
Software Reengineering
P1: Intro & Organization

Martin Pinzger
Delft University of Technology



Greenfield software development

2



Non-greenfield software development

3

?



How often did you ...

4

... encounter greenfield and non-greenfield software 
engineering?



Because existing software, often called legacy software, is 
valuable

Often business-critical

A huge amount of money has already been invested in it

Has been tested and runs

Does (mainly) what it should do

Would you replace such a system?

Why non-greenfield engineering?

5



Why do we (often) start from a mess?

6



Lehman’s Laws of software evolution

Continuing change
A program that is used in a real-world environment must change, or 
become progressively less useful in that environment.

Increasing complexity
As a program evolves, it becomes more complex, and extra resources 
are needed to preserve and simplify its structure.

For more information read Lehman and Belady, 1985

7



Evolution of Mozilla source code

8



Lehman’s Laws in practice

Existing software Is often modified in an ad-hoc manner 
(quick fixes)

Lack of time, resources, money, etc.

Initial good design is not maintained
Spaghetti code, copy/paste programming, dependencies are 
introduced, no tests, etc.

Documentation is not updated (if there is one)
Architecture and design documents

Original developers leave and with them their knowledge

9



Typical result of such practices

10



Implications of the results

Software maintenance costs continuously increase

Between 50% and 75% of global software development costs 
are spent on maintenance!

Up to 60% of a maintenance effort is spent on understanding 
the existing software

11



What is your decision?

12

* duplicated code
* complex conditionals
* abusive inheritance
* large classes/methods

According to Lehman: “there will always be changes”

hack it?

* first reengineer
* then implement changes

Take a loan on your software
pay back via reengineering

Investment for the future
paid back during maintenance



Let’s reengineer

Definition: 

“Reengineering is the examination and alteration of a subject 
system to reconstitute it in a new form and the subsequent 
implementation of the new form.” 

[Demeyer, Ducasse, Nierstrasz]

13



Reengineering Life-Cycle

14

(1) requirement
analysis

(2) model
capture

(3) problem
detection (4) problem

resolution

New
Requirements

Designs

Code



Goals of reengineering

15

Testability

Understandability

Modifiability

Extensibility

Maintainability

…



Goals of reengineering (concrete)

Unbundling
Split a monolithic system into parts that can be separately marketed

Performance
“First do it, then do it right, then do it fast” 

Design extraction
To improve maintainability, portability, etc.

Exploitation of New Technology
I.e., new language features, standards, libraries, etc.

16



In this course, you will learn and apply

Best practices to analyze and understand software systems 
(i.e., reverse engineering)

Heuristics and tools to detect shortcomings in the design and 
implementation of software systems

Testing and re-factoring techniques to systematically resolve 
these shortcomings

17



Course Organization



General information

LV Info
Block course, IFI 1.D.07

1st block: 21.09. -- 23.09.2011 each from 8:15 -- 10:00 and 14:00 -- 15:45

2nd block: 2.11. -- 4.11.2011 each from 8:15 -- 10:00 and 14:00 -- 15:45

Presentations and final exam: 16.12.2011

Language: English 

AP (ECTS): 4

Subscription until: 14. October 2011?

Attend the lectures and prepare for each lecture!

Latest news always at: http://seal.ifi.uzh.ch/reeng/

19

http://seal.ifi.uzh.ch/reeng/
http://seal.ifi.uzh.ch/reeng/


Overview of the course

Today
Overview of the course and the lab,
Setting direction & Initial understanding

22.09.2011
Reverse engineering -- Detailed model capture
DA4Java demo

22.09.2011 Code smells and evolution

23.09.2011
OO Design Principles
Findbugs, PMD, Metrics tool

23.09.2011
Code Clone Detection, CCFinderX Demo
Overview Dynamic Analysis

20

Block 1



Overview of the course (cont.)

02.11.2011 Feedback on Assignment I: Problem Detection

03.11.2011 Testing and Refactoring

03.11.2011 Guest lecture by Canoo (TBO)

04.11.2011 Working Effectively with Legacy Code

04.11.2011 Refactoring to Patterns

21

Block 2



Overview of the course (cont.)

16.12.2011 Lab presentations & exams

22

Lab presentations & exams



How will you be assessed?

Lab assignments
Assignment I: Problem Detection (30%)

Assignment II: Re-engineering (30%)

Final presentation of your results (20%)

Oral examination after/during the final presentation (20%)

Your contribution to the lecture (+/- 5%)

23



Reading material
Object-Oriented Reengineering Patterns
Serge Demeyer, Stephane Ducasse, and Oscar Nierstrasz
free copy from: http://scg.unibe.ch/download/oorp/

24

Working Effectively with Legacy Code 
Michael Feathers, Prentice Hall, 1 edition, 2004

Refactoring to Patterns
Joshua Kerievsky, Addison-Wesley Professional, 2004
I will provide copies of selected chapters 

http://scg.unibe.ch/download/oorp/
http://scg.unibe.ch/download/oorp/
http://www.amazon.com/Working-Effectively-Legacy-Michael-Feathers/dp/0131177052
http://www.amazon.com/Working-Effectively-Legacy-Michael-Feathers/dp/0131177052


Additional reading

25

Agile Software Development: Principles Patterns, and Practices
Robert C. Martin, Prentice Hall

Object-Oriented Design Heuristics 
Arthur J. Riel, Prentice Hall, 1 edition, 1996

Refactoring: Improving the Design of Existing Code
Martin Fowler, Addison-Wesley Professional, 1999

http://www.amazon.com/Working-Effectively-Legacy-Michael-Feathers/dp/0131177052
http://www.amazon.com/Working-Effectively-Legacy-Michael-Feathers/dp/0131177052


The Reengineering Lab



The system: jmonkeyengine 3.0

A modern 3D game engine in Java

Documentation
http://jmonkeyengine.org/

Source code (Eclipse project)
~110.000 lines of code

Checkout from svn repository

http://jmonkeyengine.googlecode.com/svn/trunk/engine/

27

http://jmonkeyengine.googlecode.com/svn/trunk/engine/
http://jmonkeyengine.googlecode.com/svn/trunk/engine/


Lab outline

Reengineering of a jmonkeyengine 3.0
Part I: Reverse Engineering & Problem Detection

Initial understanding, detailed model capture

Code smells, violations of class and package design principles

 

Part II: Testing & Refactoring

Develop a test harness

Refactor to improve the design and implementation

28



Phase 1: Reverse Engineering

First Contact
Install the system and find out what its features are

Is a reengineering feasible or should we re-implement it from scratch?

Reverse Engineering
What are the building blocks of jmonkeyengine?

What is the design of jmonkeyengine (package level, class level)?

Problem Detection
Where do you expect implementation design shortcomings?

See also http://seal.ifi.uzh.ch/reeng_uebung/

29

http://seal.ifi.uzh.ch/reeng_uebung/
http://seal.ifi.uzh.ch/reeng_uebung/


TODO for you

Exercise 1:
Perform First Contact and Reverse Engineering

Detect problems in the design of jmonkeyengine 3.0

Problems on the code level (smells): Duplicated Code, Solution Sprawl, Long 
Method, Conditional Complexity, Large Class, 

Violations of class design principles: Single Responsibility, Open/Closed, Dependency 
Inversion

Violations of package design principles: Reuse-Release Equivalence, Common-Reuse, 
Common-Closure, Acyclic-Dependencies, Stable-Dependencies, Stable-Abstractions

-> Simple problems in the source code do not count (e.g., naming)!

Write up a report

Template can be found on the web-site

Deadline for submission of report: 25.10.2011, 18:00 sharp!

30


