Software Reengineering
P2: Code Smelils and
Evolution

Martin Pinzger
Delft University of Technology

]
TU Delft

Outline

Introduction

Problem detection in the source code
Code Smells

Polymetric Views

Problem detection in the evolution
The Evolution Matrix

Kiviat Graphs

Conclusions

The Reengineering Life-Cycle

(1) requirement New
analysis Requirements

(3) problem
detection

(4) problem
resolution

PN

g\ Designs

(2) model
capture
5%% Code

Design Problems

The most common design problems result from code that is

Unclear & complicated Duplicated (code clones)

Code Smells (if it stinks, change it)

A code smell is a hint that something has gone wrong
somewhere in your code.

Duplicated Code ‘R’EFACT()RING

Long Method IMPROVING THE DESIGN
OF EXISTING CODE

Large Class

LOng Parameter List MARTIN FOWLER

Dive rgen t Chan ge e A S A e

Shotgun Surgery
Feature Envy

Design Disharmonies

is

has (partial) | Feature Data
Envy | uses Class

Is partially

e — God
| Intensive : Class
Coupling | | Jhas

Brain has
Method |

Dispersed Brain Significant
L : Class Duplication

Refused is | Tradition
Parent
Breaker
Bequest

|dentity Collaboration Classification
Disharmonies Disharmonies Disharmonies

Identity Disharmonies

Provide services and hide data

A class should present itself to others only in terms of a set of provided
services

Take responsibility

Most non-abstract services of a class should be responsible for
implementing a piece of the class’s functionality

Keep services cohesive
Services provided by a class should be focused on one single responsibility

Be unique
Each piece of concrete functionality is implemented once and only once

How To Detect? \\@

Measure and visualize quality aspects of the current
implementation of a system

Source code metrics and structures

Measure and visualize quality aspects of the evolution of a
system

Evolution metrics and structures

.
Detection Strategy - Overview

a)
Compose
> Detection

o Strategy

Informal | igentify Symptoms Detection
Design || M> Technique

Rules 0

Set of Metrics
with Thresholds

Select Filters

[ATFD > FEW]

[WHC = 14."EF'1"I"-HIJISHI

" Class uses directly more than

ributes of other
+ Beware of classes that e [TI'.:{: < ONE-THIRD] ‘i“"“ #.T:n ?::: “""T
access directly data from others g
* Top-level classes in a design B
should share work uniformly » access “foreign” data Fﬁﬁ:ﬁfﬂpﬂhd s
» Beware of classes with much » large and complex classes i B
“~_hon-communicative behavior | « non-cohesive [WMC 2 VERY-HIGH |

i Class cohesion is low
[Tee < 3]
\ =
e

Simple Polymetric Views

Polymetric Views 2

visualization

Visualize software using colored rectangles for
the entities and edges for the relationships

A combination of metrics and software

Relationship —
Render up to five metrics on one node:
Size (1+2) -
Color (3)
Position (4+5)
X Coordinate
Y Coordinate —

Height

Width

1"

Smell 1: Long Method

The longer a method is, the more difficult it is to understand
it.

When is a method too long?
Heuristic: > 10 LOGCs (?)

How to detect?
Visualize LOC metric values of methods

“Method Length Distribution View"”

12

Method Length Distribution

IIIII
L

Metrics:

Boxes: Methods
Width: LOC
Position-Y: LOC
Sort: LOC

13

N
Smell 2: Switch Statement

Problem is similar to code duplication
Switch statement is scattered in different places

How to detect?

Visualize McCabe Cyclomatic Complexity metric to detect complex
methods

“Method Complexity Distribution View"”

14

Method Complexity

g—"n
00 B o o
O
_
- l o Eﬁ o 9 O
::'l [3 l-llEa 0 L
o o A 0 oo -
0 O Higp . o o 0
n I - o
o o 0 o
n:rbanEBJ = o
o U o mH o o Y
oo o0
an)
o O o
o o
o
o
Metrics:

Boxes: Methods
Position-X: LOC
Position-Y: MCC
Sort: -

15

.
Smell 3: System Hotspots

Classes that contain too much responsibilities

When is a class too large?
Heuristic: > 20 NOM

How to detect?

Visualize number of methods (NOM) and sum of lines of code of methods
(WLOCQ)

“System Hotspots View”

16

System Hotspots

.........

iz

......
EEISEE = ===l [s

I5]

||

IlllIIlI-IlllllII]llIlIlIIllIII-IIIII

IIIIIIIIIIIIIIIIIIIIIIIIIII\I\IIIJIIIIIIIII
Illlllll-llllllIIIIIII[IIIIIIII|IIIIIII

COCOOnGOCC oo o0 I Jonooonc IOy

000C300C__3000070C__10 100 0 Io000nnmnn
010”17 00

MO T e O

MLICLL UL AL CATIH

DAEDDKIET T MR |

TN

L]

I 1]
| LI

Metrics:
Boxes: Classes
Width: NOA
Height: NOM
Color: LOC
Sort: NOM

17

Evaluation: Polymetric Views

Pros
Quick insights
Scalable
Metrics add semantics
Interactivity makes the code “come nearer”
Reproducible

Industrial Validation is the acid test

Cons
Level of granularity

Code reading is needed

GIopA Name mponary | Memos | NOMMNOMMNL - - |- -===]-=-=-| || Shvsb 2/ 211

18

Class Blueprint

iInCode - Class Blueprint

Initialization

External Interface

Internal Implementation

Accessors

Attributes

Invocation Sequence

20

inCode - ClassBlueprint (cont.)

<+— Number of Invocations —>

T

Number of
Method Lines of Code

l

| Number of external :

accesses

Delegating
Method

|

Number of
internal accesses

l

Method invocation |
|
o

K ¥
oL

Direct access

“N
N T~

\

21

God Class

Class uses directly more than a
few attributes of other classes

AND |

J

(ATFD > FEW)
.
-

Functional complexity of the

class is very high

(WMC = VERY HIGH)
-
-

Class cohesion is low

(TCC < ONE THIRD)

(
L

GodClass J

22

Example: God Class

\

OO0000000000000000000
000000000000000000000
OO00000000000000000000

COCUOO0OOC O
T
JrJrJrJrl‘“l seneRnn
IilTl i 100
IO
00
0
I
LI
||_||_| |

ﬂ ‘@L‘

“‘L“Q-al

23

Feature Envy

Method uses directly more than
a few attributes of other classes

AND |

(ATFD > FEW)
_
-
Method uses far more attributes
of other classes than its own
(LAA < ONE THIRD)
_
-

The used "foreign” attributes
belong to very few other classes

(FDP < FEW)

_

f
L

Feature Envy]

24

Example: Feature Envy
layout

N NOLL
ClassDiagramLayouter

weightAndPlaceClasses()

|
v —

ClassDiagramMNode

25

Data Class

4 2
More than a few public

data

(NOAP + NOAM > FEW)
. J

N
Complexity of class is not

high
(WMC < HIGH)
. y,
()
Class has many public
data

(NOAP + NOAM > MANY)
. J

a4)
Complexity of class is not

very high

AND

(WMC < VERY HIGH)
_ v,

AND

Interface of class reveals data
rather than offering services

L (WOC < ONE THIRD J)

-— eas eas s e s s s o o o GEr GEr GEr GEr GEr G

| Class reveals many attributes and is

not complex

Class reveals many
attributes and is not
complex

—-— eas es s eas eoas eEs eEs cEe e o

AND

Data Class]

26

Example: Data Class
PropertyTable(PropertyTableModel

PropertyTable
O

IilllH SettingsTablLayout
j =

I f— “]

Brain Method

[)
Method is excessively large

(LOC > HIGH (Class) / 2)
_)

()
Method has many

conditional branches

(CYCLO = HIGH)

Method has deep nesting

__/

(MAXN ESTING = SEVERAL)
- J

()
Method uses many

variables

(NOAV > MANY)

f
L

Brain Method J

28

Example: Brain Method

7 ¢ \
i
| .
S
AN
e \?
3
*
L ||

e
iy |
=9
%m,. RS |
i = = a !
. Sy al
i - i X
. - BT —————, L 1!
AN)
iy oL =k
"'\-\.'-\.;"\-\. o
o
e e

ProjectBrowser

1 Modeller

29

Tools

inCode
http://loose.upt.ro/incode/pmwiki.php/

30

http://loose.upt.ro/incode/pmwiki.php/
http://loose.upt.ro/incode/pmwiki.php/

More info on Detection Strategies

Object-Oriented Metrics in Practice

Michele Lanza and Radu Marinescu, Springer 2006
http://www.springer.com/computer/swe/book/

978-3-540-24429-5

Object-Oriented
Metrics

In Practice

31

http://www.springer.com/computer/swe/book/978-3-540-24429-5
http://www.springer.com/computer/swe/book/978-3-540-24429-5
http://www.springer.com/computer/swe/book/978-3-540-24429-5
http://www.springer.com/computer/swe/book/978-3-540-24429-5

B
RoadMap

Introduction

Problem detection in the source code
Code Smells

Polymetric Views

Problem detection in the evolution
The Evolution Matrix

Kiviat Graphs

Conclusion

32

B
Understanding Evolution

Changes can point to design problems
“Evolutionary Smells”

But
Overwhelming complexity

How can we detect and understand changes?

Solutions
The Evolution Matrix

The Kiviat Graphs

33

Visualizing Class Evolution

Visualize classes as rectangles using for
width and height the following metrics:

NOM (number of methods)
NOA (number of attributes)

The Classes can be categorized according
to their “personal evolution” and to their
“system evolution”

-> Evolution Patterns

34

The Evolution Matrix

P Removed Classes

m

First Version -

Added

Classes

l |

Major Leap

Last Version

Growth

Stabilisation

» TIME (Versions)

35

Evolution Patterns & Smells

Day-fly (Dead Code)

Persistent

Pulsar (Change Prone Entity)
SupernovaWhite Dwarf (Dead Code)
Red Giant (Large/God Class)

Idle (Dead Code)

36

.
Persistent / Dayfly

A

Dayflies: Exists
during only one or
two versions. Perhaps
an idea which was
tried out and then
dropped.

Persistent: Has the same
lifespan as the whole
system. Part of the

a

original design. Perhaps
holy dead code which no
one dares to remove.

Pulsar / Supernova

Pulsar: Repeated Modifications make it grow and shrink.
System Hotspot: Every System Version requires changes.

Supernova: Sudden increase in size. Possible Reasons:
« Massive shift of functionality towards a class.

 Data holder class for which it is easy to grow.

» Sleeper. Developers knew exactly what to fill in.

38

White Dwarf / Red Giant/ Idle

White Dwarf: Lost the functionality it had and now trundles along without
real meaning. Possibly dead code -> Lazy Class.

Red Giant: A permanent god (large) class which is always very large.

Idle: Keeps size over several versions. Possibly dead code,
possibly good code.

39

Real Example: MooseFinder

rrer e e m———— S RRARD SIATTTI TR~ 11409+
s 33

ile Views election Highlighting olors Extras

CodeCrawler

volution Heip

Item: Gass MSEMooseFinderUl [<(NOM: 50)(-: 0)> <(-:0)> <{-:0){-: 0)>] belongs to model MooseFinder1.099a.xmil
AREVESION |l e e e b S s P PR RS D0 FF 7 peRSISENTCLASSES
—————————— g FEf P S E TEEEECSCE L
el DAYFLIES E 3 b LELEEEE L L
Leap2——| | £ F F F §

4
| 3252 Nodes, 0 Edges

| - P PEES Y3320, S5 LA

Evaluation: Evolution Matrix

Pros
Understand the evolution of a system in terms of size and growth rate

Introduction of new classes
Remove of classes

Detection of Evolution Patterns & Smells
Dayflight, Persistent, White Dwarf, ...

Cons
Scalability

Limited to 3 metric values per glyph

Fragile regarding the renaming of classes

What if the name of a class was changed?

41

Extended Polymetric Views

Goal:
Visualize n metric values of m releases

More semantic in graphs

More flexibility to combine metric values

Solution: Kiviat Diagrams (Radar
Charts)

Each ray represents a metric

Encode releases with different colors

42

Kiviat Diagram

M4

43

.
Highlight the Change

M3

M2

B release 1-2

moduleA

M5

Ml

M6

’l@

44

Size & Complexity Metrics

5 7

2
XPToolkit

L

Metrics:
0:nrStmts
1:CCMPLX
2:nrFiles
3:nrClasses
4:nrMeths
5:nrAttrs
6:nrGlobFuncs
7:nrGlobVars

3 1

2
NewLlLayoutEngine

[] release 0.92-1.0

release 1.0-1.4
B release 1.4-1.7

Problem Report Metrics

NewlLayoutEngine

4 s

XPTaolki

4 5

Metrics:
0:nrPrio_undef

: 3 . 1:nrPrio_1
Mathiit 2:nrPrio_2

3:nrPrio_3

3 o . !
[] release 0.92-1.0 : g:nrgrgo_g
[release 1.0-1.4 NewHTMLStyleSyste nrPrio_

B release 1.4-1.7 -

Conclusions

Design Problems

Result from duplicated, unclear, complicated source code
-> Code Smells

Groph Name mporary | Mencs | NOMNOMMNL == |- --=-]-----] || Svsi 2/ 2]}

llllll

NewLayoutEngine

111 v =2 0)[-: 9)> | belongs % medel Moo inder] 275 0nd

- e e e e e e e e e e e e e e e e
................
.................

G]g P EE:EE srzzrzzozorozoz

- o
L £ 2 R 3R E kR R R EEE
C NessageBox (308306 20.0) lt\-‘a- 3043089000 lmmn.som FEE) ||/ O AR U A SR8 e R TR
/ /E] e W R B DN TR et it S R

STAGNATION
DAVFLIES ke LR NewHTMLStyleSyste

oooooooooo
- e e e e e w w

(e — w— w— w— —

LEAP 2

ijm..m " "t i N .!

