
Software Reengineering
P3: OO Design Principles
and Violations

Martin Pinzger
Delft University of Technology

Slides adapted from the presentation by Steve Zhang

2

Outline

Design Smells

Object-Oriented Design Principles

Conclusions

3

The Reengineering Life-Cycle

(1) requirement
analysis

(2) model
capture

(3) problem
detection (4) problem

resolution

New
Requirements

Designs

Code

Design Smells

The Odors of Rotting Software
Rigidity – The design is hard to change

Fragility – The design is easy to break

Immobility – The design is hard to reuse

Viscosity – It is hard to do the right thing

Needless complexity – Overdesign

Needless Repetition – Copy/paste

Opacity – Disorganized expression

4

The Broken Window Theory

A broken window will
trigger a building into a
smashed and abandoned
derelict

So does the software

Don’t live with the broken
window

5

S.O.L.I.D. Design Principles

S.O.L.I.D Design Principles

SRP – The Single Responsibility Principle

OCP – The Open-Closed Principle

LSP – The Liskov Substitution Principle

ISP – The Interface Segregation Principle

DIP – The Dependency Inversion Principle

7

SRP: The Single-Responsibility Principle

A class should have a single purpose and only one reason to
change

If a class has more than one responsibility, then the responsibilities
becomes coupled

SRP is one of the simplest of the principles, and the one of the
hardest to get right

8

SRP heuristics

Describe the primary responsibility in a single sentence

Group similar methods

Look at hidden methods (private, protected)
Many of them indicate that there is another class in the class tying to get
out

Look for decisions that can change (not “if-statements”)
They should go into separated classes

Look for internal relationships
Are certain variables used by some methods and not others?

9

Exercise: SRP

10

+ evaluate(String rule) : int
- branchingExpression(Node left, Node right) : int
- causualExpression(Node left, Node right) : int
- variableExpression(Node node) : int
- valueExpression(Node node) : int
- nextTerm() : String
- hasMoreTerms() : boolean
+ addVariable(String name, int value)

- current: String
- variables: HashMap
- currentPosition: int

RuleParser

Example: SRP (possible) solution

11

+ evaluate(String rule)
+ addVariables(String, int)

RuleEvaluator
+ parse(String rule) : Expression

RuleParser

+ nextTerm() : String
+ hasMoreTerms() : boolean

TermTokenizer

+ evaluateWith(SymbolTable table)

{abstract}
Expression+ addVariable(String, int)

SymbolTable

creates

OCP: The Open-Closed Principle

Software entities(classes, modules, functions, etc.) should be
open for extension, but closed for modification

“Open for extension”

The behavior of the module can be extended (e.g., by subclassing)

“Closed for modification”

Extending the behavior of a module does not result in changes to the existing source code
or binary code of the module

12

OCP cannot be fully achieved
E.g.,

Example: OCP – Strategy Pattern

13

OCP heuristics

14

Look for duplicated code

Look at the change history
Classes that frequently change together

Apply potential change scenarios
Which classes would be affected by the change?

LSP: Liskov Substitution Principle

Subtypes must be substitutable for their base types
LSP defines the OO inheritance principle

If a client uses a base class, then it should not differentiate the base class
from derived class

In terms of design by contract
Precondition equal or weaker

Must accept anything the base class could accept

Postcondition equal or stronger

Must not violate the post-condition of the base class

15

LSP violation example

16

public enum ShapeType {square, circle};
public class Shape {
 public static void DrawShape(Shape s) {
 if(s.type == ShapeType.square)
 (s as Square).Draw();
 else if(s.type == ShapeType.circle)
 (s as Circle).Draw();
 }
}
public class Circle : Shape {
 public void Draw() {/* draws the circle */}
}
public class Square : Shape{
 public void Draw() {/* draws the square */}
}

 Not
substitutable

Violate OCP

Another LSP violation example

17

void g(Rectangle r)
{
 r.setWidth(5);
 r.setHeight(4);
 if(r.getArea() != 20)
 throw new Exception("Bad area!");
 }

Square’s behavior is
changed, so it is not

substitutable to
Rectangle

IS-A Relationship

Square is not
Rectangle!

LSP heuristics

18

Check the contracts of base and sub classes
Every LSP violation is a violation of OCP but not vice versa

DIP: The Dependency Inversion Principle

High-level modules should not depend on low-level modules
Both should depend on abstractions

Abstractions should not depend on details
Details should depend on abstractions

DIP is at the very heart of framework design

19

A DIP example

20

DIP violation

DIP

DIP heuristics

21

Depend on abstractions
No variable should hold a reference to a concrete class

No class should derive from a concrete class

No method should override an implemented method of any of its base
classes

Heuristic is typically violated at least once
Somebody has to create the instances of the concrete classes

-> No reason to strictly follow this heuristic for classes that are concrete
but non-volatile

ISP: The Interface Segregation Principle

Clients should not be forced to depend on methods they do
not use

Design cohesive interfaces and avoid "fat" interfaces

The dependency of one class to another one should depend on the
smallest possible interface

The interfaces of the class can be broken up into groups of methods

Each group serves a different set of clients

22

An violation of ISP example

23

ISP violation

An ISP Violation example: solution

24

Segregated
interface

ISP heuristics

25

Check classes with a high number of public methods
Group clients according to their calls of the public methods

Check for methods that frequently change together

LoD - Law of Demeter

Principle of Least Knowledge

Only talk to your immediate friends

Don’t talk to strangers

Write “shy” codes

Minimize coupling

26

LoD formal definition

A method M of an object O may only invoke the methods of
the following kinds of objects

O itself

M's parameters

Any objects created/instantiated within M

O's direct component objects

27

Example LoD

28

class Demeter {
 public A a;
 public int func() {
 // do something
 }
 public void example(Arg arg) {
 C c = new C();
 int f = func(); // functions belonging to itself
 arg.invert(); // to passed parameters
 a = new A();
 a.setActive(); // to any objects it has created
 c.print(); // to any held objects
 }
}

LoD violation example

29

final String outputDir = ctxt.getOptions().getScratchDir().getAbsolutePath();

a.getB().getC().doSomething()

DRY – Don’t Repeat Yourself

Every piece of knowledge must have a single, unambiguous,
authoritative representation within a system

Following DRY will make software systems easier to
understand and maintain

30

Agile Software Development: Principles Patterns, and Practices
Robert C. Martin, Prentice Hall, 2002

More information on Design Principles

31

Design Disharmonies

32

4.3 Conclusions and Outlook 71

Identity Disharmonies (Chapter 5): God Class(80), Brain Class(97),
Feature Envy(84), Brain Method(92), Data Class(88), Duplication(102)

Collaboration Disharmonies (Chapter 6): Dispersed Coupling(127),
Intensive Coupling(120), Shotgun Surgery(133)

Classification Disharmonies (Chapter 7): Refused Parent Bequest(145),
Tradition Breaker(152)

Fig. 4.12. Disharmonies and their correlations.

Each of the following chapters has four major parts:

1. Harmony Rule(s). As mentioned before, disharmonies are devia-

tions from a set of principles, rules and heuristics that specify

what harmony means. Therefore, before presenting a catalogue of

disharmonies, we summarize in the form of one or more harmony

Collaboration
Disharmonies

Collaboration Disharmonies

Limit collaboration intensity
Operations should collaborate (mainly unidirectional) with a limited
number of services provided by other classes

Limit collaboration extent
Operations (and consequently their classes) should collaborate with
operations from a limited number of other classes

Limit collaboration dispersion
An entity should collaborate closely only with a selected set of entities,
preferable located in the

same abstraction

same hierarchy

same package (or sub- system)

34

Intensive Coupling

35

120 6 Collaboration Disharmonies

6.3 Intensive Coupling

One of the frequent cases of excessive coupling that can be improvedDescription
is when a method is tied to many other operations in the system,
whereby these provider operations are dispersed only into one or a
few classes (see Fig. 6.2). In other words, this is the case where the
communication between the client method and (at least one of) its
provider classes is excessively verbose. Therefore, we named this de-
sign disharmony Intensive Coupling.

Fig. 6.2. Illustration of Intensive Coupling

Operations i.e., methods or standalone functions.Applies To

An operation which is intensively coupled with methods from a hand-Impact

ful of classes binds it strongly to those classes. Oftentimes, Intensive
Coupling points to a more subtle problem i.e., the classes provid-
ing the many methods invoked by the Shotgun Surgery method do
not provide a service at the abstraction level required by the client
method. Consequently, understanding the relation between the two
sides (i.e., the client method and the classes providing services) be-
comes more difficult.

Intensive Coupling: Detection Strategy

36

122 6 Collaboration Disharmonies

Operation calls too
many methods from few
and unrelated classes

CINT > Short Memory Cap

Operation calls too many
methods

CDISP < HALF

Class are "dispersed" in
few classes

CINT > FEW

Operation calls more than
a few methods

CDISP < A QUARTER

Calls are "dispersed" in
very few classes

AND

AND

OR

Fig. 6.4. In Intensive Coupling operation calls too many methods from a few
unrelated classes

Therefore, we have two branches: one for detecting intensive cou-
plings which are concentrated in one or two classes, and another
one dedicated to the more general case when the dispersion ratio
of the invoked methods is below 50%.

The used heuristics in the first case are:

a) Operation calls too many methods. Too many refers to a
number greater than the number of items that can be mem-
orized by the short-term memory. If the caller operation is a
method, than only those provider methods are counted that
are outside the scope of the caller’s definition class.

b) Calls are dispersed in a few classes. The methods invoked
by a client operation have a low grade of dispersion, i.e., the
provider methods belong to a few classes. The threshold tells
us that in average more than two methods are invoked from
the same provider class.

The used heuristics in the second case are:

a) Operation calls more than a few methods.

6.3 Intensive Coupling 121

The detection strategy is based on two main conditions that must Detection

be fulfilled simultaneously: the function invokes many methods and
the invoked methods are not very much dispersed into many classes
(Fig. 6.3).

Additionally, based on our practical experience, we impose a min-
imal complexity condition on the function, to avoid the case of config-
uration operations (e.g., initializers, or UI configuring methods) that
call many other methods. These configuration operations reveal a less
harmful (and hardly avoidable) form of coupling because the depen-
dencies can be much easily traced and solved.

The detection strategy is composed of the following heuristics (see
Fig. 6.3):

AND
Intensive
Coupling

Method calls too many methods from
few unrelated classes

MAXNESTING > SHALLOW

Method has few nested
conditionals

Fig. 6.3. Intensive Coupling detection strategy.

1. Operation calls too many methods from a few unrelated classes.
The basic condition for a method or function to be considered as
having an Intensive Coupling is to call many methods belonging
to a few classes (Fig. 6.4). By “unrelated classes” we mean that
the provider classes are belonging to the the same class hierarchy
as the definition class of the invoking method. We distinguish two
cases:
a) Sometimes a function invokes many other methods (more than

our memory capacity) from different classes. Usually among
the provider classes there are two or three from which several
methods are invoked.

b) The other case is when the number of invoked methods does
not exceed our short-term memory capacity, but all the invoked
methods belong to only one or two classes. Thus, the number
of methods invoked from the same provider class is high.

Intensive Coupling: Example

37

124 6 Collaboration Disharmonies

Fig. 6.5. The class ClassDiagramLayouter is intensively coupled with a
few classes, especially ClassDiagramNode. The red classes are non-model
classes, i.e., belong to the Java library. The classes have been laid out ac-
cording to the invocation sequence: above ClassDiagramLayouter we place all
classes that use it, while below it are all classes whose methods get used,
i.e., invoked by its methods.

ally represent a problem, although some of the coupling relationships
seem to be very weak and probably do not require much work to be
cut off and decrease the couplings of ClassDiagramLayouter.

Intensive Coupling: Class Blueprint

38

6.3 Intensive Coupling 125

Fig. 6.6. The class ClassDiagramLayouter is intensively coupling with a few
classes, especially ClassDiagramNode.

In the case of an operation with Intensive Coupling the intensity of Refactoring
coupling is high, while the dispersion is low. This guarantees that
we will find one or more clusters of methods invoked from the same
(provider) class. Therefore, a first refactoring action is to try to de-
fine a new (more complex) service in the provider class and replace
the multiple calls with a single call to the newly defined method (see
Fig. 6.7).

Fig. 6.7. The essence of the refactoring solution in case of Intensive Coupling

If this cluster of methods invoked from the same class consists
mainly of lightweight methods, some of which are affected by Shot-
gun Surgery(133), then it is highly probable that the aforementioned

Dispersed Coupling

39

6.4 Dispersed Coupling 127

6.4 Dispersed Coupling

This disharmony reveals a complementary aspect of coupling than Description
the one described as Intensive Coupling(120). This is the case of an
operation which is excessively tied to many other operations in the
system, and additionally these provider methods that are dispersed
among many classes (see Fig. 6.8). In other words, this is the case
where a single operation communicates with an excessive number of
provider classes, whereby the communication with each of the classes
is not very intense i.e., the operation calls one or a few methods from
each class.

Fig. 6.8. Illustration of Dispersed Coupling

Operations, e.g., methods or standalone functions. Applies To

Dispersively coupled operations lead to undesired ripple effects, be- Impact

cause a change in an dispersively coupled method potentially leads
to changes in all the coupled and therefore dependent classes.

Dispersed Coupling: Detection Strategy

40

128 6 Collaboration Disharmonies

The detection rule is defined in the same terms as the the one definedDetection

for Intensive Coupling(120), with only one complementary difference:
we capture only those operations that have a high dispersion of their
coupling (Fig. 6.9). The detection strategy in detail is:

AND
Dispersed
Coupling

Operation calls a few methods from
each of a large number

of unrelated classes

MAXNESTING > SHALLOW

Operation has few nested
conditionals

Fig. 6.9. Dispersed Coupling detection strategy

Operation calls a few
methods from each of a large
number of unrelated classes

CINT > Short Memory Cap

Operation calls too many
methods

CDISP HALF

Calls are dispersed in
many classes

AND

Fig. 6.10. In Dispersed Coupling operation calls a few methods from each of
a large number of unrelated classes.

1. Operation calls a few methods from each of a large number
of unrelated classes. This term of the detection rules imposes
two conditions: an intensive coupling, i.e., the invocation of many
methods from other classes (CINT - Coupling Intensity), and a
large dispersion among classes of these invoked operations (CDISP
- Coupling Dispersion). The metrics used in this case are the same
as those already used in the context of detecting Intensive Cou-
pling(120).

128 6 Collaboration Disharmonies

The detection rule is defined in the same terms as the the one definedDetection

for Intensive Coupling(120), with only one complementary difference:
we capture only those operations that have a high dispersion of their
coupling (Fig. 6.9). The detection strategy in detail is:

AND
Dispersed
Coupling

Operation calls a few methods from
each of a large number

of unrelated classes

MAXNESTING > SHALLOW

Operation has few nested
conditionals

Fig. 6.9. Dispersed Coupling detection strategy

Operation calls a few
methods from each of a large
number of unrelated classes

CINT > Short Memory Cap

Operation calls too many
methods

CDISP HALF

Calls are dispersed in
many classes

AND

Fig. 6.10. In Dispersed Coupling operation calls a few methods from each of
a large number of unrelated classes.

1. Operation calls a few methods from each of a large number
of unrelated classes. This term of the detection rules imposes
two conditions: an intensive coupling, i.e., the invocation of many
methods from other classes (CINT - Coupling Intensity), and a
large dispersion among classes of these invoked operations (CDISP
- Coupling Dispersion). The metrics used in this case are the same
as those already used in the context of detecting Intensive Cou-
pling(120).

Dispersed Coupling: Example

41

6.4 Dispersed Coupling 129

2. Operation has few nested conditionals. Exactly as for Intensive
Coupling(120), we also set the condition that the calling operation
should have a non-trivial nesting level, to make sure that irrele-
vant cases (like initializer functions) are skipped.

Fig. 6.11. The class ActionOpenProject is coupled with many classes. The
red classes are non-model classes, i.e., belong to the Java library. The blue
edges represent invocations.

An interesting example of Dispersed Coupling is found in class Ac- Example
tionOpenProject. We see in Fig. 6.11 that the class is coupled with
many other classes. Even ignoring the calls to non-model classes (col-
ored in red) we still see that this methods of this class invoke meth-
ods located in many other classes, resulting in a great dispersion of
the invocations. Looking closer at the methods of ActionOpenProject
we discover that most of the coupling in this class is caused by two

Shotgun Surgery

42

6.5 Shotgun Surgery 133

6.5 Shotgun Surgery

Not only outgoing dependencies cause trouble, but also incoming Description
ones. This design disharmony means that a change in an opera-
tion implies many (small) changes to a lot of different operations and
classes [FBB 99] (see Fig. 6.13). This disharmony tackles the issue
of strong afferent (incoming) coupling and it regards not only the cou-
pling strength but also the coupling dispersion.

Fig. 6.13. Illustration of Shotgun Surgery

Operations, e.g., methods or functions. Applies To

An operation affected by Shotgun Surgery has many other design en- Impact

tities depending on it. Consequently, if a change occurs in such an
operation myriads of other methods and classes might need to change
as well. As a result, it is easy to miss a required change causing thus
maintenance problems.

Shotgun Surgery: Detection Strategy

43

134 6 Collaboration Disharmonies

We want to find the classes in which a change would significantly af-Detection

fect many other places in the system. In detecting the methods most
affected by this disharmony, we consider both the strength and the
dispersion of coupling. In contrast to Intensive Coupling(120) and Dis-
persed Coupling(127), here we are interested exclusively in incoming
dependencies caused by function calls. In order to reveal especially
those cases where dependencies are harder to trace, we will count
only those operations (and classes) that are neither belonging to the
same class nor to the same class hierarchy with the measured oper-
ation.

Shotgun Surgery

CM > Short Memory Cap

Operation is called by too many
other methods

CC > MANY

Incoming calls are from
many classes

AND

Fig. 6.14. Shotgun Surgery detection strategy

Based on all the considerations above, the detection technique is
now easy to describe (see Fig. 6.14). First, we pick up those functions
that have a strong change impact, and from these we keep only those
that also have a high dispersion of changes. The detection strategy in
detail is:

1. Operation is called by too many other operations. When a
change in the measured operation occurs we must fix all the other
operations that depend on it. If this exceeds our short-term mem-
ory capacity the risk of missing a dependency increases This jus-
tifies both the selection of the metric and of the threshold.
An alternative way to quantify the strength of incoming dependen-
cies is to count the number of calls instead of the number of callers
(like CM (Changing Methods) does). The metric called Weighted
Changing Method (WCM) defined it [Mar02a] does just that.

2. Incoming calls are from many classes. Using this metric and
this threshold has the following rationale: assuming that we have

Shotgun Surgery: Example

44

6.5 Shotgun Surgery 135

two operations, and that a change in each of them would affect 20
other operations, from these two, the one for which the 20 clients
are spread over more classes is worse than the other one. In other
words, if all dependencies were to come from methods of a few
classes then the potential changes that need to be operated on
these client methods would be more localized, reducing thus the
risk of missing a needed change. As a consequence, the mainte-
nance effort (and risk) involved in managing all changes would be
more reduced. Therefore, we use the CC (Changing Classes) met-
ric to quantify the dispersion of the changes, so that only those
Shotgun Surgery functions causing most maintenance problem are
detected.

Fig. 6.15. Project provides an impressive example of a class with several
methods affected by Shotgun Surgery(133). Due to these methods, Project is
coupled with 131 classes (ModelFacade has been elided from the screen-
shot). Furthermore, the class has cyclic invocation dependencies with Pro-
jectBrowser and CoreFactory. In the figure, the classes above Project depend
on it, while Project itself depends on (i.e., invokes methods of) the classes
below it.

In Fig. 6.15 we see an extreme case of Shotgun Surgery(133) that in- Example
volves several methods of class Project. The class is coupled with 131
classes (10% of ArgoUML) and has cyclic invocation dependencies
with the classes ProjectBrowser and CoreFactory (the second largest
class in the system). The classes above Project depend on it, while
Project itself depends on (i.e., invokes methods of) the classes below

Tool to Detect Collaboration Disharmonies

45

inCode
http://loose.upt.ro/incode/pmwiki.php/

http://loose.upt.ro/incode/pmwiki.php/
http://loose.upt.ro/incode/pmwiki.php/

More info on Detection Strategies

Object-Oriented Metrics in Practice
Michele Lanza and Radu Marinescu, Springer 2006
http://www.springer.com/computer/swe/book/
978-3-540-24429-5

46

http://www.springer.com/computer/swe/book/978-3-540-24429-5
http://www.springer.com/computer/swe/book/978-3-540-24429-5
http://www.springer.com/computer/swe/book/978-3-540-24429-5
http://www.springer.com/computer/swe/book/978-3-540-24429-5

Summary

The OO design principles help us:
As guidelines when designing flexible, maintainable and reusable
software

As standards when identifying the bad design

As laws to argue when doing code review

Keep the design of a system as simple, clean, and expressive as
possible

Don’t allow broken windows

Apply them in iterations (not to a big, up-front design)

Sometimes you have to make trade-offs

47

