Software Reengineering
P3: OO Design Principles
and Violations

Martin Pinzger
Delft University of Technology

Slides adapted from the presentation by Steve Zhang

fUDelft SE[{@)

Outline

Design Smells

Object-Oriented Design Principles

Conclusions

The Reengineering Life-Cycle

(1) requirement New
analysis Requirements

(3) problem
detection

(4) problem
resolution

PN

g\ Designs

(2) model
capture
5%% Code

Design Smells

The Odors of Rotting Software
Rigidity — The design is hard to change

Fragility — The design is easy to break
Immobility — The design is hard to reuse
Viscosity — It is hard to do the right thing
Needless complexity — Overdesign
Needless Repetition — Copy/paste
Opacity — Disorganized expression

.
The Broken Window Theory

A broken window will
trigger a building into a
smashed and abandoned
derelict

So does the software

Don’t live with the broken
window

S.0.L.1.D. Design Principles

.
S.0.L.1.D Design Principles

SRP — The Single Responsibility Principle
OCP - The Open-Closed Principle

LSP — The Liskov Substitution Principle
ISP — The Interface Segregation Principle

DIP — The Dependency Inversion Principle

N
SRP: The Single-Responsibility Principle

A class should have a single purpose and only one reason to
change

If a class has more than one responsibility, then the responsibilities
becomes coupled

SRP is one of the simplest of the principles, and the one of the
hardest to get right

SRP heuristics

Describe the primary responsibility in a single sentence
Group similar methods

Look at hidden methods (private, protected)

Many of them indicate that there is another class in the class tying to get
out

Look for decisions that can change (not “if-statements”)
They should go into separated classes

Look for internal relationships
Are certain variables used by some methods and not others?

Exercise: SRP

RuleParser

- current: String
- variables: HashMap
- currentPosition: int

+ evaluate(String rule) : int

- branchingExpression(Node left, Node right) : int
- causualExpression(Node left, Node right) : int

- variableExpression(Node node) : int

- valueExpression(Node node) : int

- nextTerm() : String

- hasMoreTerms() : boolean

+ addVariable(String name, int value)

10

Example: SRP (possible) solution

RuleEvaluator

+ evaluate(String rule)
+ addVariables(String, int)

< —— - - — =

SymbolTable

+ addVariable(String, int)

- - ->{ + parse(String rule) : Expression

TermTokenizer
+ nextTerm() : String
+ hasMoreTerms() : boolean

*

|
RuleParser

e —"
|
|
1
creates

~ |

~
|
=~ |

N V

{abstract}
Expression

+ evaluateWith(SymbolTable table)

1"

.
OCP: The Open-Closed Principle

Software entities(classes, modules, functions, etc.) should be
open for extension, but closed for modification

“Open for extension”

The behavior of the module can be extended (e.g., by subclassing)
“Closed for modification”

Extending the behavior of a module does not result in changes to the existing source code
or binary code of the module

12

.
Example: OCP - Strategy Pattern

Context <§ trategy s Strategy

Contextinterface() Algorithminterface()

A

ConcreteStrategyA ConcreteStrategyB ConcreteStrategyC

Algonthminterface() Algorithminterface() Algorithminterface()

OCP cannot be fully achieved
E.Q.,

.
OCP heuristics

Look for duplicated code

Look at the change history
Classes that frequently change together

Apply potential change scenarios
Which classes would be affected by the change?

14

.
LSP: Liskov Substitution Principle

Subtypes must be substitutable for their base types
LSP defines the OO inheritance principle

If a client uses a base class, then it should not differentiate the base class
from derived class

In terms of design by contract
Precondition equal or weaker

Must accept anything the base class could accept
Postcondition equal or stronger

Must not violate the post-condition of the base class

15

.
LSP violation example

public enum ShapeType {square, circle};
public class Shape {
public static void DrawShape(Shape s)
iIf(s.type == ShapeType.square)
(s as Square).Draw();
else if(s.type == ShapeType.circle)

public class Circle : Shape {

public void Draw() {/* draws the circle */}

}

public class Square : Shape{
public void Draw() {/* draws the square */}

ﬂ Violate OCP

Not

substitutable

16

Another LSP violation example

Rectangle

void g(Rectangle r)

{

r.setWidth(5); ...

r.setHeight(4);
if(r.getArea() |= 20)
throw new Exception("Bad area!"),

17

LSP heuristics

Check the contracts of base and sub classes
Every LSP violation is a violation of OCP but not vice versa

18

DIP: The Dependency Inversion Principle

High-level modules should not depend on low-level modules
Both should depend on abstractions

Abstractions should not depend on details
Details should depend on abstractions

DIP is at the very heart of framework design

19

.
A DIP example

Policy Layer ------------—--
v
Mechanism
vV
Utility Layer

Policy
«interface»
Policy Layer = Policy Service
-
: «interface»
Mechan Mechanism
Interface
0
Utility
Utility
Layer

20

DIP heuristics

Depend on abstractions
No variable should hold a reference to a concrete class

No class should derive from a concrete class

No method should override an implemented method of any of its base
classes

Heuristic is typically violated at least once
Somebody has to create the instances of the concrete classes

-> No reason to strictly follow this heuristic for classes that are concrete
but non-volatile

21

ISP: The Interface Segregation Principle

Clients should not be forced to depend on methods they do

not use
Design cohesive interfaces and avoid "fat" interfaces

The dependency of one class to another one should depend on the
smallest possible interface

The interfaces of the class can be broken up into groups of methods

Each group serves a different set of clients

22

B
An violation of ISP example

Transaction
{abstract}

+ Execute()

£

Deposit
Transaction

Withdrawal Transfer
Transaction Transaction

W

«interface»
]|

+ RequestDepositAmt
+ RequestWithdrawal Amt
+ RequestTransferAmt
+ InforminsufficientFunds

23

An ISP Violation example: solution

Transaction
{abstract}

+ Execute()

£

Deposit

Transaction

Withdrawal
Transaction

«interface»
Deposit Ul

+ RequestDepositAmt

S

Transfer
Transaction

«interface»
Withdrawal Ul

+ RequestWithdrawalAmt
+ InforminsufficientFunds

«interface»
Ul

+ RequestDepositAmt

+ RequestWithdrawlAmt
+ RequestTransferAmt

+ InforminsufficientFunds

24

ISP heuristics

Check classes with a high number of public methods
Group clients according to their calls of the public methods

Check for methods that frequently change together

25

LoD - Law of Demeter

Principle of Least Knowledge

Only talk to your immediate friends
Don’t talk to strangers

Write “shy” codes

Minimize coupling

26

LoD formal definition

A method M of an object O may only invoke the methods of
the following kinds of objects

O itself
M's parameters
Any objects created/instantiated within M

O's direct component objects

27

Example LoD

class Demeter {

public A a;

public int func() {
// do something

}

public void example(Arg arg) {
C ¢ = new C();
int f = func(); // functions belonging to itself
arg.invert(); // to passed parameters
a = new A();
a.setActive(); //to any objects it has created
c.print(); // to any held objects

28

LoD violation example

final String outputDir = ctxt.getOptions().getScratchDir().getAbsolutePath();

a.getB().getC().doSomething()

29

DRY - Don’t Repeat Yourself

Every piece of knowledge must have a single, unambiguous,
authoritative representation within a system

Following DRY will make software systems easier to
understand and maintain

30

More information on Design Principles

Agile Software Development: Principles Patterns, and Practices
Robert C. Martin, Prentice Hall, 2002

Design Disharmonies

is

God

£ "

L

Intensive Class
Coupling | | Jhas

i

' |Dispersed| : Brain
. i Class

Refused is | Tradition
Parent
Breaker
Bequest

|

has (partial) | Feature Data
Envy | uses Class

Is partially

Brain has
Method |

Signiﬁcant]

Duplication

Disharmonies

Disharmonies

Disharmonies

|dentity J { Collaboration } [Classiﬁcatinn]

32

Collaboration
Disharmonies

Collaboration Disharmonies

Limit collaboration intensity

Operations should collaborate (mainly unidirectional) with a limited
number of services provided by other classes

Limit collaboration extent

Operations (and consequently their classes) should collaborate with
operations from a limited number of other classes

Limit collaboration dispersion

An entity should collaborate closely only with a selected set of entities,
preferable located in the

same abstraction

same hierarchy

same package (or sub- system)

34

Intensive Coupling

Intensive Coupling: Detection Strategy

()

Operation calls too many
methods

(CINT > Short Memory Cap)
. J

- N AND
Class are "dispersed" in
few classes
(coisP<HALF) e \
. J : Method calls too many methods from
| few unrelated classes I
r VN B g
Operation calls more than Intensive
AND :
a few methods e ~ Coupling
Method has few nested
(CINT > FEW) conditionals
. y
p N AND (MAXNESTING > SHALLOW)
Calls are "dispersed" in N <
very few classes
(CDISP < AQUARTER)
- J

Intensive Coupling: Example

10
[/

/

. ClassDiagramLayouter

I ClassDiagramEdge

ClassDiagramModelElementFactory

ClassDiagramNode

ModelFacade 37

Intensive Coupling: Class Blueprint

ClassDiagram

_ayouter

T

111 ¢
i — 7
d____.;'_::-" .-__"" - Y | |
____.----'_'_-_-_.d__.-' .-':;'._.__.-r""- E"‘_ | !.:
e
- - s i
- '---_..-- "'"_;_/_.-;5—’/ A 4 Vi “;F "t'?""!&‘!!
T S VI RS
- 7 o A - ;
.-"'.. -~ '
Iy p . .
.;-' y
A
A
A

|

ClassDiagramEdge

}|ClassDiagramNode

[,

38

.
Dispersed Coupling

Provider1

Provider6

39

Dispersed Coupling: Detection Strategy

r

N
Operation calls too many

methods

(CINT > Short Memory Cap)
. J

s

N
Calls are dispersed in

many classes

(CDISP = HALF)

\

|
: each of a large number —
‘ of unrelated classes '

Operation has few nested

conditionals

(MAXNESTING > SHALLOW)
. J

AND

Dispersed
Coupling

J

40

.
Dispersed Coupling: Example

ActionOpenProject

.
Shotgun Surgery

Provider1

Provider4 % Providers
£ o

42

Shotgun Surgery: Detection Strategy

r

other methods

Operation is called by too many

(CM > Short Memory Cap

)

.

J

-
Incoming calls are from

many classes

(CC > MANY

~

AND |

_

f
L

Shotgun SurgeryJ

43

Shotgun Surgery: Example

T N \ T 0 > =

CoreFactory

Froject ProjectBrowser

/ ==

ul _"| "I:I"DDI'III

Tool to Detect Collaboration Disharmonies

inCode
http://loose.upt.ro/incode/pmwiki.php/

45

http://loose.upt.ro/incode/pmwiki.php/
http://loose.upt.ro/incode/pmwiki.php/

More info on Detection Strategies

Object-Oriented Metrics in Practice

Michele Lanza and Radu Marinescu, Springer 2006
http://www.springer.com/computer/swe/book/

978-3-540-24429-5

Object-Oriented
Metrics

In Practice

46

http://www.springer.com/computer/swe/book/978-3-540-24429-5
http://www.springer.com/computer/swe/book/978-3-540-24429-5
http://www.springer.com/computer/swe/book/978-3-540-24429-5
http://www.springer.com/computer/swe/book/978-3-540-24429-5

Summary

The OO design principles help us:

As guidelines when designing flexible, maintainable and reusable
software

As standards when identifying the bad design

As laws to argue when doing code review

Keep the design of a system as simple, clean, and expressive as
possible

Don’t allow broken windows
Apply them in iterations (not to a big, up-front design)

Sometimes you have to make trade-offs

47

