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The Reengineering Life-Cycle
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Design Problems

The most common design problems result from code that is

Unclear & complicated Duplicated (code clones)




Code Smells (if it stinks, change it)

A code smell is a hint that something has gone wrong
somewhere in your code.
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Design Disharmonies
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Identity Disharmonies

Provide services and hide data

A class should present itself to others only in terms of a set of provided
services

Take responsibility

Most non-abstract services of a class should be responsible for
implementing a piece of the class’s functionality

Keep services cohesive
Services provided by a class should be focused on one single responsibility

Be unique
Each piece of concrete functionality is implemented once and only once



How To Detect? \\@

Measure and visualize quality aspects of the current
implementation of a system

Source code metrics and structures

Measure and visualize quality aspects of the evolution of a
system

Evolution metrics and structures
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Detection Strategy - Overview
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Simple Polymetric Views



Polymetric Views 2

visualization

Visualize software using colored rectangles for
the entities and edges for the relationships

A combination of metrics and software

Relationship —
Render up to five metrics on one node:
Size (1+2) -
Color (3)
Position (4+5)
X Coordinate
Y Coordinate —

Height

Width

1"



Smell 1: Long Method

The longer a method is, the more difficult it is to understand
it.

When is a method too long?
Heuristic: > 10 LOGCs (?)

How to detect?
Visualize LOC metric values of methods

“Method Length Distribution View"”
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Method Length Distribution
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N
Smell 2: Switch Statement

Problem is similar to code duplication
Switch statement is scattered in different places

How to detect?

Visualize McCabe Cyclomatic Complexity metric to detect complex
methods

“Method Complexity Distribution View"”
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Method Complexity
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.
Smell 3: System Hotspots

Classes that contain too much responsibilities

When is a class too large?
Heuristic: > 20 NOM

How to detect?

Visualize number of methods (NOM) and sum of lines of code of methods
(WLOCQ)

“System Hotspots View”
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System Hotspots
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Evaluation: Polymetric Views

Pros
Quick insights
Scalable
Metrics add semantics
Interactivity makes the code “come nearer”
Reproducible

Industrial Validation is the acid test

Cons
Level of granularity

Code reading is needed

GIopA Name mponary | Memos | NOMMNOMMNL - - |- -===]-=-=-| || Shvsb 2/ 211
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Class Blueprint



iInCode - Class Blueprint

Initialization

External Interface

Internal Implementation

Accessors

Attributes

Invocation Sequence
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inCode - ClassBlueprint (cont.)
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God Class

Class uses directly more than a
few attributes of other classes
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Example: God Class
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Feature Envy

Method uses directly more than
a few attributes of other classes

AND |
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Example: Feature Envy
layout

N NOLL
ClassDiagramLayouter

weightAndPlaceClasses()

|
v —

ClassDiagramMNode

25



Data Class
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Example: Data Class
PropertyTable(PropertyTableModel

PropertyTable
O
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Brain Method
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( LOC > HIGH (Class) / 2 )
\_ )

( )
Method has many

conditional branches

( CYCLO = HIGH )

Method has deep nesting

\__/

(MAXN ESTING = SEVERAL)
- J

( )
Method uses many

variables

( NOAV > MANY )

f
L

Brain Method J

28



Example: Brain Method
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Tools

inCode
http://loose.upt.ro/incode/pmwiki.php/
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More info on Detection Strategies

Object-Oriented Metrics in Practice

Michele Lanza and Radu Marinescu, Springer 2006
http://www.springer.com/computer/swe/book/

978-3-540-24429-5

Object-Oriented
Metrics

In Practice
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B
Understanding Evolution

Changes can point to design problems
“Evolutionary Smells”

But
Overwhelming complexity

How can we detect and understand changes?

Solutions
The Evolution Matrix

The Kiviat Graphs
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Visualizing Class Evolution

Visualize classes as rectangles using for
width and height the following metrics:

NOM (number of methods)
NOA (number of attributes)

The Classes can be categorized according
to their “personal evolution” and to their
“system evolution”

-> Evolution Patterns
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The Evolution Matrix

P Removed Classes

m

First Version -

Added

Classes

l |

Major Leap

Last Version

Growth

Stabilisation

» TIME (Versions)
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Evolution Patterns & Smells

Day-fly (Dead Code)

Persistent

Pulsar (Change Prone Entity)
SupernovaWhite Dwarf (Dead Code)
Red Giant (Large/God Class)

Idle (Dead Code)
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Persistent / Dayfly

A

Dayflies: Exists
during only one or
two versions. Perhaps
an idea which was
tried out and then
dropped.

Persistent: Has the same
lifespan as the whole
system. Part of the

a

original design. Perhaps
holy dead code which no
one dares to remove.




Pulsar / Supernova

Pulsar: Repeated Modifications make it grow and shrink.
System Hotspot: Every System Version requires changes.

Supernova: Sudden increase in size. Possible Reasons:
« Massive shift of functionality towards a class.

 Data holder class for which it is easy to grow.

» Sleeper. Developers knew exactly what to fill in.
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White Dwarf / Red Giant/ Idle

White Dwarf: Lost the functionality it had and now trundles along without
real meaning. Possibly dead code -> Lazy Class.

Red Giant: A permanent god (large) class which is always very large.

Idle: Keeps size over several versions. Possibly dead code,
possibly good code.
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Real Example: MooseFinder

rrer e e m———— S RRARD SIATTTI TR~ 11409+
s 33

ile  Views election  Highlighting olors Extras

CodeCrawler

volution Heip

Item: Gass MSEMooseFinderUl [ <(NOM: 50)(-: 0)> <(-:0)> <{-:0){-: 0)> ] belongs to model MooseFinder1.099a.xmil
AREVESION |l e e e b S s P PR RS D0 FF 7 peRSISENTCLASSES
—————————— g FEf P S E TEEEECSCE L
el DAYFLIES E 3 b LELEEEE L L
Leap2——| | £ F F F §

4
| 3252 Nodes, 0 Edges

| - P PEES Y3320, S5 LA



Evaluation: Evolution Matrix

Pros
Understand the evolution of a system in terms of size and growth rate

Introduction of new classes
Remove of classes

Detection of Evolution Patterns & Smells
Dayflight, Persistent, White Dwarf, ...

Cons
Scalability

Limited to 3 metric values per glyph

Fragile regarding the renaming of classes

What if the name of a class was changed?
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Extended Polymetric Views

Goal:
Visualize n metric values of m releases

More semantic in graphs

More flexibility to combine metric values

Solution: Kiviat Diagrams (Radar
Charts)

Each ray represents a metric

Encode releases with different colors
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Kiviat Diagram

M4
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Highlight the Change

M3

M2

B release 1-2
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’l@

44



Size & Complexity Metrics
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Problem Report Metrics
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Conclusions

Design Problems

Result from duplicated, unclear, complicated source code
-> Code Smells
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