

send Email"

provided "
interface"

required "
interface"

view Emails"
«uses»"

More ways of documenting: http://en.wikipedia.org/wiki/4%2B1_architectural_view_model,
https://sites.google.com/site/softwarearchitectureinpractice/9-documenting-software-architecture

29

UML Component Diagram – Hierarchy

Components can be composed of other components or classes

n  Concerned with programming concepts
q  Classes, Packages
q  Files
q  Communication protocols
q  Synchronization
q  …

n  Mid-level design
q  class diagrams

n  Low-level design
q  sequence diagrams

30

Detailed Design

n  Vote: Which of these two diagrams is more useful to
software developers?

31

Class Activity

Cherubini, Venolia, Ko, DeLine

Diagrams are a communication tool
q  End product is important, but discussion just as important

Quality of communication = Quality of design
q  Hence, quality of end product

Tip for efficient communication:
q  Start light-weight and flexible
q  Then move on to details and more focused

In terms of diagrams:
q  Start with draft, hand-written diagrams that can change
q  Towards the end, clean-up and make more readable
q  Use a mutually understood language (a standard: UML)

32

Diagrams

n  Mid-level design tool
n  Used to describe the relationships between

classes (and/or packages) in the system

n  UML: Unified Modeling Language (not only class
diagrams)

n  Elements of UML class diagrams
q  Classes
q  Relationships

n  Generalization
n  Association
n  Aggregation

33

Class Diagrams

n  Class name (Italics means abstract)
n  Attributes (fields)

!Name : Type!
n  Operations (methods)

 Parameters : Return Type!
n  Can also be used for interfaces (without fields)

34

Class Diagrams: Class

Used for:
q  Inheritance
q  Interface implementation

35

Class Diagrams: Generalization

n  Bi-directional
q  Both classes are aware of each other

n  Role
q  Usually maps to a field name

n  Multiplicity
q  Indicates how many instances can be linked (i.e. a list of…)

36

Class Diagrams: Association

n  Only one class knows of the other
n  Role

q  Only in one direction
n  Multiplicity

q  Only on one end (BankAccount doesn’t know report)

37

Class Diagrams:
Uni-directional Association

n  An advanced type of association
n  The contained object is part of the container
n  Two type:

q  Basic aggregation: children can outlive parent

q  Composite aggregation: children life depends on
parent

38

Class Diagrams: Aggregation

39

Class Activity

n  How would you implement these two
examples in Java?

n  Group classes together

40

Class Diagrams: Packages

n  In teams of 2, draw a class diagram for
n  A software system for modeling a bank
n  Each of the bank’s customers can access their account(s) through

withdrawals, deposits, or balance inquiries at a bank machine. Each
transaction (ie, withdrawal, deposit or balance inquiry) must store
the date and time that the transaction occurred. Once a month, a
statement that contains a list of all of the transactions that were
completed over the last month is generated for each account and
mailed to the customer. The bank must be able to produce a list of
all of its customers as well as a list of transactions that were
completed by a particular bank machine

n  Use classes that appear in the text.
n  Ask questions if needed.

41

Class Activity

42

In small groups, draw a class diagram for
the structure of professors, students,
departments, dept. heads, and courses.
n  Ask questions if needed.

Class Activity

Comments on Diagrams

n  Think about association/aggregation/composition as well
as direction of them

n  Make sure to specify roles if necessary (especially if
there are two relations between two classes)

n  Think about methods and attributes and where they
belong

44

n  Low-Level design tool
n  Used to describe sequences of invocations

between the objects that comprise the system
q  Focus less on type of messages, more on the

sequence in which they are received

n  UML (again!)
n  Elements of UML sequence diagrams:

q  Lifelines
q  Messages
q  …

45

Sequence Diagrams

n  Roles or object instances
n  Participate in the sequence being modeled

46

Sequence Diagrams: Lifeline

n  Includes method name
n  A box in the receiver’s lifeline indicates activation

(object’s method is on the stack)
n  Full arrow: synchronous (blocking)
n  Optionally: information returned

47

Sequence Diagrams: Messages
Ti
m
e	

1.  Identify process/algorithm/activity you want
to capture (may be a use case)

2.  Identify major objects involved
3.  Map out flow of control/messages to achieve

the result

48

How do you start? (Sequence Diagram)

49 From: http://www.ibm.com/developerworks/rational/library/3101.html

Sequence diagram when some actions are inside an if

50

Sequence diagram when
some actions are inside an
if/else

Loops are similar - put the
actions inside a box
labeled “loop”

From: http://www.ibm.com/developerworks/rational/library/3101.html

n  In teams of 2, draw a sequence diagram
illustrating what happens when a customer
withdraws money at a bank machine .

51

Class Activity

n  In teams of 2, draw a sequence diagram
illustrating what happens when a user
searches for a course by course label .

n  Or for registering for a course.

52

Class Activity

n  The design consists of multiple views of the
software
q  Static view (e.g. class diagram) shows decomposition

of problem into parts and relationships
q  Dynamic view (e.g. sequence diagram) shows how

parts interact to solve the problem
n  Views have varying levels of granularity
n  We can analyze these views to see if they

support the requirements?
q  Modifiable (i.e. adding new view)?
q  …

53

What is the Software Design?

n  “Treat design as a wicked, sloppy, heuristic
process.”
q  Pen & Paper, Whiteboard

n  “Don’t settle for the first design that occurs to you.”
q  Scribble, Scratch, Thrash

n  “Collaborate”
q  Brainstorm, Discuss, Argue

n  “Strive for simplicity”
q  Reduce, Clean-up (with UML tools)

n  “Iterate, iterate and iterate again.”
q  Iterate!

54

How to Design? (Recap)

n  Start global
q  Architectural Design
q  Global concepts: components & connectors

n  Subdivide
q  Detailed Design
q  Mid-level: classes and relationships
q  Low-level: how operations are carried out – what

messages are sent and when

n  Iterate
q  Are these the right subsystems? Update!
q  Are these the right classes? Update!

55

How to Design?

n  Suggested steps
1.  Discussion
2.  Discussion with paper diagrams
3.  Clean-up with UML tools
4.  Discussion with printed diagrams
5.  Iterate over 3 and 4

n  Again
q  First light-weight and flexible (words, hand drawn

diagrams)

q  Then details and focused (printed diagrams)

56

How to Design in a Team?

n  Design consists of multiple views
q  High-Level: Component Diagrams
q  Medium-Level: Class Diagrams
q  Low-Level: Sequence Diagrams

n  Architectural styles encode common patterns for
achieving certain quality goals

n  Diagrams are communication tools

n  Designing is an iterative refinement process

57

Design Summary

How many super-classes does
Vectorization have?

How many fields can you be sure
that OCRgui has? 58

