
Software Reengineering
P2: Setting Direction

Martin Pinzger
Delft University of Technology



Reengineering Life-Cycle

2

(1) requirement
analysis

(2) model
capture

(3) problem
detection (4) problem

resolution

New
Requirements

Designs

Code



Outline

Setting direction

First contact

First project plan

3



The book

4

Object-Oriented Reengineering Patterns
Demeyer, Ducasse & Nierstrasz

Download a free copy from: http://scg.unibe.ch/download/oorp/

Present simple, lightweight techniques on how 
to cope with large-scale, complex legacy 
systems in need of reengineering

Uses patterns, descriptions of generic problem-
situations, possible solutions and trade-offs

http://scg.unibe.ch/download/oorp/
http://scg.unibe.ch/download/oorp/
http://scg.unibe.ch/download/oorp/
http://scg.unibe.ch/download/oorp/
http://scg.unibe.ch/download/oorp/
http://scg.unibe.ch/download/oorp/


A few of these patterns…

Most valuable first

Chat with the maintainers

Read all the code in one hour

Skim the documentation

Interview during demo

Do a mock installation

Speculate about the design

Study the exceptional entities

Refactor to understand

Write tests to enable evolution

…

5



Useful during…

Setting direction
What are the goals of the project?

Find Go/No-Go decision

First contact
You are facing a system that is completely new to you and within 
hours/days you should determine:

Whether the software is still viable

A plan of work

A cost-estimation

... and the other phases of re-engineering

6



Setting Direction



Setting direction patterns

8

Agree on Maxims

Set direction

Appoint a
Navigator

Speak to the
Round Table

Maintain
direction

Coordinate
direction

Most Valuable First

Where to start?

Fix Problems,
Not Symptoms

If It Ain't Broke
Don't Fix It

What not to do?What to do?

Keep it Simple

How to do it?

Principles & guidelines for
software project management are
especially relevant for 
reengineering projects



Pattern: Most Valuable First

Problem: Which problems should you address first?

9



Most valuable first (2)

Solution: Work on aspects that are most valuable to your 
customer

Maximize commitment

Deliver results early

Build confidence

10



Most valuable first (3)

11



Most valuable first (4)

12

How do you tell what is valuable?
Identify your customer

Understand the customer’s business model

Determine measurable goals

Consult change logs for high activity

Play the Planning Game

Fix Problems, not Symptoms



Most valuable first (5)

Planning Game

13



First Contact



First contact patterns

15

System experts

Chat with the
Maintainers

Interview
during Demo

Talk with
developers

Talk with
end users

Talk about it

Verify what
you hear

feasibility assessment
(one week time)

Software System

Read All the Code
in One Hour

Do a Mock
Installation

Read it Compile it

Skim the
Documentation

Read about 
it



Pattern: Chat with the Maintainers

Problem: How to get insights into the legacy system?

Difficult because: 
Documentation records decisions about the solution, not the historical 
context

Often people-related (political) issues are at the bottom of the legacy 
problem

People working with the system may mislead you to cover up their 
own mistakes

16



Chat with the maintainers (2)

Solution: 
Treat the maintainers as “brothers in arms”

Make sure they are on your side. 

Possible questions include
What was the easiest/hardest bug you had to fix over the last month? 

How long did it take you? 

Why was it easy/difficult to fix?

How are priorities given? 

Is there a version control system in place?

...

17



Chat with the maintainers (3)

Trade-offs
Pros

Obtain information effectively

Get acquainted with your colleagues

Cons

You only get anecdotal evidence, no hard facts

Difficulties

People protect their jobs

Teams may be unstable

18



Pattern: Read all the code in one hour

Problem: Yes, but… the system is so big! Where to start?

19



Read all the code in one hour (2)

Solution: Read the code in one hour

Focus on:
Functional tests and unit tests 

Abstract classes and methods and classes high in the hierarchy

Surprisingly large structures

Comments

Check classes with high fan-out

Study the build process

20



In Java programs focus on

21

public abstract class Example {
...
}

public interface IExample {
...
}

public class Test {
   ...
   @Test
   public void testExample() {
      ...
   }
}

/**
 * Block comment
 */
public class Example {
   public void foo() {
      int x = 1;
      for (int x=1; i<100; i++) {
         // do something comment
      }
   }
}



Pattern: Skim the documentation

Problem: What about documentation?

22



Skim the documentation (2)

Solution: Skim the available documentation
Do a general assessment of the documentation (will it be of use or 
not?)

Is there a table of contents, searchable, …?

Are there figures? Formal specs?

Make a list of the useful parts of the documentation 

Check whether it is up to date 

Look at version numbers!

23



Pattern: Interview during demo

Problem: What are the main features?

24



Interview during demo (2)

Solution: Do an interview during a demo

Let an end-user show you around in the functionality of the 
system

It will give you some usage scenarios
Could be useful for dynamic analysis!

The main features of the system
And whether they are appreciated or not

Consider different demos with different persons
Managers, sales-person, help desk, maintainer, etc.

25



Pattern: Do a mock installation

Problem: Can you (re)build the system?

26



Do a mock installation (2)

Solution: Do a mock installation of the available system in a 
clean environment

Check whether you have all the necessary artifacts available 
by installing the system, compiling the code and running the 
tests.

Gives insight into:
Dependencies

Version numbers of libraries

Problems

Attention: easy to get carried away and loose time

27



First project plan

Project scope (1/2 page)
Description, context, goals, verification criteria

Opportunities
Identify factors to achieve project goals

Skilled maintainers, readable source-code, documentation, etc.

Risks
Identify risks that may cause problems

Absent test-suites, missing libraries, etc.

Record likelihood & impact for each risk

Go/no-go decision, activities (fish-eye view)

28



Summary

29

Setting direction patterns to
Set the goals

Find the Go/No-Go decision

Increase commitment of clients and developers

First contact patterns to
Obtain an overview of the system

Design, implementation, documentation

Grasp the main issues

Assess the feasibility of the project



Homework

Read the chapters about
Initial understanding patterns (Chapter 4)

Detailed model capture patterns (Chapter 5)

Read short papers about Class and Package design principles

Form teams of two students
Mail team composition (name, student number) to us not later than 
23.09.2011 

Install 
DA4Java

Findbugs, PMD, Metrics

X-Ray, inCode
30


