
Software Reenineering
P1: Reverse Engineering

Martin Pinzger
Delft University of Technology

2

Outline

What is and Why?

Initial understanding

Detailed model capture

DA4Java demo

3

What is Reverse Engineering and why?

Reverse Engineering is the process of analyzing a subject system
to identify the system’s components and their interrelationships and

create representations of the system in another form or at a higher level
of abstraction [Chikofsky & Cross, ’90]

Motivation
Understanding other people’s code, the design and architecture in order
to maintain and evolve them

Reengineering Life-Cycle

4

(1) requirement
analysis

(3) problem
detection (4) problem

resolution

New
Requirements

Designs

Code

(2) model
capture

Initial understanding

6

Initial understanding patterns

Goal: Get initial understanding of the design and implementation
of the system

Forces
Data is deceptive

Always double-check your sources

Understanding entails iteration
Plan iteration and feedback loops

Knowledge must be shared
“Put the map on the wall”

Teams need to communicate
“Use their language”

7

Initial understanding patterns

Top down

Speculate about Design

Analyze the
Persistent Data

Study the
Exceptional Entities

understand !
higher-level model

Bottom up

ITERATION

Recover
design

Recover
database

Identify
problems

8

Analyze the persistent data

Problem: Which objects represent valuable data?

Solution: Analyze the database schema

Prepare Model
Table ⇒ class

Columns ⇒ class attributes

Candidate keys
Naming conventions + unique indices

Foreign keys ⇒ class associations

Use explicit foreign key declarations

Infer from column types + naming conventions + view declarations + join clauses

9

Analyze the persistent data (cont.)

Incorporate Inheritance
One to one; rolled down; rolled up

Incorporate Associations
Determine association classes (e.g., many-to-many associations)

Merge complementary associations

Identify qualified associations

Verification
Data samples + SQL statements

10

Example: One To One

Patient
id: char(5)
insuranceID: char(7)
insurance: char(5)

Salesman
id: char(5)
company: char(40)

Person
id: char(5)
name: char(40)
addresss: char(60)

Patient
id: char(5)
insuranceID: char(7)
insurance: char(5)

Salesman
id: char(5)
company: char(40)

Person
id: char(5)
name: char(40)
addresss: char(60)

11

Example: Rolled Down

Patient
id: char(5)
name: char(40)
addresss: char(60)
insuranceID: char(7)
insurance: char(5)

Salesman
id: char(5)
name: char(40)
addresss: char(60)
company: char(40)

Patient
id: char(5)
insuranceID: char(7)
insurance: char(5)

Salesman
id: char(5)
company: char(40)

Person
id: char(5)
name: char(40)
addresss: char(60)

12

Speculate about design

Problem: How do you recover the design from source code?

Solution: Develop hypotheses and check them
Develop a plausible class diagram and iteratively check and refine your
design against the actual code

Variants
Speculate about Business Objects

Speculate about Design Patterns

Speculate about Architecture

13

Study the exceptional entities

Problem: How can you quickly identify design problems?

Solution: Measure software entities and study the anomalous ones
Visualize metrics to get an overview

Use simple metrics
Lines of code

Number of methods

...

Use simple
metrics and
layout
algorithms.

(x,y) width

height colour

Visualize up
to 5 metrics
per node

Example: Exceptional entities

Use simple
metrics and
layout
algorithms

14

Detailed model capture

16

Detailed model capture patterns

Goal: Build a detailed model of parts that will be important for
reengineering

Forces
Details matter

Pay attention to the details

Design remains implicit
Record design rationale when you discover it

Design evolves
Important issues are reflected in changes to the code

Code only exposes static structure
Study dynamic behaviour to extract detailed design

17

Detailed model capture patterns

Expose the design & make sure it
stays exposed

Tie Code and Questions

Refactor to Understand

Keep track of
your understanding

Expose design

Step through the Execution

Expose collaborations

• Use Your Tools
• Look for Key Methods
• Look for Constructor Calls
• Look for Template/Hook Methods
• Look for Super Calls

Look for the Contracts

Expose contracts

Learn from the Past

Expose evolution

Write Tests
to Understand

18

Tie code and questions

Problem: How do you keep track of your understanding?

Solution: Annotate the code
List questions, hypotheses, tasks and observations

Identify yourself

Use conventions to locate/extract annotations
E.g., ‘To: Jasmine By: Martin On: 10.10.05 Comment...’

Annotate as comments or as methods

19

Refactor to understand

Problem: How do you decipher cryptic code?

Solution: Refactor it till it makes sense
Goal (for now) is to understand, not to reengineer

Hints
Work with a copy of the code

Refactoring requires an adequate test base
If this is missing, “Write Tests to Understand”

20

Refactor to understand (cont.)

Guidelines
Rename attributes to convey roles

Rename methods and classes to reveal intent

Remove duplicated code

Replace condition branches by methods

21

Step through the execution

Problem: How do you uncover the run-time architecture?
Collaborations are spread throughout the code

Polymorphism may hide which classes are instantiated

Solution: Execute scenarios of known use cases and step through
the code with a debugger

Hints
Set breakpoints

Change internal state to test alternative paths

22

Look for the contracts

Problem: What does a class expect from its clients?
Interfaces are visible in the code but how to use them?

Solution: Look for common programming idioms
Look for “key methods”

Method name, parameter types (important type -> important method)

Constructor calls
Shows which parameters to pass

Template/hook methods
Shows how to specialize a sub-class

Example: yFiles Contract

23

public SNACockpit(DataProvider dataProvider, boolean animated) {
	 super(new BorderLayout());

	 this.fGraphModel = new SocialNetworkGraph(dataProvider);
	 view = new Graph2DView();
	 view.setAntialiasedPainting(true);
	 ((DefaultGraph2DRenderer) view.getGraph2DRenderer()).setDrawEdgesFirst(true);

...

	 view.setGraph2D(fGraphModel);
	 this.add(view, BorderLayout.CENTER);
}

Initializing a Swing component with a yFiles graph

24

Learn from the past

Problem: How did the system get the way it is? Which parts are
stable and which aren’t?

Solution: Compare versions to discover where code was removed
Removed functionality is a sign of design evolution

Use or develop appropriate tools

Look for signs of:
Unstable design — repeated growth and refactoring

Mature design — growth, refactoring, and stability

25

Examples: Unstable design

Pulsar: Repeated Modifications make it grow and shrink.
System Hotspot: Every System Version requires changes.

26

Summary

Initial Understanding + Detailed Model Capture
Plan the work … and work the plan

Frequent and short iterations

Issues
Scale, speed vs. accuracy, politics

Tools?

Reverse Engineering Tools

DA4Java

28

DA4Java Overview

29

FAMIX
Parser

Java
Source
Code

Eclipse JDT

FAMIX

Model

Hibernate

ORM

yFiles
Graph

Graph
Filter

Graph
Editor

3rd Party

s.e.a.l.

X-Ray

30

CodeCity

31

inCode - Class Blueprint

32

4.2 The Class Blueprint 59

source code information of the metrics) represent a class’s methods
and attributes and are colored3 according to semantic information,
e.g., whether a method is abstract, overriding other methods, return-
ing constant values, etc.

The Layered Structure of a Class Blueprint

Initialization External Interface Internal Implementation Accessors Attributes

!"#$%&'($")*+,-+"%+

Fig. 4.6. A class blueprint decomposes a class into layers.

A class blueprint decomposes a class into layers and assigns its at-
tributes and methods to each layer based on the heuristics described
below (see Fig. 4.6). The layers support a call-graph notion in the
sense that a method node on the left connected to another node on
the right is either invoking or accessing the node on the right that
represents a method or an attribute.

The layers have been chosen according to a notion of time-flow and
encapsulation. The notion of encapsulation is visualized by separat-
ing state (to the right) from behaviour (to the left), and distinguish-
ing the public (to the left) from the private part (to the right) of the
class’ behaviour. Added to this only the actual source code elements
are visualized, i.e., we do not represent artificial elements resulting

The colors used in our visualizations follow visual guidelines suggested by
Bertin [Ber74], Tufte [Tuf90], Ware [War00], and Pinker [Pin97], e.g., we
take into account that the human brain is not capable of simultaneously
processing more than a dozen distinct colors.

inCode - ClassBlueprint (cont.)

33

4.2 The Class Blueprint 61

Representing Methods and Attributes

We represent methods and attributes using colored boxes (nodes) of
various size and position them within the layers presented previously.
We map metric information to the size of the method and attribute
nodes, and map semantic information on their colors.

Method

Attribute

Abstract
Method

Overriding
Method

Delegating
Method

Extending
Method

Constant
Method

Read Accessor
Method

Write Accessor
Method

!"#$%&'(%%$))
*$&+,-'"./,%(&",.

0123$#',4'5./,%(&",.)

0123$#',4
6".$)',4'7,-$

0123$#',4'$8&$#.(9'
(%%$))$)

0123$#',4'
".&$#.(9'(%%$))$)

Fig. 4.7. In a class blueprint the metrics are mapped on the width and the
height of a node. The methods and attributes are positioned according to the
layer they have been assigned to.

Mapping metrics information on size. The width and height of the
nodes reflect metric measurements of the represented entities, as il-
lustrated in Fig. 4.7. In the context of a class blueprint, the metrics
used for the method nodes are lines of code for the height and num-
ber of invocations (i.e., number of static invocation going out from the
represented node) for the width. The metrics used for the attribute
nodes are the number of direct accesses from methods within the

Other visualization tools/prototypes

Structural Analysis for Java
http://www.alphaworks.ibm.com/tech/sa4j

inCode
http://loose.upt.ro/incode/pmwiki.php/

X-Ray
http://xray.inf.usi.ch/xray.php

Code City
http://www.inf.usi.ch/phd/wettel/codecity.html

34

http://loose.upt.ro/incode/pmwiki.php/
http://loose.upt.ro/incode/pmwiki.php/
http://xray.inf.usi.ch/xray.php
http://xray.inf.usi.ch/xray.php
http://www.inf.usi.ch/phd/wettel/codecity.html
http://www.inf.usi.ch/phd/wettel/codecity.html

