
Software Reengineering
P2: Code Smells and
Evolution

Martin Pinzger
Delft University of Technology

2

Outline

Introduction

Problem detection in the source code
Code Smells

Polymetric Views

Problem detection in the evolution
The Evolution Matrix

Kiviat Graphs

Conclusions

3

The Reengineering Life-Cycle

(1) requirement
analysis

(2) model
capture

(3) problem
detection (4) problem

resolution

New
Requirements

Designs

Code

4

Design Problems

The most common design problems result from code that is

Unclear & complicated Duplicated (code clones)

5

Code Smells (if it stinks, change it)

Duplicated Code
Long Method
Large Class
Long Parameter List
Divergent Change
Shotgun Surgery
Feature Envy
...

A code smell is a hint that something has gone wrong
somewhere in your code.

Design Disharmonies

6

4.3 Conclusions and Outlook 71

Identity Disharmonies (Chapter 5): God Class(80), Brain Class(97),
Feature Envy(84), Brain Method(92), Data Class(88), Duplication(102)

Collaboration Disharmonies (Chapter 6): Dispersed Coupling(127),
Intensive Coupling(120), Shotgun Surgery(133)

Classification Disharmonies (Chapter 7): Refused Parent Bequest(145),
Tradition Breaker(152)

Fig. 4.12. Disharmonies and their correlations.

Each of the following chapters has four major parts:

1. Harmony Rule(s). As mentioned before, disharmonies are devia-

tions from a set of principles, rules and heuristics that specify

what harmony means. Therefore, before presenting a catalogue of

disharmonies, we summarize in the form of one or more harmony

Identity Disharmonies

7

Provide services and hide data
A class should present itself to others only in terms of a set of provided
services

Take responsibility
Most non-abstract services of a class should be responsible for
implementing a piece of the class’s functionality

Keep services cohesive
Services provided by a class should be focused on one single responsibility

Be unique
Each piece of concrete functionality is implemented once and only once

8

How To Detect?

Measure and visualize quality aspects of the current
implementation of a system

Source code metrics and structures

Measure and visualize quality aspects of the evolution of a
system

Evolution metrics and structures

Detection Strategy - Overview

9

54
4

E
valu

atin
g

th
e

D
esign

F
ig.

4
.4

.
Process

oftran
sform

in
g

an
in

form
aldesign

ru
le

in
a

d
etection

strat-
egy.

Simple Polymetric Views

11

Polymetric Views

A combination of metrics and software
visualization

Visualize software using colored rectangles for
the entities and edges for the relationships

Render up to five metrics on one node:

Size (1+2)

Color (3)

Position (4+5)

7

Relationship

Entity

Y Coordinate

Height Color tone

Width

X Coordinate

12

Smell 1: Long Method

The longer a method is, the more difficult it is to understand
it.

When is a method too long?
Heuristic: > 10 LOCs (?)

How to detect?
Visualize LOC metric values of methods

“Method Length Distribution View”

13

Method Length Distribution

Metrics:
Boxes: Methods
Width: LOC
Position-Y: LOC
Sort: LOC

14

Smell 2: Switch Statement

Problem is similar to code duplication
Switch statement is scattered in different places

How to detect?
Visualize McCabe Cyclomatic Complexity metric to detect complex
methods

“Method Complexity Distribution View”

15

Method Complexity

Metrics:
Boxes: Methods
Position-X: LOC
Position-Y: MCC
Sort: -

16

Smell 3: System Hotspots

Classes that contain too much responsibilities

When is a class too large?
Heuristic: > 20 NOM

How to detect?
Visualize number of methods (NOM) and sum of lines of code of methods
(WLOC)

“System Hotspots View”

17

System Hotspots

Metrics:
Boxes: Classes
Width: NOA
Height: NOM
Color: LOC
Sort: NOM

Pros
Quick insights

Scalable

Metrics add semantics

Interactivity makes the code “come nearer”

Reproducible

Industrial Validation is the acid test

Cons
Level of granularity

Code reading is needed

18

Evaluation: Polymetric Views

Class Blueprint

inCode - Class Blueprint

20

4.2 The Class Blueprint 59

source code information of the metrics) represent a class’s methods
and attributes and are colored3 according to semantic information,
e.g., whether a method is abstract, overriding other methods, return-
ing constant values, etc.

The Layered Structure of a Class Blueprint

Initialization External Interface Internal Implementation Accessors Attributes

!"#$%&'($")*+,-+"%+

Fig. 4.6. A class blueprint decomposes a class into layers.

A class blueprint decomposes a class into layers and assigns its at-
tributes and methods to each layer based on the heuristics described
below (see Fig. 4.6). The layers support a call-graph notion in the
sense that a method node on the left connected to another node on
the right is either invoking or accessing the node on the right that
represents a method or an attribute.

The layers have been chosen according to a notion of time-flow and
encapsulation. The notion of encapsulation is visualized by separat-
ing state (to the right) from behaviour (to the left), and distinguish-
ing the public (to the left) from the private part (to the right) of the
class’ behaviour. Added to this only the actual source code elements
are visualized, i.e., we do not represent artificial elements resulting

The colors used in our visualizations follow visual guidelines suggested by
Bertin [Ber74], Tufte [Tuf90], Ware [War00], and Pinker [Pin97], e.g., we
take into account that the human brain is not capable of simultaneously
processing more than a dozen distinct colors.

inCode - ClassBlueprint (cont.)

21

4.2 The Class Blueprint 61

Representing Methods and Attributes

We represent methods and attributes using colored boxes (nodes) of
various size and position them within the layers presented previously.
We map metric information to the size of the method and attribute
nodes, and map semantic information on their colors.

Method

Attribute

Abstract
Method

Overriding
Method

Delegating
Method

Extending
Method

Constant
Method

Read Accessor
Method

Write Accessor
Method

!"#$%&'(%%$))
*$&+,-'"./,%(&",.

0123$#',4'5./,%(&",.)

0123$#',4
6".$)',4'7,-$

0123$#',4'$8&$#.(9'
(%%$))$)

0123$#',4'
".&$#.(9'(%%$))$)

Fig. 4.7. In a class blueprint the metrics are mapped on the width and the
height of a node. The methods and attributes are positioned according to the
layer they have been assigned to.

Mapping metrics information on size. The width and height of the
nodes reflect metric measurements of the represented entities, as il-
lustrated in Fig. 4.7. In the context of a class blueprint, the metrics
used for the method nodes are lines of code for the height and num-
ber of invocations (i.e., number of static invocation going out from the
represented node) for the width. The metrics used for the attribute
nodes are the number of direct accesses from methods within the

God Class

22

5.3 God Class 81

ATFD > FEW

Class uses directly more than a
few attributes of other classes

WMC VERY HIGH

Functional complexity of the
class is very high

TCC < ONE THIRD

Class cohesion is low

AND GodClass

Fig. 5.2. The God Class detection strategy

1. Class uses directly more than a few attributes of other classes.
Since ATFD measures how many foreign attributes are used by
the class, it is clear that the higher the ATFD value for a class, the
higher is the probability that a class is (or is about to become) a
God Class.

2. Functional complexity of the class is very high. This is ex-
pressed using the WMC (Weighted Method Count) metric.

3. Class cohesion is low. As a God Class performs several distinct
functionalities involving disjunct sets of attributes, this has a neg-
ative impact on the class’s cohesion. The threshold indicates that
in the detected classes less than one-third of the method pairs
have in common the usage of the same attribute.

The general design of ArgoUML is good enough so that we could not Example
identify a pure God Class i.e., a class controlling the flow of the appli-
cation and concentrating all the crucial behavior, which would indi-
cate a clear lack of object-oriented design. However, certain classes in
ArgoUML acts as a black hole attracting orphan functionalities. Such
classes are also detected by the metrics presented above and are still
a design problem. A class of ArgoUML which clearly stands out is the
huge class ModelFacade (see Fig. 3.12). This class implements 453

Example: God Class

23

82 5 Identity Disharmonies

Fig. 5.3. The Class Blueprint of ModelFacade

methods, defines 114 attributes, and is more than 3500 lines long.

Moreover, all methods and all attributes are static. Its name hints

at being an implementation of the Facade Design Pattern [GHJV95],

but it has become a sort of black hole of functionality. In Fig. 5.3 we

see its Class Blueprint with a modified layout for the methods and

attributes to make this Class Blueprint fit on one screen. Looking at

the Class Blueprint for this class it seems that the developers use it

for everything that does not fit into other classes, but the downside

is that this class is like a tumor within this system and can only

Feature Envy

24

5.4 Feature Envy 85

ATFD > FEW

Method uses directly more than
a few attributes of other classes

LAA < ONE THIRD

Method uses far more attributes
of other classes than its own

FDP FEW

The used "foreign" attributes
belong to very few other classes

AND Feature Envy

Fig. 5.4. Detection strategy for Feature Envy.

son for introducing this condition is that we want to make a dis-
tinction between a method who uses directly data from many dif-
ferent classes, and the case where the method envies especially
1-2 classes. In the first case, it might be that the method acts like
a controller [Rie96] and/or that it is a Brain Method(92). But in de-
tecting Feature Envy we are more interested in the second case, as
the essence of this disharmony is that the affected method is sim-
ply misplaced, and this is reflected by a well targeted dependency
on the data from another class.

In analyzing this design disharmony two alternative detection ap-
proaches could be used:

1. Count all dependencies. Another way to detect Feature Envy
would be to consider all the dependencies of the measured method,
instead of considering only the data members accessed by a partic-
ular method. In this case we would count both the dependencies
on the class where the method is defined, and those on the other
classes defined in the system.

2. Ignore dispersion. We used the FDP metric in the detection strat-
egy because we were focused on detecting those methods that
can be easily moved to another class and this involves a reduced

Example: Feature Envy

25

86 5 Identity Disharmonies

dispersion of the classes on which the methods rely. We might
want sometimes to eliminate this restriction and in this case we
will again find methods that rely on data taken from many other
classes. Although in this case moving the method is not obvious,
such methods might still require refactoring.

Fig. 5.5. ClassDiagramLayouter is envying the features of ClassDia-
gramNode. In red we colored the invocations that weightAndPlaceClasses
performs towards ClassDiagramNode, while in green we see its class-internal
invocations and accesses.

Looking again at the ArgoUML system we find a good example ofExample
Feature Envy, namely the weightAndPlaceClasses method in the class
ClassDiagramLayouter. Although the method uses data from its own
class it envies the data encapsulated in the class ClassDiagramNode
(i.e., by accessing the data heavily via a large number of accessor
methods), as depicted in Fig. 5.5. Looking closer at the figure we
notice three interesting aspects:

1. The weightAndPlaceClasses method is excessively large.
2. The envied class, i.e., ClassDiagramNode, contains almost no

functionality, but just data which is made accessible via the ac-
cessor methods (marked in red). A problem is that the envied class

Data Class

26

88 5 Identity Disharmonies

5.5 Data Class

Data Classes [FBB 99] [Rie96] are “dumb” data holders without com-Description
plex functionality but other classes strongly rely on them. The lack of
functionally relevant methods may indicate that related data and be-
havior are not kept in one place; this is a sign of a non-object-oriented
design. Data Classes are the manifestation of a lacking encapsulation
of data, and of a poor data-functionality proximity.

Classes.Applies To

The principles of encapsulation and data hiding are paramount toImpact

obtain a good object-oriented design. Data Classes break design prin-
ciples because they let other classes see and possibly manipulate
their data, leading to a brittle design (Presentation Rule). Such classes
reduce the maintainability, testability and understandability of a sys-
tem.

We detect Data Classes based on their characteristics (see Fig. 5.6):Detection

we search for “lightweight” classes, i.e., classes which provide almost
no functionality through their interfaces. Next, we look for the classes
that define many accessors (get/set methods) and for those who de-
clare data fields in their interfaces. Finally, we confront the lists and
manually inspect the lightweight classes that declare many public
attributes and those that provide many accessor methods. The detec-
tion strategy in detail is:

WOC < ONE THIRD

Interface of class reveals data
rather than offering services

AND Data Class

Class reveals many attributes and is
not complex

Fig. 5.6. The Data Class detection strategy.

5.5 Data Class 89

1. Interface of class reveals data rather than offering services.
The large majority of the class’s interface is exposing data rather
than providing services. We use the WOC (Weight Of Class) metric
for this.

AND

OR
Class reveals many
attributes and is not

complex

NOAP + NOAM > FEW

More than a few public
data

WMC < HIGH

Complexity of class is not
high

NOAP + NOAM > MANY

Class has many public
data

WMC < VERY HIGH

Complexity of class is not
very high

AND

Fig. 5.7. Data Class reveals many attributes and is not complex.

2. Class reveals many attributes and is not complex. The WOC
metric makes sure that the interface of the class is occupied
mainly by data and accessor methods. We also want to be sure
that the absolute number of these encapsulation breakers is high.
We differentiate between two cases (see Fig. 5.7):

a) The classical Data Class is not very large, has almost no func-
tionality, and only provides some data and data accessors. In
this case the class has not a high WMC (Weighted Method
Count) value, and we cannot expect to find much public data.
Therefore, the only request is that the class has more than a
FEW public data holders, expressed using the NOPA (Number
Of Public Attributes) and NOAM (Number Of Accessor Methods)
metrics.

b) The other case is that of a rather large class that apparently
looks “normal” (i.e., it does also define some functionality), ex-
cept for the fact that its (large) public interface contains, apart

Example: Data Class

27

90 5 Identity Disharmonies

from the provided services, a significant number of data and
data accessors. For this case, in order to consider the class a
Data Class, we require that it provides MANY public data. At
the same time, we allow the complexity of the class (WMC) to be
considerably high, up to the limit of excessively high (because
a class with extremely high complexity does not conceptually
fit the Data Class term).

In ArgoUML we identified several examples of Data Classes, one ofExample
which is the class Property (see Fig. 5.8).

Fig. 5.8. An example of a Data Class: Property.

The name itself already suggests that the class is not really modelling
an abstraction in the system, but rather keeps together a set of data.
Looking closer, we notice that the class has five attributes. In Fig. 5.8
we depict the Property class together with the classes that use its
data. In spite of the fact that all attributes are declared as private,
the class is still a pure data holder, due to the fact that all (but one)
of its methods are accessors (see methods in red). Thus, the class
has no behavior, it just keeps some data, used by three other classes.
Although none of the involved classes are large, the fact that data

Brain Method

28

5.6 Brain Method 93

MAXNESTING SEVERAL

Method has deep nesting

NOAV > MANY

Method uses many
variables

LOC > HIGH (Class) / 2

Method is excessively large

CYCLO HIGH

Method has many
conditional branches

AND Brain Method

Fig. 5.9. The Brain Method detection strategy.

1. Method is excessively large. We are looking for excessively large
methods. Based on our practical experience, we used the follow-
ing heuristic to set the threshold: a method is considered to be
excessively large if its LOC count is higher than half of the statis-
tical HIGH threshold for classes (see Table 2.2 for the LOC count
of classes) 3.

2. Method has many conditional branches. This is computed using
the CYCLO (McCabe’s Cyclomatic Complexity) metric.

3. Method has deep nesting level. This is computed using the
MAXNESTING (Maximum Nesting Level) metric i.e., the maximum
nesting level of control structures within a method or function.

4. Method uses many variables. Method uses more variables than
a human can keep in short-term memory. Exceeding this limit
always raises the risk of introducing bugs. Notice that all types of
variables are counted including local variables, parameters, but
also attributes and global variables (in programming languages
where this is unfortunately possible). We used NOAV (Number Of
Accessed Variables) to compute this.

Only the lines of code in the methods of the class are counted.

Example: Brain Method

29

94 5 Identity Disharmonies

Fig. 5.10. A Class Blueprint of Modeller and ProjectBrowser.

Fig. 5.10 shows that Modeller is not a class with an excessive numberExample
of methods, but has a certain number of Brain Methods. Some of
the methods reach considerable sizes (eight methods are longer than
50 lines of code), the longest one addDocumentationTag (annotated
as 1a in the figure) is 150 lines of code and invoked by three other
methods, two of which are the second and third longest methods in
this class: addOperation (1b, 116 LOC) and addAttribute (1c, 108
LOC).

The Class Blueprint reveals other disharmonies in this class: there
are 12 attributes in this class, all of them private (which is good), but
there are only four accessor methods. Moreover, the attributes are
accessed both directly and indirectly (using the accessors), denot-
ing a certain inconsistency or lack of access policy. As we will see

Tools

30

inCode
http://loose.upt.ro/incode/pmwiki.php/

http://loose.upt.ro/incode/pmwiki.php/
http://loose.upt.ro/incode/pmwiki.php/

More info on Detection Strategies

Object-Oriented Metrics in Practice
Michele Lanza and Radu Marinescu, Springer 2006
http://www.springer.com/computer/swe/book/
978-3-540-24429-5

31

http://www.springer.com/computer/swe/book/978-3-540-24429-5
http://www.springer.com/computer/swe/book/978-3-540-24429-5
http://www.springer.com/computer/swe/book/978-3-540-24429-5
http://www.springer.com/computer/swe/book/978-3-540-24429-5

32

RoadMap

Introduction

Problem detection in the source code
Code Smells

Polymetric Views

Problem detection in the evolution
The Evolution Matrix

Kiviat Graphs

Conclusion

33

Understanding Evolution

Changes can point to design problems
“Evolutionary Smells”

But
Overwhelming complexity

How can we detect and understand changes?

Solutions
The Evolution Matrix

The Kiviat Graphs

34

Visualizing Class Evolution

Visualize classes as rectangles using for
width and height the following metrics:

NOM (number of methods)

NOA (number of attributes)

The Classes can be categorized according
to their “personal evolution” and to their
“system evolution”

-> Evolution Patterns

Foo

Bar

First Version

Major Leap

TIME (Versions)
Growth Stabilisation

Added
Classes

35

The Evolution Matrix

Last VersionRemoved Classes

36

Evolution Patterns & Smells

Day-fly (Dead Code)

Persistent

Pulsar (Change Prone Entity)

SupernovaWhite Dwarf (Dead Code)

Red Giant (Large/God Class)

Idle (Dead Code)

37

Persistent / Dayfly

Persistent: Has the same
lifespan as the whole
system. Part of the
original design. Perhaps
holy dead code which no
one dares to remove.

Dayflies: Exists
during only one or
two versions. Perhaps
an idea which was
tried out and then
dropped.

38

Pulsar / Supernova

Pulsar: Repeated Modifications make it grow and shrink.
System Hotspot: Every System Version requires changes.

Supernova: Sudden increase in size. Possible Reasons:
• Massive shift of functionality towards a class.
• Data holder class for which it is easy to grow.
• Sleeper: Developers knew exactly what to fill in.

39

White Dwarf / Red Giant / Idle

White Dwarf: Lost the functionality it had and now trundles along without
real meaning. Possibly dead code -> Lazy Class.

Red Giant: A permanent god (large) class which is always very large.

Idle: Keeps size over several versions. Possibly dead code,
possibly good code.

40

Real Example: MooseFinder

41

Evaluation: Evolution Matrix

Pros
Understand the evolution of a system in terms of size and growth rate

Introduction of new classes

Remove of classes

Detection of Evolution Patterns & Smells

Dayflight, Persistent, White Dwarf, ...

Cons
Scalability

Limited to 3 metric values per glyph

Fragile regarding the renaming of classes

What if the name of a class was changed?

42

Extended Polymetric Views

Goal:
Visualize n metric values of m releases

More semantic in graphs

More flexibility to combine metric values

Solution: Kiviat Diagrams (Radar
Charts)

Each ray represents a metric

Encode releases with different colors

Kiviat Diagram

43

44

Highlight the Change

45

Size & Complexity Metrics

Metrics:
0:nrStmts
1:CCMPLX
2:nrFiles
3:nrClasses
4:nrMeths
5:nrAttrs
6:nrGlobFuncs
7:nrGlobVars

release 0.92-1.0
release 1.0-1.4
release 1.4-1.7

46

Problem Report Metrics

Metrics:
0:nrPrio_undef
1:nrPrio_1
2:nrPrio_2
3:nrPrio_3
4:nrPrio_4
5:nrPrio_5

release 0.92-1.0
release 1.0-1.4
release 1.4-1.7

Design Problems
Result from duplicated, unclear, complicated source code
-> Code Smells

47

Conclusions

