
HyperBlock-QuadTIN:
Hyper-Block Quadtree based Triangulated Irregular Networks

Roberto Lario

Dpto. Arquitectura de
 Computadores y Automática

 Universidad Complutense Madrid
Spain

Renato Pajarola
Information & Computer

 Science Department
University of California Irvine

USA

Francisco Tirado
Dpto. Arquitectura de

 Computadores y Automática
 Universidad Complutense Madrid

Spain

Abstract
Terrain rendering has always been an expensive task due to
large input data models. Hierarchical mul-tiresolution
triangulation and level-of-detail rendering algorithms over
regular structures of grid digital elevation models have
been widely used for interactive terrain visualization. The
main drawbacks of these are the large cost of memory
storage required and the possible over-sampling of high-
resolution terrain models. Triangulated irregular networks
(TIN) can reduce the amount of vertices at the expense of
more complex and slower memory data access. We present
a hyper-block quadtree based triangulated irregular
networks approach, where the notion of vertex-selection is
extended to block-selection. The hyper-block structure
allows to store different pre-calculated triangulations. This
reduces the vertex selection time per frame and removes the
calculations needed to build the geometric rendering
primitives (triangle strips) of the scene at the expense of a
larger number of selected vertices. The presented approach
shows a speed increment of 20% for high-quality terrain
rendering with small screen-projection error thresholds.

Keywords: terrain rendering, height fields, quadtree.

1. Introduction

Real-time terrain visualization usually employs as input
large data models with very high numbers of vertices. The
very large data sizes generally exceed the capabilities of
graphics hardware despite the advances experienced in this
field over the last few years. Several solutions can be
applied to simplify the geometric scene complexity and
improve rendering performance.

 View-dependent level-of-detail (LOD) algorithms
present an efficient solution. These take into account the
viewpoint location of the camera to satisfy a given screen-
space error tolerance. In this way, points closer to the
viewpoint have more weight in the LOD-selection and
triangulation process. This vertex selection process is
generally performed on a per-vertex basis. In contrast, in
this paper we describe a view-dependent LOD algorithm
that uses a block-selection approach. Our goal is to take
advantage of a fast block-selection process and exploit pre-
calculated triangle strips supported by our block-based data
structures. These advantages reduce the LOD-selection and
triangulation time, but increase the number of rendered
triangles.

Figure 1. Top view of the view-frustum and the wire-frame
HyperBlock-QuadTIN triangulation of a terrain.

 Using the rendering capabilities of the latest graphics
cards, we show that a terrain scene can be rendered faster
using a block-based selection method at small screen-space
error tolerances (equal or less than 1.5 pixels).

 The input data models are QuadTIN-based [14] terrains,
conforming to the restricted quadtree triangulation (RQT)
properties [18]. Thus any irregular network previously pre-
computed with QuadTIN can be used as input. Figure 1
shows an example of a HyperBlock-QuadTIN triangulation
of a terrain.

 Several terrain rendering methods have been proposed in
the literature. Among the hierarchical methods, quadtree
[15,19] and bintree [1,5,6,11,12] based approaches have
been used extensively. Hoppe [9] and Pajarola et al. [14]
present methods to render irregular terrain data sets. Other
methods, like variable resolution 4-k meshes [21] exploit the
advantages of subdivision connectivity to tesselate surfaces.
Additional information about terrain rendering can be found
in [2,4,5,8,10, 13,16,17]. In particular, the cached geometry
rendering approach presented in [11] is very similar to a
block-based LOD selection and rendering approach. Other
block-based implementations could be found in [3,21]
where precomputed-blocks of geometry information are
used.

 The remainder of the paper is organized as follows.
Section 2 introduces the restricted quadtree triangulation.
Section 3 briefly discusses the QuadTIN method. The
HyperBlock-QuadTIN approach is presented in detail in
section 4. Finally, section 5 and 6 end the paper with
experimental results and conclusions about this work.

2. Restricted Quadtree Triangulation
The restricted quadtree triangulation [18] (RQT) is an
adaptive, hierarchical LOD-triangulation algorithm for grid
digital terrain elevation models. Every elevation point is
assigned to a level in the quadtree hierarchy. The basic
recursive quadtree subdivision and triangulation is
performed in two steps as shown in Figure 2.

level l-1 level l level l level l+1
Figure 2. Recursive quadtree subdivision and triangulation.

 Cracks can occur in the triangulated surface from
unrestricted adaptive subdivision and triangulation as shown
in Figure 3. To avoid this situation, the RQT subdivision is
constrained by the restriction that adjacent quadtree blocks
differ by at most one level in the hierarchy. Then the
triangulation is adjusted to resolve cracks as outlined below.

Figure 3. Nonrestricted quadtree triangulation. Cracks are shown
with grey colour in the right.

 An efficient method to avoid cracks was introduced in
[12], this applies a dependency relation as illustrated in
Figure 4. Each vertex on level l specifies two others on the
same level as in Figures 4 b) and d), or on level l-1 as in
Figures 4 a) and c).

level l level l level l+1 level l+1

a) b) c) d)
Figure 4. Dependency relation of the RQT. The center vertices in
a) and c) depend on the inclusion of two corners of their quad
region. The boundary edge midpoints in b) and d) depend on the
center vertices of adjacent quad regions.

 For every selected point, its two dependency-points
must also be selected. This method not only avoids cracks
but also ensures a triangulation that can be represented by
one single triangle strip.
3. QuadTIN

QuadTIN [14] is an efficient quadtree-based triangulation
approach for irregular triangulated networks. It provides fast
quadtree-based adaptive triangulation, view-dependent
LOD-selection and real-time rendering.

 Basic quadtree-based triangulation methods are
applicable only to regular grid input datasets. In contrast,
QuadTIN presents an efficient quadtree-based triangula-tion
approach to irregular input point sets with improved storage
cost and feature adaptive sampling resolution while
preserving a regular quadtree multiresolution hierarchy over
the irregular input data set. It achieves this by inserting a
small number of Steiner points to the input data set
(generally less than 25% of the initial data points). This
technique allows a single triangle strip representation of the
terrain data. Although the quadtree hierarchy is not
balanced, it conforms to the restricted quadtree constraints.
Additional information such as geometric approximation
error, bounding spheres and normal cones are calculated and
stored in each quadtree node to be used for view-dependent
LOD-triangulation and rendering.

4. HyperBlock-QuadTIN
The HyperBlock-QuadTIN approach generates a tree
structure of blocks that store different triangulation levels,
thus the name hyper-block. The construction process takes a
QuadTIN file as input (see Figure 5) and traverses the
hierarchy up to a certain level that we call hyperLevel at
which hyper-blocks are built that encompass the remaining
levels in that sub-tree.

HyperBlock-QuadTIN
construction

HyperBlock-QuadTIN
construction

H
yp

er
B

lo
ck

-Q
ua

dT
IN

fil

e

Q
ua

dT
IN

 fi
le

Q
ua

dT
IN

 fi
le

HyperBlock-QuadTIN
rendering

QuadTIN rendering

Figure 5. HyperBlock-QuadTIN diagram.

 Figure 6 illustrates hyper-blocks generated at different
hyperLevels (1 and 2) for a given quadtree of height 3. If
hyperLevel is equal to 0 then the entire quadtree is
represented by one single hyper-block.

hyperLevel 1

complete grid

hyperLevel 2

quadtree node
hyper-block

Figure 6. Complete grid and the corresponding hyper-blocks for
hyperLevels 1 and 2. HyperLevel 0 coincides with complete grid.

 The main advantange of Hyper-QuadTIN is that it uses
of vertex-blocks instead of individual vertices to determine
the LOD-triangulation. This permits to precalculate static
triangle strips for hyper-blocks. Also the LOD-selection
time can be improved by the block-wise vertex selection.

4.1. Construction
The construction can be divided into four steps. The first
works on the input tree, the remaining three work with
hyper-blocks.

• Generation of quadtree hyper-blocks.
• Basic block-level construction.
• Extended block-level construction.
• Assignment of block-errors.

Hyper-block generation: Taking the QuadTIN hierar-chy
as input, this stage builds a new quadtree with depth equal
to hyperLevel. At this level it encompasses the remaining
levels from the QuadTIN hierarchy into a hyper-block data
structure (see also the following section on the hyper-block
data structure). It is possible that some branches in the
QuadTIN hierarchy have a depth which is smaller than
hyperLevel, see also Figure 7. This special situation is dealt
with by introducing a special hyper-block that has just one
level (and one triangulation). Such special hyper-blocks can
hang from any level smaller than hyperLevel in the
quadtree. Normal hyper-blocks hang from the last level in
the quadtree, which is exactly the hyperLevel.

hyperLevel 1

incomplete grid

hyperLevel 2

quadtree node
hyper-block
special hyper-block

Figure 7. Incomplete grid and the corresponding blocks for
hyperLevels 1 and 2. Notice the special hyper-blocks due to the
non-balanced QuadTIN hierarchy which hang from arbitrary
levels.

Basic block-level construction: This stage calculates the
number of internal levels of each hyper-block. Due to the
non-balanced QuadTIN input hierarchy, every hyper-block
has a different number of levels. In every block-level of a
hyper-block a triangle strip is built and stored as an index-
buffer following the scheme shown in Figure 8. We call
these basic configurations. At rendering time, according to
the view-dependent LOD criteria, a particular basic
triangulation level of a hyper-block is selected.

level 2 level 1 level 0

complete
hyper-block

incomplete
hyper-block

Figure 8. Basic block-level configurations of two differ-ent hyper-
blocks.

Extended block-level construction: In order to join
adjacent hyper-blocks without cracks in the triangulation we
restrict the selected triangulation level of adjacent hyper-

blocks to differ by at most one level. Thus we have to
consider all combinations of adjoining basic configurations
of one level difference. In fact, we always extend the
appropriate border of the level l block to conform to the
triangulation of the adjacent block with level l+1.

 A quad has four borders: south, east, north and west
(S,E,N,W). Consider a level l in a hyper-block, vertices of
level l+1 can be inserted on any border from an adjacent
block. The combination of the four border triangulations
(taking into account all possibilities) gives fifteen additional
possible triangulations, which we call extended
configurations. Figure 9 shows in detail all triangulations of
a hyper-block with three levels. This approach allows to
always join hyper-blocks that differ by at most one level
without cracks in the triangulation. For example, a hyper-
block with basic configuration level l+1 (Figure 9, case 0 in
the border table) can be joined in the south by a hyper-block
at level l with extended-north triangulation (Figure 9, case 4
in the border table).

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

S

15

14

13

12

11

10

9

8

7

6

5

4

3

2

1

0

111

111

011

011

101

101

001

001

110

110

010

010

100

100

000

000

ENW

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

S

15

14

13

12

11

10

9

8

7

6

5

4

3

2

1

0

111

111

011

011

101

101

001

001

110

110

010

010

100

100

000

000

ENWlevel 0level 1level 2

Figure 9. Border table and the corresponding triangula-tions for
levels 0, 1 and 2. W, N, E and S correspond to the west, north, east
and south border configuration. The sixteen cases can be expressed
by a 4-bit integer. Configuration 0 is the basic triangulation.

Assignment of block-error: In each hyper-block, different
LOD approximation errors are assigned to the different
basic triangulation configurations (levels). These level-
errors are computed as the maximum geometric
approximation error of the basic triangulation at this level
(the infinite-norm of the vertical distance of unused vertices
to the triangulated surface).

4.2. Data structures
Three simple data structures are used in the HyperBlock-
QuadTIN construction process and for rendering:

• Tree
• HyperBlock
• InfoLevel

Tree: It is a quadtree data structure with a depth equal to
hyperLevel. The field hyper stores a HyperBlock pointer
that points to a regular hyper-block, a special hyper-block,

or is zero if no block is referenced. Bounding sphere data is
also stored to perform view-frustum culling.
struct Tree
{
 Tree* parent;
 Tree* child_sw; //south-west son
 Tree* child_se; //south-east son
 Tree* child_ne; //north-east son
 Tree* child_nw; //north-west son
 HyperBlock *hyper;
 float x,y,z,r; //center and radius of bounding sphere
}

HyperBlock: This structure contains the information of
every hyper-block. The fields selectedLevel and borderType
will be used in the rendering process to select the level and
decide the border configuration of Figure 9. The field
isSeleted is used as to know if a hyper-block is selected in a
certain frame, i.e. it passes the frustum culling test. The field
isSpecial specifies normal or special hyper-block types (see
section 4.1). Information about adjacent hyper-blocks is
contained in the s, e, n, w fields which are used to adjust the
border configuration according to Figure 9 in the rendering
process as described in Section 4.3.
struct HyperBlock
{
 bool isSpecial; // true if hyper-block is special case
 bool isSeleted; // boolean selection variable
 int numLevel; // number of levels of hyper-block
 InfoLevel* level;// pointer to InfoLevel data
 int selectedLevel;// selected level in current frame
 int borderType; // =0..15 config. type (see Figure 9)
 HyperBlock *s; //adjacent south hyper-block
 HyperBlock *e; //adjacent east hyper-block
 HyperBlock *n; //adjacent north hyper-block
 HyperBlock *w; //adjacent west hyper-block
}

InfoLevel: The basic and extended triangulations of every
hyper-block level are store in this data type. The sixteen
triangle strip configurations (basic plus fifteen extended
triangulations) shown in Figure 9 are generated during the
construction process and stored in strip (with the lengths
stored in numStrip). The field error contains the maximum
geometric approximation error of the vertices that belong to
the respective basic configuration level.
struct InfoLevel
{
 int numStrip[16];
 int* strip[16];
 float error;
}

4.3. HyperBlockQuadTIN rendering
The rendering process can be divided into three stages:

• Hyper-block and basic block-level selection.
• Basic block-level adjustment.
• Extended block-level selection.

Hyper-block and basic block-level selection: To select the
hyper-blocks within the view-frustum, the tree of hyper-
blocks is recursively traversed top-down. The bounding
sphere of each node is used to perform the view-frustum test
(see Figure 10). The distance from each view-frustum

pyramid plane to the bounding sphere center is calculated
and compared with the bounding sphere radius. If greater
(supposing plane-normals of view-frustum pyramid are
oriented inside-out) then any descendant nodes and hyper-
blocks are out of the view-frustum and this node is
dismissed.

radius

center

top plane

eye

bounding sphere
botton plane

left plane

right plane

Figure 10. View-frustum and bounding sphere of a tree node.

 When a hyper-block is selected, the level-errors are
projected onto the screen as shown in Figure 11 and
compared with a given image-space error tolerance. The
smallest level with projected error smaller than the given
error tolerance specifies the basic block-level for this hyper-
block.

hyper-block error

eye

hyper-block
bounding sphere

screen-projected error
hyper-block

center

radius

Figure 11. View-frustum, hyper-block error and the screen-
projected error.

Basic block-level adjustment: Once the hyper-block levels
are chosen, this stage removes block-level differences
greater than one between adjacent hyper-blocks by
increasing the level of the lower-level neighbors (see Figure
12 b).

Extended block-level selection: At this point, hyper-block
levels are set and the basic configuration is assumed. The
last adjustment uses the extended border configuration table
(Figure 9) to guarantee a crack-free triangulation across
hyper-blocks as shown in Figure 12 c).

Figure 12. Rendering stages: a) Basic block-level selection. b)
Basic block-level adjustment. c) Extended block-level selection.

 Figure 12 shows a simple example of a terrain consisting
of four hyper-blocks. In Figure 12 a) one can see the four
basic configurations corresponding to the selected block-
levels. In Figure 12 b) basic block-level adjustment is
carried out. Note that the lower-left hyper-block increases
its level during this step. The cracks finally disappear in the
extended block-level selection in Figure 12 c). The level
transitions can be observed in more details in Figure 13.

c)b) a)

Figure 13. Rendering stages and level transitions of hyper-blocks.

5. Results
The performance analysis was tested on a 2.4GHz Pentium
4 with 1GB RDRAM and NVIDIA GeForce4 Ti 4400
graphics card. In all the scenes a 45º vertical field-of-view
camera followed a circular path around the center of the
terrain data models. Experimental results were averaged
over 2500 frames in a window of 1024 x 768 pixels.
OpenGL extensions are used to cache the height-field
vertices on the video card. The terrain we used to perform
the analysis is the Puget Sound data set. The complete grid
(2049 x 2049) has 4198401 points. The preprocess with
Terra software [7] (error = 5.0 meters) and QuadTIN [14]
gives a terrain with 822099 vertices. The simplification
process dramatically reduces the number of points with
small loss of quality. This data model is not a very large
field and can be stored completely in video memory,
allowing the use of fully cached geometry. No cached-
geometry-memory manager was considered to deal with
larger terrain data models. Experimental rendering results
were obtained for different hyperLevels. The following
Figures show the comparison between the basic QuadTIN
rendering (individual per-vertex LOD selection) and the
HyperBlock-QuadTIN rendering (block-based LOD
selection) with the three best hyperLevels (in this example
hyperLevels 7, 8 and 9). The HyperBlock construction
process consumed less than 15 seconds for any hyperLevel
setting used with the given terrain data.

 The most illustrative data is the frame-rate comparison
(see Figure 14). The best frame rate in the 0 to 1 pixel error
tolerance range is achieved by the Hyper-Block approach
with a hyperLevel of 8. Only at higher error tolerances
(error=1.4 pixels) QuadTIN is faster. Note that HyperBlock
outperforms QuadTIN for high level-of-detail, i.e. very low
pixel tolerances, for all three considered hyperLevels. The
frame-rate improvement with one pixel error tolerance is
about 21% for hyperLevel 8. Other studied terrains gave
similar results.

0

50

100

150

200

250

0 0,2

0,4

0,6

0,8

1 1,2

1,4

1,6

1,8

2

screen-space error (pixels)

fp
s

QuadTIN hyperLevel 7 hyperLevel 8 hyperLevel 9
Figure 14. Puget Sound (822099 vertices) frame-rate.

 Larger hyperLevels mean smaller block sizes and more
numerous blocks. More blocks involve a more expensive
selection process because more blocks have to be selected
and more borders have to be adjusted in the final rendering
stage. On the other hand, smaller blocks in general also
imply fewer rendered triangles (Figure 15).

0

50000

100000

150000

200000

250000

300000

350000

0 0,2

0,4

0,6

0,8

1 1,2

1,4

1,6

1,8

2

screen-space error (pixels)

nu
m

be
r o

f t
ria

ng
le

s
pe

r f
ra

m
e

QuadTIN hyperLevel 7 hyperLevel 8 hyperLevel 9
Figure 15. Number of triangles per frame (Puget Sound).

 If we see the selection time (Figure 16) we can conclude
that the LOD selection time remains almost constant
because the number of hyper-blocks selected in the view-
frustum for every frame mainly depends on the hyperLevel.
Larger hyperLevels generate a greater number of hyper-
blocks. In fact this is exactly what a block-based LOD
selection approach is designed for. Instead of an expensive
per-vertex LOD selection process the block-based LOD
selection dramatically reduces the time required to generate
the LOD triangulation. Clearly, the block-based LOD
selection and triangulation process is largely independent of
the error tolerance. In comparison we can see that the per-
vertex QuadTIN selection time decreases exponentially with
the error tolerance, or is proportional to the number of
selected triangles (Figure 15).

0

5

10

15

20

25

30

35

0 0,2

0,4

0,6

0,8

1 1,2

1,4

1,6

1,8

2

screen-space error (pixels)

se
le

ct
io

n
tim

e
pe

r f
ra

m
e

(m
ili

se
co

nd
s)

QuadTIN hyperLevel 7 hyperLevel 8 hyperLevel 9
Figure 16. Selection time per frame for the Puget Sound data set
(822099 vertices). For QuadTIN, the selection time also includes
the time needed to build the triangle strip.

 The display time itself (rendering triangles) is largely
proportional to the number of triangles (Figure 15). In fact,
both approaches compared here use triangle strips and
cached geometry. Only LOD selection and triangulation
cost depend on the used data structures and algorithms.
Therefore, a block-based approach can only save time by a
simplified LOD selection and triangulation approach. On
the other hand, the higher-number of rendered triangles
generally work against any block-based approaches. This is
exactly what we can observe in the given experiments and
we further discuss our findings in Section 6.

6. Discussion
HyperBlock-QuadTIN provides very good results for
rendering large terrains at very high visual quality and

c)b) a)
level 0 Basic level 1 Basic

level 0 Basic level 2 Basic level 1 Basic level 2 Basic

level 1 Basic level 0 Basic

level 1 East
level 2 Basic

level 0 South - East level 1 South

shows up to 20% performance improvement in the
presented experiments. As shown in our tests, the block-
based LOD vertex selection and triangulation approach is
superior compared to a per-vertex LOD selection process. It
provides a quasi-constant view-dependent LOD triangle
mesh generation cost. Despite the disadvantage in higher
triangle counts, given a fixed triangles-per-second rendering
rate, the block-based approach is faster overall up to a
certain break-even image-space error tolerance after which
the vertex-based approach continues to be slightly better.
This break-even point depends on the ratio between CPU
and GPU (graphics processor) speed and usage.

 Due to its efficient triangulation process (constant time
LOD selection and pre-constructed triangle strips), the
block-based approach makes much less use of the CPU and
only slightly more use of the GPU than the per-vertex
approach. The speed of GPUs currently increases at a faster
rate than the performance of main CPUs. Due to this
observation we can conclude that the break-even error
tolerance below which the block-based approach is most
advantageous will continue to increase. Therefore, block-
based triangulation and rendering approaches will be more
and more effective as GPU power increases faster than CPU
performance. Furthermore, with increasing GPU speeds
smaller and smaller error tolerances and higher triangle
counts can be handled at interactive frame rates which also
tend to favor block-based approaches.

 We presented our block-based triangulation approach as
an extension to QuadTIN which is a hierarchical
multiresolution triangulation approach for irregular terrain
point sets. This is no restriction of the approach since the
hyper-block generation and rendering outlined in Section 4
works without modification also with regular quadtree
hierarchies over grid-digital terrain elevation models. The
choice of block-sizes remains to be a difficult problem.
Deciding which is the optimal hyperLevel for a given terrain
data set is difficult. We can observe a tradeoff between
rendering and triangulation cost that at the current stage has
to be exploited for different data sets. We want to explore
how effective block-sizes can automatically be determined
in future work.

7. Acknowledgement
Special thanks to the US Geological Survey for the digital
elevation models shown in this paper and GVU Center at
Georgia Tech for the preparation of the textured Puget
Sound data set. Also, we would like to thank the University
Complutense of Madrid and the Spanish research grant TIC
2002-750 for their support of the principal investigator of
this research project.

References
[1] Laurent Balmelli, Serge Ayer, and Martin Vetterli. Efficient
algorithms for embedded rendering of terrain models. In
Proceedings IEEE ICIP 98, pages 914–918, 1998.
[2] Mark de Berg and Katrin Dobrindt. On levels of detail in
terrains. In 11th Symposium on Computational Geometry, pages
C26–C27. ACM, 1995.

[3] Glenn Corpes. Procedural Landscapes. Game Developer
Conference 2001.
[4] Leila De Floriani and Enrico Puppo. Hierarchical triangulation
for multiresolution surface description. ACM Transactions on
Graphics, 14(4):363–411, 1995.
[5] Mark Duchaineau, Murray Wolinsky, David E. Sigeti, Marc C.
Miller, Charles Aldrich, and Mark B. Mineev-Weinstein. Roaming
terrain: Real-time optimally adapting meshes. In Proceedings
IEEE Visualization 97, pages 81–88, 1997.
[6] Williams Evans, David Kirkpatrick, and Greg Townsend.
Right-triangulated irregular networks. Algorithmica, 30(2):264–
286, March 2001.
[7] Michael Garland and Paul S. Heckbert. Fast polygonal
approximation of terrains and height fields. Technical Report cmu-
cs-95-181, School of Computer Science, Carnegie Mellon
University, Pittsburgh, PA, 1995.
[8] Thomas Gerstner. Multiresolution compression and
visualization of global topographic data. Technical Report 29,
Institut fur Angewandte Mathematik, Universitat Bonn, 1999.
[9] Hugues Hoppe. Smooth view-dependent level-of-detail control
and its application to terrain rendering. In Proceedings IEEE
Visualization 98, pages 35–42. Computer Society Press, 1998.
[10] Reinhard Klein, Daniel Cohen-Or, and Tobias Huttner.
Incremental viewdependent multiresolution triangulation of terrain.
In Proceedings PacificGraphics 97, pages 127–136. IEEE, Com-
puter Society Press, 1997.
[11] Joshua Levenberg. Fast view-dependent level-of-detail
rendering using cached memory. In Proceedings IEEE
Visualization 2002, pages 259–265. Computer Society Press, 2002.
[12] Peter Lindstrom, David Koller, William Ribarsky, Larry F.
Hodges, Nick Faust, and Gregory A. Turner. Real-time, continuous
level of detail rendering of height fields. In Proceedings
SIGGRAPH 96, pages 109–118. ACM SIGGRAPH, 1996.
[13] Peter Lindstrom and Valerio Pascucci. Visualization of large
terrains made easy. In Proceedings IEEE Visualization 2001, pages
363–370. Com-puter Society Press, 2001.
[14] Renato Pajarola, Marc Antonijuan, and Roberto Lario.
QuadTIN: quadtree based triangulated irregular networks. In
Proceedings IEEE Visualization 2002, pages 395–402, 2002.
[15] Renato Pajarola. Large scale terrain visualization using the
restricted quadtree triangulation. In Proceedings IEEE
Visualization 98, pages 19–26,515, 1998.
[16] Renato Pajarola. Overview of quadtree-based terrain
triangulation and visualization. Technical Report UCI-ICS-02-01,
I&C Science, University of California Irvine, 2002.
[17] Enrico Puppo. Variable resolution terrain surfaces. In
Proceedings of the 8th Canadian Conference on Computational
Geometry, pages 202–210, 1996.
[18] Hanan Samet. The quadtree and related hierarchical data
structures. ComputingSurveys, 16(2):187–260, June 1984.
[19] Ron Sivan and Hanan Samet. Algorithms for constructing
quadtree surface maps. In Proc. 5th Int. Symposium on Spatial
Data Handling, pages 361–370, August 1992.
[20] Thatcher Ulrich. Rendering Massive Terrains using Chunked
Level of Detail Control. Course at SIGGRAPH 2002.
[21] Luiz Velho and Jonas Gomes. Variable resolution 4k meshes:
Concepts and applications. Computer Graphics Forum, 19(4):195–
214, 2000.

	reference: In Proceedings IASTED VIIP Conference, pages 733–738, 2003.

