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Abstract 
Terrain rendering has always been an expensive task due to 
large input data models. Hierarchical mul-tiresolution 
triangulation and level-of-detail rendering algorithms over 
regular structures of grid digital elevation models have 
been widely used for interactive terrain visualization. The 
main drawbacks of these are the large cost of memory 
storage required and the possible over-sampling of high-
resolution terrain models. Triangulated irregular networks 
(TIN) can reduce the amount of vertices at the expense of 
more complex and slower memory data access. We present 
a hyper-block quadtree based triangulated irregular 
networks approach, where the notion of vertex-selection is 
extended to block-selection. The hyper-block structure 
allows to store different pre-calculated triangulations. This 
reduces the vertex selection time per frame and removes the 
calculations needed to build the geometric rendering 
primitives (triangle strips) of the scene at the expense of a 
larger number of selected vertices. The presented approach 
shows a speed increment of 20% for high-quality terrain 
rendering with small screen-projection error thresholds. 

Keywords: terrain rendering, height fields, quadtree. 

1. Introduction 

Real-time terrain visualization usually employs as input 
large data models with very high numbers of vertices. The 
very large data sizes generally exceed the capabilities of 
graphics hardware despite the advances experienced in this 
field over the last few years. Several solutions can be 
applied to simplify the geometric scene complexity and 
improve rendering performance. 

     View-dependent level-of-detail (LOD) algorithms 
present an efficient solution. These take into account the 
viewpoint location of the camera to satisfy a given screen-
space error tolerance. In this way, points closer to the 
viewpoint have more weight in the LOD-selection and 
triangulation process. This vertex selection process is 
generally performed on a per-vertex basis. In contrast, in 
this paper we describe a view-dependent LOD algorithm 
that uses a block-selection approach. Our goal is to take 
advantage of a fast block-selection process and exploit pre-
calculated triangle strips supported by our block-based data 
structures. These advantages reduce the LOD-selection and 
triangulation time, but increase the number of rendered 
triangles. 

 
Figure 1. Top view of the view-frustum and the wire-frame 
HyperBlock-QuadTIN triangulation of a terrain. 

     Using the rendering capabilities of the latest graphics 
cards, we show that a terrain scene can be rendered faster 
using a block-based selection method at small screen-space 
error tolerances (equal or less than 1.5 pixels ). 

     The input data models are QuadTIN-based [14] terrains, 
conforming to the restricted quadtree triangulation (RQT) 
properties [18]. Thus any irregular network previously pre-
computed with QuadTIN can be used as input. Figure 1 
shows an example of a HyperBlock-QuadTIN triangulation 
of a terrain. 

     Several terrain rendering methods have been proposed in 
the literature. Among the hierarchical methods, quadtree 
[15,19] and bintree [1,5,6,11,12] based approaches have 
been used extensively. Hoppe [9] and Pajarola et al. [14] 
present methods to render irregular terrain data sets. Other 
methods, like variable resolution 4-k meshes [21] exploit the 
advantages of subdivision connectivity to tesselate surfaces. 
Additional information about terrain rendering can be found 
in [2,4,5,8,10, 13,16,17]. In particular, the cached geometry 
rendering approach presented in [11] is very similar to a 
block-based LOD selection and rendering approach. Other 
block-based implementations could be found in [3,21] 
where precomputed-blocks of geometry information are 
used. 



     The remainder of the paper is organized as follows. 
Section 2 introduces the restricted quadtree triangulation. 
Section 3 briefly discusses the QuadTIN method. The 
HyperBlock-QuadTIN approach is presented in detail in 
section 4. Finally, section 5 and 6 end the paper with 
experimental results and conclusions about this work. 

2. Restricted Quadtree Triangulation 
The restricted quadtree triangulation [18] (RQT) is an 
adaptive, hierarchical LOD-triangulation algorithm for grid 
digital terrain elevation models. Every elevation point is 
assigned to a level in the quadtree hierarchy. The basic 
recursive quadtree subdivision and triangulation is 
performed in two steps as shown in Figure 2. 

level l-1 level l level l level l+1  
Figure 2. Recursive quadtree subdivision and triangulation. 

     Cracks can occur in the triangulated surface from 
unrestricted adaptive subdivision and triangulation as shown 
in Figure 3. To avoid this situation, the RQT subdivision is 
constrained by the restriction that adjacent quadtree blocks 
differ by at most one level in the hierarchy. Then the 
triangulation is adjusted to resolve cracks as outlined below. 

 
Figure 3. Nonrestricted quadtree triangulation. Cracks are shown 
with grey colour in the right. 

     An efficient method to avoid cracks was introduced in 
[12], this applies a dependency relation as illustrated in 
Figure 4. Each vertex on level l specifies two others on the 
same level as in Figures 4 b) and d), or on level l-1 as in 
Figures 4 a) and c). 

level l level l level l+1 level l+1

a) b) c) d)  
Figure 4. Dependency relation of the RQT.  The center vertices in 
a) and c) depend on the inclusion of two corners of their quad 
region. The boundary edge midpoints in b) and d) depend on the 
center vertices of adjacent quad regions. 

      For every selected point, its two dependency-points 
must also be selected. This method not only avoids cracks 
but also ensures a triangulation that can be represented by 
one single triangle strip. 
3. QuadTIN 

QuadTIN [14] is an efficient quadtree-based triangulation 
approach for irregular triangulated networks. It provides fast 
quadtree-based adaptive triangulation, view-dependent 
LOD-selection and real-time rendering. 

     Basic quadtree-based triangulation methods are 
applicable only to regular grid input datasets. In contrast, 
QuadTIN presents an efficient quadtree-based triangula-tion 
approach to irregular input point sets with improved storage 
cost and feature adaptive sampling resolution while 
preserving a regular quadtree multiresolution hierarchy over 
the irregular input data set. It achieves this by inserting a 
small number of Steiner points to the input data set 
(generally less than 25% of the initial data points). This 
technique allows a single triangle strip representation of the 
terrain data. Although the quadtree hierarchy is not 
balanced, it conforms to the restricted quadtree constraints. 
Additional information such as geometric approximation 
error, bounding spheres and normal cones are calculated and 
stored in each quadtree node to be used for view-dependent 
LOD-triangulation and rendering. 

4. HyperBlock-QuadTIN 
The HyperBlock-QuadTIN approach generates a tree 
structure of blocks that store different triangulation levels, 
thus the name hyper-block. The construction process takes a 
QuadTIN file as input (see Figure 5) and traverses the 
hierarchy up to a certain level that we call hyperLevel at 
which hyper-blocks are built that encompass the remaining 
levels in that sub-tree. 
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Figure 5. HyperBlock-QuadTIN diagram. 

     Figure 6 illustrates hyper-blocks generated at different  
hyperLevels (1 and 2) for a given quadtree of height 3. If 
hyperLevel is equal to 0 then the entire quadtree is 
represented by one single hyper-block. 

hyperLevel 1

complete grid

hyperLevel 2

quadtree node
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Figure 6. Complete grid and the corresponding hyper-blocks for 
hyperLevels 1 and 2. HyperLevel 0 coincides with complete grid. 

     The main advantange of Hyper-QuadTIN is that it uses 
of vertex-blocks instead of individual vertices to determine 
the LOD-triangulation. This permits to precalculate static 
triangle strips for hyper-blocks. Also the LOD-selection 
time can be improved by the block-wise vertex selection. 
 



4.1. Construction 
The construction can be divided into four steps. The first 
works on the input tree, the remaining three work with 
hyper-blocks. 

• Generation of quadtree hyper-blocks. 
• Basic block-level construction. 
• Extended block-level construction. 
• Assignment of block-errors. 

Hyper-block generation: Taking the QuadTIN hierar-chy 
as input, this stage builds a new quadtree with depth equal 
to hyperLevel. At this level it encompasses the remaining 
levels from the QuadTIN hierarchy into a hyper-block data 
structure (see also the following section on the hyper-block 
data structure). It is possible that some branches in the 
QuadTIN hierarchy have a depth which is smaller than 
hyperLevel, see also Figure 7. This special situation is dealt 
with by introducing a special hyper-block that has just one 
level (and one triangulation). Such special hyper-blocks can 
hang from any level smaller than hyperLevel in the 
quadtree. Normal hyper-blocks hang from the last level in 
the quadtree, which is exactly the hyperLevel. 

hyperLevel 1

incomplete grid

hyperLevel 2

quadtree node
hyper-block
special hyper-block

 
Figure 7. Incomplete grid and the corresponding blocks for 
hyperLevels 1 and 2. Notice the special hyper-blocks due to the 
non-balanced QuadTIN hierarchy which hang from arbitrary 
levels. 

Basic block-level construction: This stage calculates the 
number of internal levels of each hyper-block. Due to the 
non-balanced QuadTIN input hierarchy, every hyper-block 
has a different number of levels. In every block-level of a 
hyper-block a triangle strip is built and stored as an index-
buffer following the scheme shown in Figure 8. We call 
these basic configurations. At rendering time, according to 
the view-dependent LOD criteria, a particular basic 
triangulation level of a hyper-block is selected. 

level 2 level 1 level 0

complete
hyper-block
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hyper-block

 
Figure 8. Basic block-level configurations of two differ-ent hyper-
blocks. 

Extended block-level construction: In order to join 
adjacent hyper-blocks without cracks in the triangulation we 
restrict the selected triangulation level of adjacent hyper-

blocks to differ by at most one level. Thus we have to 
consider all combinations of adjoining basic configurations 
of one level difference. In fact, we always extend the 
appropriate border of the level l block to conform to the 
triangulation of the adjacent block with level l+1. 

     A quad has four borders: south, east, north and west 
(S,E,N,W). Consider a level l in a hyper-block, vertices of 
level l+1 can be inserted on any border from an adjacent 
block. The combination of the four border triangulations 
(taking into account all possibilities) gives fifteen additional 
possible triangulations, which we call extended 
configurations. Figure 9 shows in detail all triangulations of 
a hyper-block with three levels. This approach allows to 
always join hyper-blocks that differ by at most one level 
without cracks in the triangulation. For example, a hyper-
block with basic configuration level l+1 (Figure 9, case 0 in 
the border table) can be joined in the south by a hyper-block 
at level l with extended-north triangulation (Figure 9, case 4 
in the border table). 
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Figure 9. Border table and the corresponding triangula-tions for 
levels 0, 1 and 2. W, N, E and S correspond to the west, north, east 
and south border configuration. The sixteen cases can be expressed 
by a 4-bit integer. Configuration 0 is the basic triangulation. 

Assignment of block-error: In each hyper-block, different 
LOD approximation errors are assigned to the different 
basic triangulation configurations (levels). These level-
errors are computed as the maximum geometric 
approximation error of the basic triangulation at this level 
(the infinite-norm of the vertical distance of unused vertices 
to the triangulated surface). 

4.2. Data structures 
Three simple data structures are used in the HyperBlock-
QuadTIN construction process and for rendering: 

• Tree 
• HyperBlock 
• InfoLevel 

Tree: It is a quadtree data structure with a depth equal to 
hyperLevel. The field hyper stores a HyperBlock pointer 
that points to a regular hyper-block, a special hyper-block, 



or is zero if no block is referenced. Bounding sphere data is 
also stored to perform view-frustum culling. 
struct Tree 
{ 
   Tree* parent; 
   Tree* child_sw; //south-west son 
   Tree* child_se; //south-east son 
   Tree* child_ne; //north-east son 
   Tree* child_nw; //north-west son 
   HyperBlock *hyper; 
   float x,y,z,r; //center and radius of bounding sphere 
} 

HyperBlock: This structure contains the information of 
every hyper-block. The fields selectedLevel and borderType 
will be used in the rendering process to select the level and 
decide the border configuration of Figure 9. The field 
isSeleted is used as to know if a hyper-block is selected in a 
certain frame, i.e. it passes the frustum culling test. The field 
isSpecial specifies normal or special hyper-block types (see 
section 4.1). Information about adjacent hyper-blocks is 
contained in the s, e, n, w fields which are used to adjust the 
border configuration according to Figure 9 in the rendering 
process as described in Section 4.3. 
struct HyperBlock 
{ 
   bool isSpecial; // true if hyper-block is special case 
   bool isSeleted; // boolean selection variable 
   int numLevel;   // number of levels of hyper-block 
   InfoLevel* level;// pointer to InfoLevel data 
   int selectedLevel;// selected level in current frame 
   int borderType; // =0..15 config. type (see Figure 9) 
   HyperBlock *s;  //adjacent south hyper-block 
   HyperBlock *e;  //adjacent east hyper-block 
   HyperBlock *n;  //adjacent north hyper-block 
   HyperBlock *w;  //adjacent west hyper-block 
} 

InfoLevel: The basic and extended triangulations of every 
hyper-block level are store in this data type. The sixteen 
triangle strip configurations (basic plus fifteen extended 
triangulations) shown in Figure 9 are generated during the 
construction process and stored in strip (with the lengths 
stored in numStrip). The field error contains the maximum 
geometric approximation error of the vertices that belong to 
the respective basic configuration level. 
struct InfoLevel 
{ 
   int numStrip[16];  
   int* strip[16];      
   float error; 
} 

4.3. HyperBlockQuadTIN rendering 
The rendering process can be divided into three stages: 

• Hyper-block and basic block-level selection. 
• Basic block-level adjustment. 
• Extended block-level selection. 

Hyper-block and basic block-level selection: To select the 
hyper-blocks within the view-frustum, the tree of  hyper-
blocks is recursively traversed top-down. The bounding 
sphere of each node is used to perform the view-frustum test 
(see Figure 10). The distance from each view-frustum 

pyramid plane to the bounding sphere center is calculated 
and compared with the bounding sphere radius. If greater 
(supposing plane-normals of view-frustum pyramid are 
oriented inside-out) then any descendant nodes and hyper-
blocks are out of the view-frustum and this node is 
dismissed. 
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Figure 10. View-frustum and bounding sphere of a tree node. 

     When a hyper-block is selected, the level-errors are 
projected onto the screen as shown in Figure 11 and 
compared with a given image-space error tolerance. The 
smallest level with projected error smaller than the given 
error tolerance specifies the basic block-level for this hyper-
block. 
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Figure 11. View-frustum, hyper-block error and the screen-
projected error. 

Basic block-level adjustment: Once the hyper-block levels 
are chosen, this stage removes block-level differences 
greater than one between adjacent hyper-blocks by 
increasing the level of the lower-level neighbors (see Figure 
12 b). 

Extended block-level selection: At this point, hyper-block 
levels are set and the basic configuration is assumed. The 
last adjustment uses the extended border configuration table 
(Figure 9) to guarantee a crack-free triangulation across 
hyper-blocks as shown in Figure 12 c). 

 
Figure 12. Rendering stages: a) Basic block-level selection. b) 
Basic block-level adjustment. c) Extended block-level selection.  

     Figure 12 shows a simple example of a terrain consisting 
of four hyper-blocks. In Figure 12 a) one can see the four 
basic configurations corresponding to the selected block-
levels. In Figure 12 b) basic block-level adjustment is 
carried out. Note that the lower-left hyper-block increases 
its level during this step. The cracks finally disappear in the 
extended block-level selection  in Figure 12 c). The level 
transitions can be observed in more details in Figure 13. 

c)b) a)



 
Figure 13. Rendering stages and level transitions of hyper-blocks. 

5. Results 
The performance analysis was tested on a 2.4GHz Pentium 
4 with 1GB RDRAM and NVIDIA GeForce4 Ti 4400 
graphics card. In all the scenes a 45º vertical field-of-view 
camera followed a circular path around the center of the 
terrain data models. Experimental results were averaged 
over 2500 frames in a window of 1024 x 768 pixels. 
OpenGL extensions are used to cache the height-field 
vertices on the video card. The terrain we used to perform 
the analysis is the Puget Sound data set. The complete grid 
(2049 x 2049) has 4198401 points. The preprocess with 
Terra software [7] (error = 5.0 meters) and QuadTIN [14] 
gives a terrain with 822099 vertices. The simplification 
process dramatically reduces the number of points with 
small loss of quality. This data model is not a very large 
field and can be stored completely in video memory, 
allowing the use of fully cached geometry. No cached-
geometry-memory manager was considered to deal with 
larger terrain data models. Experimental rendering results 
were obtained for different hyperLevels. The following 
Figures show the comparison between the basic QuadTIN 
rendering (individual per-vertex LOD selection) and the 
HyperBlock-QuadTIN rendering (block-based LOD 
selection) with the three best hyperLevels (in this example 
hyperLevels 7, 8 and 9). The HyperBlock construction 
process consumed less than 15 seconds for any hyperLevel 
setting used with the given terrain data. 

     The most illustrative data is the frame-rate comparison 
(see Figure 14). The best frame rate in the 0 to 1 pixel error 
tolerance range is achieved by the Hyper-Block approach 
with a hyperLevel of 8. Only at higher error tolerances 
(error=1.4 pixels) QuadTIN is faster. Note that HyperBlock 
outperforms QuadTIN for high level-of-detail, i.e. very low 
pixel tolerances, for all three considered hyperLevels. The 
frame-rate improvement with one pixel error tolerance is 
about 21% for hyperLevel 8. Other studied terrains gave 
similar results. 
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Figure 14. Puget Sound (822099 vertices) frame-rate. 

     Larger hyperLevels mean smaller block sizes and more 
numerous blocks. More blocks involve a more expensive 
selection process because more blocks have to be selected 
and more borders have to be adjusted in the final rendering 
stage. On the other hand, smaller blocks in general also 
imply fewer rendered triangles (Figure 15). 
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Figure 15. Number of triangles per frame (Puget Sound). 

     If we see the selection time (Figure 16) we can conclude 
that the LOD selection time remains almost constant 
because the number of hyper-blocks selected in the view-
frustum for every frame mainly depends on the hyperLevel. 
Larger hyperLevels generate a greater number of hyper-
blocks. In fact this is exactly what a block-based LOD 
selection approach is designed for. Instead of an expensive 
per-vertex LOD selection process the block-based LOD 
selection dramatically reduces the time required to generate 
the LOD triangulation. Clearly, the block-based LOD 
selection and triangulation process is largely independent of 
the error tolerance. In comparison we can see that the per-
vertex QuadTIN selection time decreases exponentially with 
the error tolerance, or is proportional to the number of 
selected triangles (Figure 15). 
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Figure 16. Selection time per frame for the Puget Sound data set 
(822099 vertices). For QuadTIN, the selection time also includes 
the time needed to build the triangle strip. 

     The display time itself (rendering triangles) is largely 
proportional to the number of triangles (Figure 15). In fact, 
both approaches compared here use triangle strips and 
cached geometry. Only LOD selection and triangulation 
cost depend on the used data structures and algorithms. 
Therefore, a block-based approach can only save time by a 
simplified LOD selection and triangulation approach. On 
the other hand, the higher-number of rendered triangles 
generally work against any block-based approaches. This is 
exactly what we can observe in the given experiments and 
we further discuss our findings in Section 6. 

6. Discussion 
HyperBlock-QuadTIN provides very good results for 
rendering large terrains at very high visual quality and 

c)b) a) 
level 0 Basic level 1 Basic 

level 0 Basic level 2 Basic level 1 Basic level 2 Basic 

level 1 Basic level 0 Basic 

level 1 East 
level 2 Basic 

level 0 South - East level 1 South 



shows up to 20% performance improvement in the 
presented experiments. As shown in our tests, the block-
based LOD vertex selection and triangulation approach is 
superior compared to a per-vertex LOD selection process. It 
provides a quasi-constant view-dependent LOD triangle 
mesh generation cost. Despite the disadvantage in higher 
triangle counts, given a fixed triangles-per-second rendering 
rate, the block-based approach is faster overall up to a 
certain break-even image-space error tolerance after which 
the vertex-based approach continues to be slightly better. 
This break-even point depends on the ratio between CPU 
and GPU (graphics processor) speed and usage. 

     Due to its efficient triangulation process (constant time 
LOD selection and pre-constructed triangle strips), the 
block-based approach makes much less use of the CPU and 
only slightly more use of the GPU than the per-vertex 
approach. The speed of GPUs currently increases at a faster 
rate than the performance of main CPUs. Due to this 
observation we can conclude that the break-even error 
tolerance below which the block-based approach is most 
advantageous will continue to increase. Therefore, block-
based triangulation and rendering approaches will be more 
and more effective as GPU power increases faster than CPU 
performance. Furthermore, with increasing GPU speeds 
smaller and smaller error tolerances and higher triangle 
counts can be handled at interactive frame rates which also 
tend to favor block-based approaches. 

     We presented our block-based triangulation approach as 
an extension to QuadTIN which is a hierarchical 
multiresolution triangulation approach for irregular terrain 
point sets. This is no restriction of the approach since the 
hyper-block generation and rendering outlined in Section 4 
works without modification also with regular quadtree 
hierarchies over grid-digital terrain elevation models. The 
choice of block-sizes remains to be a difficult problem. 
Deciding which is the optimal hyperLevel for a given terrain 
data set is difficult. We can observe a tradeoff between 
rendering and triangulation cost that at the current stage has 
to be exploited for different data sets. We want to explore 
how effective block-sizes can automatically be determined 
in future work. 
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