Software Reengineering
Testing & Refactoring

Martin Pinzger
Delft University of Technology

]
TU Delft

Outline

Legacy code dilemma

Testing patterns

Refactoring
Why, when, and how to refactor?

Refactoring examples

Conclusions

What we typically do in reengineering?

We are improving the software in some way:

Improve performance

Improve internal structure

As to make future feature requests easier
Improve technologies under the hood

New database, new transaction manager, ...

Keyword:
behavior preserving

In essence, the end-user experience remains the same

/Hey, version 3.0.I\
didn’t bring on any
changes! ®

< 4

What we (don’'t) want

Improve the
software
internally

IntrOduce 4[1’1 SOrry, we \
bugs in well don’t have any
working tests ©
software

NI

Strategies

Cover and
Modify

Edit and Pray

Regression tests? Great!
But not if they are at the application level

Unit testing is more efficient

The Legacy Code Dilemma

When we change code, we should have tests in place

To put tests in place, we often need to change code

More info on how to handle this dilemma in the next lecture
“Working Effectively with Legacy Code”

Testing patterns

Tests: Your Life Insurance

k Reduce risks posed by reengineering
- ——

- ' -l \)._'.

r.v..‘. e - ‘ - "

— e /
-

. . ‘\'.

\
\

.
L
O |
.

\ l
-

-

-

\\

‘\

Testing Patterns

. . Organize tests
Write Tests to Enable Evolution

Use a Testing
Manage tests ﬁ\ Framewor
Grow Your Test

Design tests
Base Incrementally

Test the Interface,

Record Business
Not the Implementation

Rules as Tests

Write Tests * Test Fuzzy features
to Understand ° Test Old Bugs

» Retest Persistent Problems

|
|
|
|
1
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1
|
|
1
|
\
1
|
|
|
\
\

§~~
—
——

> Regression Test
after Every Change

Write Tests to Enable Evolution

Problem: How do you minimize the risks of change?

Solution: Introduce automated, repeatable, stored tests

xUnit Tests

10

Example: JUnit Test Case

public class TestPerson {
private Person p;

@BeforeClass
public static void setUpBeforeClass() { ... }

@AfterClass
public static void tearDownAfterClass() { ... }

@Before
protected void setUp() throws Exception {

super.setUp();
p = new Person(“Huga Bimbo");

}

@After
protected void tearDown() throws Exception {

super.tearDown();

}

@Test
public void testGetName() {
assertEquals(“Name must be Huga Bimbo"”, p.getName(), “Huga Bimbo");

}

1"

Write Tests to Understand

Problem: How to decipher code without adequate tests or
documentation?

Solution: Encode your hypotheses as test cases
Exercise the code

Formalize your reverse-engineering hypotheses

Develop tests as a by-product

12

Grow Your Test Base Incrementally

Problem: When to start and when to stop writing tests?

Solution: Grow Your Test Base Incrementally
First test critical components

Business value, likely to change, etc.

Test bugs that have been reported

Keep a snapshot of old system

Run new tests against old system

13

Test the Interface

Problem: How do you protect your investment in tests?

Solution: Apply black-box testing
Test interfaces, not implementations

Be sure to exercise the boundaries
Test scenarios

Use tools to check for coverage
Beware:

Enabling testing will influence your design!

14

Other Testing Patterns

Retest Persistent Problems

Always tests these, even if you are making no changes to this part of the
system

Test Fuzzy Features
ldentify and write tests for ambiguous or ill-defined parts of the system

Test Old Bugs

Examine old problems reports, especially since the last stable release
— DelLano and Rising, 1998

15

Well-Designed Tests

Automation
Tests should run without human intervention

Persistence
Each test documents its test data, actions, and expected results

Repeatability

Tests can run after any change

Unit testing
Tests should be associated with software components

Independence

Each test should minimize its dependencies on other tests (avalanche
effects)

16

Unit vs. Integration Tests

A test is not a unit test if:
It talks to a database

It communicates across the network
It touches the file system

You have to do things to your environment to run it

e.g., change config files

Tests that do this are integration tests

17

How much do your tests cover?

& Java - CursorableLinkedList.java - Eclipse SDK

=10 %]

File Edit Source Refactor Mavigate Search Project Run Window Help

Iti~- e -3 -0- Q- | EHFCG- S -G - [@ | §@ B[& 3
Finished after 34,898 seconds = public boolean addill(int index, Collection c) { Alo
Runs: 1300913009 B Errors: 0 B Failures: 0 e i AT)
return false; —
_ } else if(size == index || size == 0) {
B Failures | % Hi H return addill (c):;
[| ierarc yl } else {
E]"' junit.framework. TestSuite I Listable succ = getListablelt (index):
E] j:JEEBitT.frirgewljtrr.TestSuite Listable pred = (null == succ) ? null : succ.prev():;
N estBagltils it = i -
[EE] org.apache.commons.collections. TestClos i;::_:i:i ;:smez ;t;:]er?tor fkz
org.apache.commons. collections. TestColle T : i
[EIE] TestBufferLils pred = insertlListable(pred,succ,it.next ()]
-] TestEnumerationUtils)
&)-E5) ora.apache.commons. collections, TestFact Ll
-) TestListUtils ;
&) TestMapUtils } v
E@ org.apache.commons, collections. TestPrec «| | _)IJ
[#-5] TestSetUtils
org.apache.commons.collections. TestTrar (I-Droblems Javadoc | Declaration | Console ﬂa Coverage 33\ = 0|
IEQ TestArrayStack TestAllPackages (31.10.2006 15:04:14) QD | % & = o8 - | B’E B~
-5 TestBeanMap
EEI org.apache.commons. collections. TestBina— Element | Coveragel Covered Lines| Total Lines | -
E@ TestBoundedFifoBuffer E]@ java - commons-collections = 79,5 % 10927 13738
EEI TestBoundedFifoBuffer2 E]BE} orqg.apache.commons.collections = 74,1 % 3842 5183
TestCursorableLinkedList] ArrayStack.java — 86,5 % 32 37
-5 TestDoubleOrderedMap 1J] Bagltls.java = T i 159
-] ora.apache.commons. collections, TestExte [J] BeanMap.java - 72,4 % 155 214
EE] TestFastArrayList m BinaryHeap.java = 87,6 % 127 145
EEI TestFastArrayList1 |J] BoundedFifoBuffer.java [] 93,2 % 32 a8
-] TestFastHashMap |J] BufferOverflowException.java = 55,6 % 5 9
EEI TestFastHashMap1 |J] BufferUnderflowException.java (] 88,9 % 3 9
: TestFastTreeMap m BufferUtils.java s] 30,8 % 4 13
[EIE] TestFastTreeMap1 = m ClosurelUtils.java = 93,9 % 31 33
| - | LlJ @ CollectionUtils. java] 92,4 % 293 317
m ComparatorUtils.java - 8,6 % 3 35
= Failure Trace 3 - [J] CursorableLinkedList.java = 854% 444 s20 ~|
[| | writable Smart Insert | 149 : 28

18

Debugging vs. Testing

Debugging
Sucks

&

lesting
Rocks

Refactoring

What is Refactoring?

“The process of changing a software system without altering

the external behavior of the code, yet improving its internal
structure.”

Which one is refactoring?
Fixing a bug
Adding threading to improve performance

Renaming method identifiers to improve readability

21

Refactoring Literature

REracTorING

IMPROVING THE DESIGN
OF EXISTING CODE

)
og

R EFACTORING
TO PATTERNS

MARTIN FOWLER

Wih contribatiens v Kent Beck, John Brant,
Willliam Opdy ke, s Don Roberts

serwesed vy Erich Gamma JOsHUA KERIEVSKY

Otject Technology Mlermabosal,

BRI T TR ERYELAN Y

T :)
5 v ,, 7
| BT ~; nr
RUMBAUCH ~ . P
= Forewords by Ralph Johnson and Martin Fowler

S Afterword by John Brant and Don Roberts

22

Why to Refactor?

Prevent “"design decay”

Clean up mess in the code

Simplify the code

Increase readability and understandability

Find bugs

23

When to Refactor?

OF Code CR(AF\L,.H'\{: WIFS/miMm*;—C

——
1 : | /J o
Lcode WTE cocle LA
REviIeW L‘/ review s hk\ p
> o
—. H -‘ We
[Yoe
|

(c) 2008 Focus Shift

24

When to Refactor?

Rule of Three

If code is replicated three times, it should be extracted into a new
procedure

When you add functionality

When you learn something about the code
When you fix a bug

When the code smells

-> "All the time”

25

When Not to Refactor?

When the tests are not passing

When you have impending deadlines
Cunningham'’s idea of unfinished refactoring as debt

26

How to Refactor? - Refactoring Workflow

1. Make sure your tests pass

2. Find some code that “smells”

3. Determine how to simplify this code

4. Make the simplifications

5. Run tests to ensure things still work correctly

6. Repeat the simplify/test cycle until the smell is gone

27

Refactorings

Composing Methods
Extract Method, Inline Method, ...

Moving Features Between Objects

Move Method, Move Field, Hide Delegate, ...

Organizing Data
Replace Data Value with Object, ...

Simplifying Conditional Expressions
Decompose Conditionals, ...

REracTorING

IMPROVING THE DESIGN
OF EXISTING CODE

MARTIN FOWLER

Wah contritations v Kent Beck, John Brant,
Willliam Opdy ke, s Don Roberts

rorwweed oy Erich Gamma
Otject Technology lemabossd .

COBEREA T TR RRTELAN Y

B BoocH |
 ELIASTN |
t RUNBATGH

el LD L L o

28

Code Smells (Fowler 1999)

Primitive Obsession

Data Class
Data
Data Clump
Temporary field Comments
Long method
Refused bequest Measured

Long class
Inappropriate intimacy\ Inheritance / k

Lazy class \
Iype EIIIbedded in name

Feature envy o } [__
I iate inti \Between classes Within a class | Names Uncommunicative name
nappropriate intimacy o \ .
Respons|b|l|ty4 \ Inconsistent names

Message chainSj
Middl
1ace man _ Dead code
Complexity /~ _ _
Divergent change “_ Speculative generality
Shotgun surgery

Parallel inheritance \ Accommodating change Magic number

hierarchies o Duplicated code
Duplication

Combinatorial explosion Alternative classes
with different interfaces

29

Refactorings (Fowler 1999)

Inline method
[Inline temp

/ Replace temp with query

e

Move method Composing Methods) Introduce explaining variable
y
Move field

Extract class

_ Split temporary variable

& Remove assignment to parameters

Inline class

Moving features between objects

Hide delegate Substitute algorithn
Remove middle manj Self encapsulate field

\Replace method with method object

Introduce foreign method Replace data value with object

Introduce local extensior

~N

/Change value to reference

/Change reference to value

Decompose conditional /Replace array with object

[Duplicate observed data

Consolidate conditional expressior

Change unidirectional association to bidirectionz

Consolidate duplicate conditional fragment:

Remove control flag Refactorlngs Organizing data) Change bidirectional association to unidirectione

Simplifying conditional expression

_ Replace magic number with symbolic constant

& Encapsulate field

Replace conditional with polymorphisn

Replace record with data class

\Replace type code with class
\Replace type code with subclasses

Introduce null object

Introduce assertion

replace nested conditional with guard causes}

\Replace type code with state/strategy
Pull up field Replace subclass with fields

Pull up method Rename method

Pull up contructor body /Add parameter
Extract subclass\

[Remove parameter

Extract superclass\ _ _ o
_ —\ Dealing with generalizatior
Extract interface

[Separate query from modifier

Parameterize method

Making method calls simpler J—
_ Replace parameter with explicit method

Collapse hierarchyj

Form template method _ Preserve whole object

Replace parameter with method

Replace inheritance with delegation/

Replace delegation with inheritance

&Replace error code with exception

Replace exception with test 30

Refactoring Examples

Smell 1: Duplicated Code

Extract Method
Gather duplicated code

Pull Up Field

Move to a common parent

Form Template Method
Gather similar parts, leaving holes

Extract Class
For unrelated classes, create a new class with functionality

32

Smell 2: Long Method

Extract Method
Extract related behavior

Replace Temp with Query

Remove temporaries when they obscure meaning

Introduce Parameter Object
Slim down parameter lists by making them into objects

Decompose Conditionals
Conditional and loops can be moved to their own methods

33

Example: Long Method

public double computePrice() {
double totalAmount = 0;
foreach (Rental each : rentals.elements()) {
double thisAmount = 0;
// comp. amounts for each line
switch (Ceach.getMovie().getPriceCode()) {
case Movie.REGULAR:
thisAmount += 2;
1f (each.getDaysRented() > 2)
thisAmount += (each.getDaysRented() - 2) * 1.5;
break;
case Movie.NEW_RELEASE:
thisAmount += each.getDaysRented() * 3;
break;

}

totalAmount += thisAmount;

}

return totalAmount;

34

Example: Apply Extract Method

public double computePrice() {
double totalAmount = 0;
foreach (Rental each : rentals.elements()) {
totalAmount += computePricePerRental(each);

}

return totalAmount;

}

public double computePricePerRental(Rental aRental) {
double thisAmount = 0;
switch (aRental.getMovie().getPriceCode()) {
case Movie.REGULAR:
thisAmount += 2;
1f (aRental.getDaysRented() > 2)
thisAmount += (aRental.getDaysRented() - 2) * 1.5;
break;
case Movie.NEW_RELEASE:
thisAmount += aRental.getDaysRented() * 3;
break;

}

return thisAmount;

35

Example: Apply Extract Method 2nd

public double computePrice() { ... }

public double computePriceForRental(Rental aRental) {
double thisAmount = 0;
switch (aRental.getMovie().getPriceCode()) {
case Movie.REGULAR:
thisAmount = computePriceRentalRegularMovie(aRental); break;
case Movie.NEW_RELEASE:
thisAmount = computePriceRentalNewRelease(aRental); break;

}

return thisAmount;

public double computePriceRentalRegularMovie(Rental aRental) {
double thisAmount = 2;
1f (aRental.getDaysRented() > 2)
thisAmount += (aRental.getDaysRented() - 2) * 1.5;
return thisAmount;

public double computePriceRentalNewRelease(Rental aRental) {
return aRental.getDaysRented() * 3;

36

Smell 3: Divergent Change

“If you find yourself repeatedly changing the same class then
there is probably something wrong with it.”

Extract Class
Group functionality commonly changed into a class

37

Smell 4: Feature Envy

“If a method seems more interested in a class other than the
class it actually is in.”

Move Method

Move the method to the desired class

Extract Method
If only part of the method shows the symptoms

38

Example: Feature Envy

public class CapitalStrategy..
public double capital(Loan loan) {
if (loan.getExpiry() == null && loan.getMaturity() != null) {
return loan.getCommitment() * loan.duration() * loan.riskFactor();

}
if (loan.getExpiry() != null &% loan.getMaturity() == null) {
1f (loan.getUnusedPercentage() != 1.0) {

return loan.getCommitment() * loan.getUnusedPercentage() *
loan.duration() * loan.riskFactor();

} else {
return (loan.outstandingRiskAmount() * loan.duration() * loan.riskFactor())

+ (loan.unusedRiskAmount() * loan.duration() * loan.unusedRiskFactor());

¥
¥

return 0.0;

39

Comments

Often are a sign of unclear code (smell)...

Not necessarily bad but may indicate areas where the code is
not as clear as it should be

Extract Method

Introduce Assertion

40

More Smells & Refactorings

Smell

Large Class

Refactorings

Extract Class, Extract Subclass, Extract Interface, Replace Data Value with
Obiject

Shotgun Surgery

Move Method, Move Field, Inline Class

Long Parameter List

Replace Parameter with Method, Introduct Parameter Object, Preserve
Whole Object

Data Class

Move Method, Encapsulate Field, Encapsulate Collection

41

Refactoring Exercise

Refactoring the Movie Rental Application

Download the source code from the Reengineering web-site
Import the Eclipse project
Refactor the “Bad Smells” that you find in the current release

Remember to add tests first!

43

Potential Solution?

Movie

-priceCode : int

+getCharge (days: int): double

A

Regular Movie

Childrens Movie

New Release Movie

+getCharge (days: int): double

+getCharge (days: int): double

+getCharge (days: int): double

44

Solution with State Pattern

Movie « 1 Price
>
+getCharge(days: int): double +getCharge(days: int): double
return]

price.getCharge (days)

AN

Regular Price Childrens Price New Release Price

+getCharge(days: int): double +getCharge(days: int): double +getCharge(days: int): double

Solution after Refactoring

Rental

Customer

-daysRented: int h

+getDaysRented(): int
+getCharge(): double
+getFrequentRenterPoints(): int

Movie

-price: Price

+statement()

+htmlStatement()
+getTotalCharge(): double
+getTotalFrequentRenterPoints(): int

Price

+getCharge(days: int): double
+getFrequentRenterPoints(days: int): int

+getCharge(days: int): double
+getFrequentRenterPoints(days: int): int

A

Regular Price

Childrens Price

New Release Price

+getCharge(days: int): double

+getCharge(days: int): double

+getCharge(days: int): double
+getFrequentRenterPoints(days: int): int

46

Problems with Refactoring

Taken too far

Refactoring can lead to incessant tinkering with the code, trying to make
it perfect

Refactoring code when the tests don’t work
Leads to potentially dangerous situations

Databases can be difficult to refactor

Refactoring published API can break client code

47

Why Developers are Reluctant to Refactor?

Lack of understanding
Short-term focus
Not paid for overhead tasks like refactoring

Fear of breaking current program

438

Rules of Thumb to Refactoring
Refactoring may slow down execution

But: “First do it, then do it right, then do it fast”
Clean first, then add new functionality

Do not meddle with things you do not understand to a large
extent

49

Summary

Refactoring is improving the source code without changing
the behavior of the system

Refactor all the time
Make sure you have tests in place

50

