
University of Zurich
Department of Informatics

Emanuel Giger1, Martin Pinzger2, Harald Gall1

1University of Zurich, Switzerland
2Delft University of Technology, The Netherlands

Comparing Fine-Grained Source Code
Changes And Code Churn For Bug
Prediction
Working Conference on Mining
Software Repositories 2011

Bug Prediction

• Many useful papers on building bug
prediction models

• Product measures, process measures,
organizational measures - or a
combination

• Process measures performed particularly
well

• Very popular: Revisions and Code Churn

Change Measures

• File Revisions

• Code Churn aka Lines added/deleted/
changed

• Both provided by Software
Repositories

• Various ways to measure them:
relative, consecutive, timeframes.....

Revisions are coarse
grained

There is more than just a file revision

Code Churn can be
imprecise

Regarding the type and the semantics
of source code changes

Renaming is an
example

• local variable: int limit = 65; to int speedLimit
= 65;

• public Point getXYCoordinates(){...} to

public Point get2DCoordinates(){...} and then

public 2DPoint get2DCoordinates(2DPoint)
{...}

• Each time the Versioning System will likely
report “1 line changed”

Fine Grained-Source
Code Changes (SCC)

• SCC leverage the implicit code
structure of the abstract syntax tree
(AST)

• SCC are extracted using a tree
differencing algorithm that compares
the ASTs of two revisions of a file1

1Beat Fluri, Michael Würsch, Martin Pinzger, Harald C. Gall, Change Distilling: Tree
Differencing for Fine-Grained Source Code Change Extraction, IEEE Transactions on
Software Engineering Vol. 33 (11), November 2007

SCC Example

THEN

MI

IF "balance > 0"

"withDraw(amount);"

Account.java 1.5

THEN

MI

IF

"balance > 0 && amount <= balance"

"withDraw(amount);"

ELSE

MI

notify();

Account.java 1.6

3xSCC: 1x condition change, 1x else-part insert, 1x invocation statement insert

Empirical Studies

• Study 1: Correlation of the number of
bugs with SCC and Code Churn on file
level

• Study 2: Can SCC be used to identify
bug-prone files? How do SCC
compare with Code Churn?

• Study 3: Can SCC be used to predict
the number of bugs in a file? How do
SCC compare with Code Churn?

Dataset

• 15 Eclipse Plugins

• ca. 850’000 fine-grained source code changes
(SCC)

• ca. 10’000 files

• ca. 9’700’000 lines modified (LM)

• ca. 9 years of development history

• and a lot of bugs

• Bug references in commit messages

Approach

study with the Eclipse projects. We discuss our findings in
Section 4 and threats to validity in Section 5. In Section 6,
we present related work and then draw our conclusions in
Section 7.

2. APPROACH
In this section, we describe the methods and tools we used

to extract and preprocess the data (see Figure 1). Basically,
we take into account three main pieces of information about
the history of a software system to assemble the dataset for
our experiments: (1) versioning data including lines modi-
fied (LM), (2) bug data, i.e., which files contained bugs and
how many of them (Bugs), and (3) fine-grained source code
changes (SCC).

4. Experiment

2. Bug Data

3. Source Code Changes (SCC)1.Versioning Data

CVS, SVN,
GIT

Evolizer
RHDB

Log Entries ChangeDistiller

Subsequent
Versions

Changes

#bug123

Message Bug

Support
Vector

Machine

1.1 1.2

AST
Comparison

Figure 1: Stepwise overview of the data extraction process.

1. Versioning Data. We use EVOLIZER [14] to access the ver-
sioning repositories , e.g., CVS, SVN, or GIT. They provide
log entries that contain information about revisions of files
that belong to a system. From the log entries we extract the
revision number (to identify the revisions of a file in correct
temporal order), the revision timestamp, the name of the de-
veloper who checked-in the new revision, and the commit
message. We then compute LM for a source file as the sum of
lines added, lines deleted, and lines changed per file revision.
2. Bug Data. Bug reports are stored in bug repositories such
as Bugzilla. Traditional bug tracking and versioning repos-
itories are not directly linked. We first establish these links
by searching references to reports within commit messages,
e.g.,”fix for 12023” or ”bug#23467”. Prior work used this
method and developed advanced matching patterns to catch
those references [10, 33, 39]. Again, we use EVOLIZER to au-
tomate this process. We take into account all references to
bug reports. Based on the links we then count the number of
bugs (Bugs) per file revision.
3. Fine-Grained Source Code Changes (SCC): Current ver-
sioning systems record changes solely on file level and tex-
tual basis, i.e., source files are treated as pure text files. In [11],
Fluri et al. showed that LM recorded by versioning systems
might not accurately reflect changes in the source code. For
instance, source formatting or license header updates gen-
erate additional LM although no source code entities were
changed; changing the name of a local variable and a method
likely result both in ”1 line changed” but are different modi-
fications. Fluri et al. developed a tree differencing algorithm
for fine-grained source code change extraction [13]. It allows
to track fine-grained source changes down to the level of

Table 1: Eclipse dataset used in this study.
Eclipse Project Files Rev. LM SCC Bugs Time
Compare 278 3’736 140’784 21’137 665 May01-Sep10
jFace 541 6’603 321582 25’314 1’591 Sep02-Sep10
JDT Debug 713 8’252 218’982 32’872 1’019 May01-July10
Resource 449 7’932 315’752 33’019 1’156 May01-Sep10
Runtime 391 5’585 243’863 30’554 844 May01-Jun10
Team Core 486 3’783 101’913 8’083 492 Nov01-Aug10
CVS Core 381 6’847 213’401 29’032 901 Nov01-Aug10
Debug Core 336 3’709 85’943 14’079 596 May01-Sep10
jFace Text 430 5’570 116’534 25’397 856 Sep02-Oct10
Update Core 595 8’496 251’434 36’151 532 Oct01-Jun10
Debug UI 1’954 18’862 444’061 81’836 3’120 May01-Oct10
JDT Debug UI 775 8’663 168’598 45’645 2’002 Nov01-Sep10
Help 598 3’658 66’743 12’170 243 May01-May10
JDT Core 1’705 63’038 2’814K 451’483 6’033 Jun01-Sep10
OSGI 748 9’866 335’253 56’238 1’411 Nov03-Oct10

single source code statements, e.g., method invocation state-
ments, between two versions of a program by comparing
their respective abstract syntax trees (AST). Each change then
represents a tree edit operation that is required to transform
one version of the AST into the other. The algorithm is imple-
mented in CHANGEDISTILLER [14] that pairwise compares
the ASTs between all direct subsequent revisions of each file.
Based on this information, we then count the number of dif-
ferent source code changes (SCC) per file revision.

The preprocessed data from step 1-3 is stored into the Re-
lease History Database (RHDB) [10]. From that data, we then
compute LM, SCC, and Bugs for each source file by aggregat-
ing the values over the given observation period.

3. EMPIRICAL STUDY
In this section, we present the empirical study that we per-

formed to investigate the hypotheses stated in Section 1. We
discuss the dataset, the statistical methods and machine learn-
ing algorithms we used, and report on the results and find-
ings of the experiments.

3.1 Dataset and Data Preparation
We performed our experiments on 15 plugins of the Eclipse

platform. Eclipse is a popular open source system that has
been studied extensively before [4, 27, 38, 39].

Table 1 gives an overview of the Eclipse dataset used in
this study with the number of unique *.java files (Files), the
total number of java file revisions (Rev.), the total number of
lines added, deleted, and changed (LM), the total number of
fine-grained source code changes (SCC), and the total num-
ber of bugs (Bugs) within the given time period (Time). Only
source code files, i.e., *.java, are considered.

After the data preparation step, we performed an initial
analysis of the extracted SCC. This analysis showed that there
are large differences of change type frequencies, which might
influence the results of our empirical study. For instance, the
change types Parent Class Delete, i.e., removing a super class
from a class declaration, or Removing Method Overridability,
i.e., adding the java keyword final to a method declaration,
are relatively rare change types. They constitute less than one
thousandth of all SCC in the entire study corpus. Whereas
one fourth of all SCC are Statement Insert changes, e.g., the in-
sertion of a new local variable declaration. We therefore ag-
gregate SCC according to their change type semantics into 7
categories of SCC for our further analysis. Table 2 shows the
resulting aggregated categories and their respective mean-
ings.

Study 1: Correlation

• +/-0.5 substantial

• +/-0.7 strong

Table 4: Non parametric Spearman rank correlation of

bugs, LM ,and SCC . * marks significant correlations at

α = 0.01. Larger values are printed bold.

Eclipse Project LM SCC

Compare 0.68∗ 0.76
∗

jFace 0.74
∗ 0.71∗

JDT Debug 0.62∗ 0.8
∗

Resource 0.75∗ 0.86
∗

Runtime 0.66∗ 0.79
∗

Team Core 0.15∗ 0.66
∗

CVS Core 0.60∗ 0.79
∗

Debug Core 0.63∗ 0.78
∗

jFace Text 0.75
∗ 0.74∗

Update Core 0.43∗ 0.62
∗

Debug UI 0.56∗ 0.81
∗

JDT Debug UI 0.80∗ 0.81
∗

Help 0.54
∗ 0.48∗

JDT Core 0.70∗ 0.74
∗

OSGI 0.70∗ 0.77
∗

Median 0.66 0.77

for JDT Core.
We used a Related Samples Wilcoxon Signed-Ranks Test on

the values of the columns in Table 4. The rationale is that (1)
we calculated both correlations for each project resulting in
a matched correlation pair per project and (2) we can relax
any assumption about the distribution of the values. The test
was significant at α = 0.01 rejecting the null hypothesis that
two medians are the same. Based on these results we accept
H 2—SCC do have a stronger correlation with bugs than code
churn based on LM .

3.4 Correlation Analysis of Change Types &
Bugs

For the correlation analysis in the previous Section 3.3 we
did not distinct between the different categories of the change
types. We treated them equally and related the total number
of SCC to bugs. On advantage of SCC over pure line based
code churn is that we can determine the exact change opera-
tion down to statement level and assign it to the source code
entity that actually changed. In this section we analyze the
correlation between bugs and the categories we defined in
Section 3.1. The goal is to see whether there are differences
in how certain change types correlate with bugs.

Table 5 shows the correlation between the different cate-
gories and bugs for each project. We counted for each file of
a project the number of changes within each category and
the number of bugs and related both numbers by correla-
tion. Regarding their mean the highest correlation with bugs
have stmt, func, and mDecl. They furthermore exhibit values
for some projects that are close or above 0.7 and are consid-
ered strong, e.g., func for Resource or JDT Core; mDecl for
Resource and JDT Core; stmt for JDT Debug UI and Debug
UI. oState and cond still have substantial correlation in aver-
age but their means are marginal above 0.5. cDecl and else

have means below 0.5. With some exceptions, e.g., Compare
they show many correlation values below 0.5. This indicates
that change types do correlate differently with bugs in our
dataset. A Related Samples Friedman Test was significant at
α = 0.05 rejecting the null hypothesis that the distribution of
the correlation values of SCC categories, i.e., rows in Table 5
are the same. The Friedman Test operates on the mean ranks
of related groups. We used this test because we repeatedly
measured the correlations of the different categories on the
same dataset, i.e., our related groups and because it does not

Table 5: Non parametric Spearman rank correlation of bugs

and categories of SCC . * marks significant correlations at

α = 0.01.
Eclipse Project cDecl oState func mDecl stmt cond else
Compare 0.54∗ 0.61∗ 0.67∗ 0.61∗ 0.66∗ 0.55∗ 0.52∗
jFace 0.41∗ 0.47∗ 0.57∗ 0.63∗ 0.66∗ 0.51∗ 0.48∗
Resource 0.49∗ 0.62∗ 0.7∗ 0.73∗ 0.67∗ 0.49∗ 0.46∗
Team Core 0.44∗ 0.43∗ 0.56∗ 0.52∗ 0.53∗ 0.36∗ 0.35∗
CVS Core 0.39∗ 0.62∗ 0.66∗ 0.57∗ 0.72∗ 0.58∗ 0.56∗
Debug Core 0.45∗ 0.55∗ 0.61∗ 0.51∗ 0.59∗ 0.45∗ 0.46∗
Runtime 0.47∗ 0.58∗ 0.66∗ 0.61∗ 0.66∗ 0.55∗ 0.45∗
JDT Debug 0.42∗ 0.45∗ 0.56∗ 0.55∗ 0.64∗ 0.46∗ 0.44∗
jFace Text 0.50∗ 0.55∗ 0.54∗ 0.64∗ 0.62∗ 0.59∗ 0.55∗
JDT Debug UI 0.46∗ 0.57∗ 0.62∗ 0.53∗ 0.74∗ 0.57∗ 0.54∗
Update Core 0.63∗ 0.4∗ 0.43∗ 0.51∗ 0.45∗ 0.38∗ 0.39∗
Debug UI 0.44∗ 0.50∗ 0.63∗ 0.60∗ 0.72∗ 0.54∗ 0.52∗
Help 0.37∗ 0.43∗ 0.42∗ 0.43∗ 0.44∗ 0.36∗ 0.41∗
OSGI 0.47∗ 0.6∗ 0.66∗ 0.65∗ 0.63∗ 0.57∗ 0.48∗
JDT Core 0.39∗ 0.6∗ 0.69∗ 0.70∗ 0.67∗ 0.62∗ 0.6∗

Mean 0.46 0.53 0.6 0.59 0.63 0.51 0.48

make any assumption about the distribution of the data and
the sample size.

A Related Samples Friedman Test is a global test that only
tests whether all of the groups differ. It does not tell anything
between which groups the difference occurs. However the
values in Table 5 show that when comparing pairwise some
means are closer than others. For instance func vs. mDecl and
func vs. cDecl. To test whether some pairwise groups differ
stronger than others or do not differ at all post-hoc tests are
required. We performed a Wilcoxon Test and Friedman Test on
each pair. Figure 2 shows the results of the pairwise post-
hoc tests. Dashed lines mean that both tests reject their H0,
i.e., the row values of those two change types do significantly
differ; a straight line means both tests retain their H0, i.e., the
row values of those change type do not significantly differ;
a dotted line means only one test is significant, and it is dif-
ficult to say whether the values of these rows differ signifi-
cantly.

When testing post-hoc several comparisons in the context
of the result of a global test–the afore Friedman Test–it is more
likely that we fall for a Type 1 Error when agreeing upon sig-
nificance. In this case either the significance probability must
be adjusted, i.e., raised or the α-level must be adjusted, i.e.,
lowered [8]. For the post-hoc tests in Figure 2 we adjusted the
α-level using the Bonferroni-Holm procedure [34]. In Figure 2
we can identify two groups where the categories are con-
nected with a straight line among each other: (1) else,cond,oState,
and cDecl, and (2) stmt, func, and mDecl. The correlation val-
ues of the change types within these groups do not differ
significantly in our dataset. These findings are of more in-
terest in the context of Table 2. Although func and mDecl

occur much less frequently than stmt they correlate evenly
with bugs. The mass of rather small and local statements
changes correlates as evenly as the changes of functionality
and of method declarations that occur relatively sparse. The
situation is different in the second group where all change
types occur with more or less the same relative low frequency
gigs �Mention/discuss partial correlation?� . We use the results

and insights of the correlation analysis in Section 3.5 and
Section 3.6 when we build prediction model to investigate
whether SCC and change types are adequate to predict bugs
in our dataset. gigs �Show some examples of added methods that
were later very buggy?�

Spearman rank
correlation
between Bugs and
LM, SCC (* =
significant
correlation at 0.01)

Study 1: Correlation

•What about the type of changes?

• There are large differences in the
frequencies of change types, i.e. how
often a certain change type occurs

•We used the following change type
categories: cDecl, func, oState, mDecl,
stmt, cond, else

Study 1: Correlation

Relative frequencies of SCC categories per Eclipse project,
plus their mean and variance over all selected projects.

Table 2: Categories of fine-grained source code changes

Category Description

cDecl
Aggregates all changes that alter the declaration of a class:
Modifier changes, class renaming, class API changes, par-
ent class changes, and changes in the ”implements list”.

oState Aggregates the insertion and deletion of object states of a
class, i.e., adding and removing fields.

func Aggregates the insertion and deletion of functionality of a
class, i.e., adding and removing methods.

mDecl

Aggregates all changes that alter the declaration of a
method: Modifier changes, method renaming, method API
changes, return type changes, and changes of the parame-
ter list.

stmt Aggregates all changes that modify executable statements,
e.g., insertion or deletion of statements.

cond Aggregates all changes that alter condition expressions in
control structures.

else Aggregates the insertion and deletion of else-parts.

Table 3: Relative frequencies of SCC categories per Eclipse

project, plus their mean and variance over all selected

projects.

Eclipse Project cDecl oState func mDecl stmt cond else
Compare 0.01 0.06 0.08 0.05 0.74 0.03 0.03
jFace 0.02 0.04 0.08 0.11 0.70 0.02 0.03
JDT Debug 0.02 0.06 0.08 0.10 0.70 0.02 0.02
Resource 0.01 0.04 0.02 0.11 0.77 0.03 0.02
Runtime 0.01 0.05 0.07 0.10 0.73 0.03 0.01
Team Core 0.05 0.04 0.13 0.17 0.57 0.02 0.02
CVS Core 0.01 0.04 0.10 0.07 0.73 0.02 0.03
Debug Core 0.04 0.07 0.02 0.13 0.69 0.02 0.03
jFace Text 0.04 0.03 0.06 0.11 0.70 0.03 0.03
Update Core 0.02 0.04 0.07 0.09 0.74 0.02 0.02
Debug UI 0.02 0.06 0.09 0.07 0.70 0.03 0.03
JDT Debug UI 0.01 0.07 0.07 0.05 0.75 0.02 0.03
Help 0.02 0.05 0.08 0.07 0.73 0.02 0.03
JDT Core 0.00 0.03 0.03 0.05 0.80 0.05 0.04
OSGI 0.03 0.04 0.06 0.11 0.71 0.03 0.02
Mean 0.02 0.05 0.07 0.09 0.72 0.03 0.03
Variance 0.000 0.000 0.001 0.001 0.003 0.000 0.000

Some change types defined in [11] such as the ones that
change the declaration of an attribute are left out in our anal-
ysis as their total frequency is below 0.8%. The complete list
of all change types, their meanings and their contexts can be
found in [11].

Table 3 shows the relative frequencies of each category of
SCC per Eclipse project, plus their mean and variance over
all selected projects. Looking at the mean values listed in
the second last row of the table, we can see that 70% of all
changes are stmt changes. These are relatively small changes
and affect only single statements. Changes that affect the ex-
isting control flow structures, i.e., cond and else, constitute
only about 6% on average. While these changes might af-
fect the behavior of the code, their impact is locally limited
to their proximate context and blocks. They ideally do not in-
duce changes at other locations in the source code. cDecl, oS-
tate, func, and mDecl represent about one fourth of all changes
in total. They change the interface of a class or a method
and do—except when adding a field or a method—require a
change in the dependent classes and methods. The impact
of these changes is according to the given access modifiers;
within the same class or package (private or default) or
external code (protected or public).

The values in Table 3 show small variances and relatively
narrow confidence intervals among the categories across all

Table 4: Spearman rank correlation between SCC cate-

gories (*marks significant correlations at α = 0.01.)

cDecl oState func mDecl stmt cond else
cDecl 1.00∗ 0.33∗ 0.42∗ 0.49∗ 0.23∗ 0.21∗ 0.21∗
oState 1.00∗ 0.65∗ 0.53∗ 0.62∗ 0.51∗ 0.51∗
func 1.00∗ 0.67∗ 0.66∗ 0.53∗ 0.53∗
mDecl 1.00∗ 0.59∗ 0.49∗ 0.48∗
stmt 1.00∗ 0.71∗ 0.7∗
cond 1.00∗ 0.67∗
else 1.00∗

projects. This is an interesting observation as these Eclipse
projects do vary in terms of file size and changes (see Table 1).

3.2 Correlation of SCC Categories
We first performed a correlation analysis between the dif-

ferent SCC categories of all source files of the selected projects.
We use the Spearman rank correlation because it makes no
assumptions about the distributions, variances and the type
of relationship. It compares the ordered ranks of the vari-
ables to measure a monotonic relationship. This makes Spear-
man more robust than Pearson correlation, which is restricted
to measure the strength of a linear association between two
normal distributed variables [8]. Spearman values of +1 and
-1 indicate a high positive or negative correlation, whereas 0
tells that the variables do not correlate at all. Values greater
than +0.5 and lower than -0.5 are considered to be substan-
tial; values greater than +0.7 and lower than -0.7 are consid-
ered to be strong correlations [31].

Table 4 lists the results. Some facts can be read from the
values: cDecl does neither have substantial nor strong cor-
relation with any of the other change types. oState has its
highest correlation with func. func has approximately equal
high correlations with oState, mDecl, and stmt. The strongest
correlations are between stmt, cond, and else with 0.71, 0.7,
and 0.67.

While this correlation analysis helps to gain knowledge
about the nature and relation of change type categories it
mainly reveals multicollinearity between those categories that
we have to address when building regression models. A
causal interpretation of the correlation values is tedious and
must be dealt with caution. Some correlations make sense
and could be explained using common knowledge about pro-
gramming. For instance, the strong correlations between stmt,
cond, and else can be explained that often local variables are
affected when existing control structures are changed. This
is because they might are moved into a new else-part or be-
cause a new local variable is needed to handle the different
conditions. In [12], Fluri et al. attempt to find an expla-
nation why certain change types occur more frequently to-
gether than others, i.e., why they correlate.

3.3 Correlation of Bugs, LM, and SCC
H 1 formulated in Section 1 aims at analyzing the correla-

tion between Bugs, LM, and SCC (on the level of source files).
It serves two purposes: (1) We analyze whether there is a sig-
nificant correlation between SCC and Bugs. A significant cor-
relation is a precondition for any further analysis and predic-
tion model. (2) Prior work reported on the positive relation
between Bugs an LM. We explore the extent to which SCC
has a stronger correlation with Bugs than LM. We apply the
Spearman rank correlation to each selected Eclipse project to
investigate H 1.

Study 1: Correlation

Spearman rank correlation between Bugs and SCC
categories per Eclipse project (* = correlation at 0.01)

Table 5: Spearman rank correlation between Bugs and LM,

SCC, and SCC categories (*marks significant correlations at

α = 0.01).

Eclipse Project LM SCC cDecl oState func mDecl stmt cond else
Compare 0.68∗ 0.76

∗ 0.54∗ 0.61∗ 0.67∗ 0.61∗ 0.66∗ 0.55∗ 0.52∗
jFace 0.74

∗ 0.71∗ 0.41∗ 0.47∗ 0.57∗ 0.63∗ 0.66∗ 0.51∗ 0.48∗
Resource 0.75∗ 0.86

∗ 0.49∗ 0.62∗ 0.7∗ 0.73∗ 0.67∗ 0.49∗ 0.46∗
Team Core 0.15∗ 0.66

∗ 0.44∗ 0.43∗ 0.56∗ 0.52∗ 0.53∗ 0.36∗ 0.35∗
CVS Core 0.60∗ 0.79

∗ 0.39∗ 0.62∗ 0.66∗ 0.57∗ 0.72∗ 0.58∗ 0.56∗
Debug Core 0.63∗ 0.78

∗ 0.45∗ 0.55∗ 0.61∗ 0.51∗ 0.59∗ 0.45∗ 0.46∗
Runtime 0.66∗ 0.79

∗ 0.47∗ 0.58∗ 0.66∗ 0.61∗ 0.66∗ 0.55∗ 0.45∗
JDT Debug 0.62∗ 0.80

∗ 0.42∗ 0.45∗ 0.56∗ 0.55∗ 0.64∗ 0.46∗ 0.44∗
jFace Text 0.75

∗ 0.74∗ 0.50∗ 0.55∗ 0.54∗ 0.64∗ 0.62∗ 0.59∗ 0.55∗
JDT Debug UI 0.80∗ 0.81

∗ 0.46∗ 0.57∗ 0.62∗ 0.53∗ 0.74∗ 0.57∗ 0.54∗
Update Core 0.43∗ 0.62

∗ 0.63∗ 0.4∗ 0.43∗ 0.51∗ 0.45∗ 0.38∗ 0.39∗
Debug UI 0.56∗ 0.81

∗ 0.44∗ 0.50∗ 0.63∗ 0.60∗ 0.72∗ 0.54∗ 0.52∗
Help 0.54

∗ 0.48∗ 0.37∗ 0.43∗ 0.42∗ 0.43∗ 0.44∗ 0.36∗ 0.41∗
JDT Core 0.70∗ 0.74

∗ 0.39∗ 0.6∗ 0.69∗ 0.70∗ 0.67∗ 0.62∗ 0.6∗
OSGI 0.70∗ 0.77

∗ 0.47∗ 0.6∗ 0.66∗ 0.65∗ 0.63∗ 0.57∗ 0.48∗

Mean 0.62 0.74 0.46 0.53 0.6 0.59 0.63 0.51 0.48
Median 0.66 0.77 0.45 0.55 0.62 0.60 0.66 0.54 0.48

Table 5 lists the results of the correlation analysis per project.
The second and third columns on the left hand side show
the correlation values between Bugs and LM, and total SCC.
The values for LM show that except for two projects all cor-
relations are at least substantial, some are even strong. The
mean of the correlation is 0.62 and the median is 0.66. This
indicates that there is a substantial, observable positive cor-
relation between LM and bugs meaning that an increase in
LM leads to an increase in bugs in a source file. This result
confirms previous research presented in [15, 25, 27].

The values in the third column show that all correlations
for SCC are positive and most of them are strong. The mean
of the correlation is 0.74 and the median is 0.77. Some Eclipse
projects show correlation values of 0.8 and higher. Two val-
ues are below 0.7 and only one is slightly lower than 0.5. All
values are statistically significant. This denotes an overall
strong correlation between Bugs and SCC that is even stronger
than between Bugs and LM. We applied a One Sample Wilcoxon
Signed-Ranks Test on the SCC correlation values against the
hypothesized limits of 0.5< (substantial) and 0.7< (strong).
They were significant at α = 0.05. Therefore we conclude
that there is a significant strong correlation between Bugs and
SCC.

We further compared the correlation values of LM and SCC
in Table 5 to test whether the observed difference is signifi-
cant. On average, the correlation between Bugs and SCC is
0.12 stronger than the correlation between Bugs and LM. In
particular, 12 out of 15 cases show a stronger correlation to-
wards SCC with an average difference of 0.16. In some cases
the differences are even more pronounced, e.g., 0.51 for Team
Core or 0.25 for Debug UI. Other projects experience smaller
differences such as 0.01 for JDT Debug UI and jFace, and 0.04
for JDT Core. Only in three cases the correlation of LM is
stronger. The largest difference is 0.06 for Eclipse Help.

We used a Related Samples Wilcoxon Signed-Ranks Test to test
the significance of the correlation differences between LM
and SCC. The rationale for such a test is that (1) we calculated
both correlations for each project resulting in a matched cor-
relation pair per project and (2) we can relax any assumption
about the distribution of the values. The test was significant
at α = 0.05 rejecting the null hypothesis that the two medi-
ans are the same. Based on this result we can accept H 1—
SCC does have a stronger correlation with Bugs than LM.

As part of investigating H 1, we also analyzed the correla-
tion between bugs and the SCC categories we have defined in
Table 2 to answer the question whether there are differences
in how change types correlate with bugs.

The columns 4–10 on the right hand side of Table 5 show
the correlations between the different categories and bugs for
each Eclipse project. Regarding their mean, the categories
stmt, func, and mDecl show the strongest correlation with
Bugs. For some projects their correlation values are close or
above 0.7, e.g., func for Resource or JDT Core; mDecl for Re-
source and JDT Core; stmt for JDT Debug UI and Debug UI.
oState and cond still have a substantial correlation with the
number of bugs indicated by an average correlation value of
0.53 and 0.51. cDecl and else have means below 0.5. This in-
dicates that SCC categories do correlate differently with the
number of bugs in our dataset.

To test whether this assumption holds, we first performed
a Related Samples Friedman Test. The result was significant at
α = 0.05, so we can reject the null hypothesis that the dis-
tribution of the correlation values of SCC categories, i.e., the
rows on the right hand side in Table 5 are the same. The Fried-
man Test operates on the mean ranks of related groups. We
used this test because we repeatedly measured the correla-
tions of the different categories on the same dataset, i.e., our
related groups, and because it does not make any assump-
tion about the distribution of the data and the sample size.

A Related Samples Friedman Test is a global test that only
tests whether all of the groups differ. It does not tell any-
thing between which groups the difference occurs. To test
whether some pairwise groups differ stronger than others or
do not differ at all post-hoc tests are required. We performed
a Wilcoxon Test and Friedman Test on each pair including α-
adjustment.

The results showed two groups of SCC categories whose
correlation values are not significantly different among each
other: (1) else, cond, oState, and cDecl, and (2) stmt, func, and
mDecl. The difference of correlation values between these
groups is significant.

In summary, we found strong positive correlation between
SCC and Bugs that is significantly stronger than the correla-
tion between LM and Bugs. This indicates that SCC exhibits
good predictive power, therefore we accepted H 1. Further-
more, we observed a difference in the correlation values be-
tween several SCC categories and Bugs.

3.4 Predicting Bug- & Not Bug-Prone Files
The goal of H 2 is to analyze how SCC performs compared

to LM when discriminating between bug-prone and not bug-
prone files in our dataset. We built models based on differ-
ent machine learning techniques (in the following also called
classifiers) and evaluated them with our Eclipse dataset.

Prior work states that some machine learning techniques
perform better than others. For instance, Lessman et al. found
out with an extended set of various classifiers that Random
Forest performs the best on a subset of the NASA Metrics
dataset [20]. But in return they state as well that performance
differences between classifiers are marginal and not neces-
sarily significant.

For that reason we used the following classifiers: Logis-
tic Regression (LReg), J48 (C 4.5 Decision Tree), RandomForest
(RFor), Bayesian Network (BNet) implemented by the WEKA
toolkit [35], Exhaustive CHAID, a Decision Tree based on chi
squared criterion by SPSS 18.0, Support Vector Machine (Lib-

Table 5: Spearman rank correlation between Bugs and LM,

SCC, and SCC categories (*marks significant correlations at

α = 0.01).

Eclipse Project LM SCC cDecl oState func mDecl stmt cond else
Compare 0.68∗ 0.76

∗ 0.54∗ 0.61∗ 0.67∗ 0.61∗ 0.66∗ 0.55∗ 0.52∗
jFace 0.74

∗ 0.71∗ 0.41∗ 0.47∗ 0.57∗ 0.63∗ 0.66∗ 0.51∗ 0.48∗
Resource 0.75∗ 0.86

∗ 0.49∗ 0.62∗ 0.7∗ 0.73∗ 0.67∗ 0.49∗ 0.46∗
Team Core 0.15∗ 0.66

∗ 0.44∗ 0.43∗ 0.56∗ 0.52∗ 0.53∗ 0.36∗ 0.35∗
CVS Core 0.60∗ 0.79

∗ 0.39∗ 0.62∗ 0.66∗ 0.57∗ 0.72∗ 0.58∗ 0.56∗
Debug Core 0.63∗ 0.78

∗ 0.45∗ 0.55∗ 0.61∗ 0.51∗ 0.59∗ 0.45∗ 0.46∗
Runtime 0.66∗ 0.79

∗ 0.47∗ 0.58∗ 0.66∗ 0.61∗ 0.66∗ 0.55∗ 0.45∗
JDT Debug 0.62∗ 0.80

∗ 0.42∗ 0.45∗ 0.56∗ 0.55∗ 0.64∗ 0.46∗ 0.44∗
jFace Text 0.75

∗ 0.74∗ 0.50∗ 0.55∗ 0.54∗ 0.64∗ 0.62∗ 0.59∗ 0.55∗
JDT Debug UI 0.80∗ 0.81

∗ 0.46∗ 0.57∗ 0.62∗ 0.53∗ 0.74∗ 0.57∗ 0.54∗
Update Core 0.43∗ 0.62

∗ 0.63∗ 0.4∗ 0.43∗ 0.51∗ 0.45∗ 0.38∗ 0.39∗
Debug UI 0.56∗ 0.81

∗ 0.44∗ 0.50∗ 0.63∗ 0.60∗ 0.72∗ 0.54∗ 0.52∗
Help 0.54

∗ 0.48∗ 0.37∗ 0.43∗ 0.42∗ 0.43∗ 0.44∗ 0.36∗ 0.41∗
JDT Core 0.70∗ 0.74

∗ 0.39∗ 0.6∗ 0.69∗ 0.70∗ 0.67∗ 0.62∗ 0.6∗
OSGI 0.70∗ 0.77

∗ 0.47∗ 0.6∗ 0.66∗ 0.65∗ 0.63∗ 0.57∗ 0.48∗

Mean 0.62 0.74 0.46 0.53 0.6 0.59 0.63 0.51 0.48
Median 0.66 0.77 0.45 0.55 0.62 0.60 0.66 0.54 0.48

Table 5 lists the results of the correlation analysis per project.
The second and third columns on the left hand side show
the correlation values between Bugs and LM, and total SCC.
The values for LM show that except for two projects all cor-
relations are at least substantial, some are even strong. The
mean of the correlation is 0.62 and the median is 0.66. This
indicates that there is a substantial, observable positive cor-
relation between LM and bugs meaning that an increase in
LM leads to an increase in bugs in a source file. This result
confirms previous research presented in [15, 25, 27].

The values in the third column show that all correlations
for SCC are positive and most of them are strong. The mean
of the correlation is 0.74 and the median is 0.77. Some Eclipse
projects show correlation values of 0.8 and higher. Two val-
ues are below 0.7 and only one is slightly lower than 0.5. All
values are statistically significant. This denotes an overall
strong correlation between Bugs and SCC that is even stronger
than between Bugs and LM. We applied a One Sample Wilcoxon
Signed-Ranks Test on the SCC correlation values against the
hypothesized limits of 0.5< (substantial) and 0.7< (strong).
They were significant at α = 0.05. Therefore we conclude
that there is a significant strong correlation between Bugs and
SCC.

We further compared the correlation values of LM and SCC
in Table 5 to test whether the observed difference is signifi-
cant. On average, the correlation between Bugs and SCC is
0.12 stronger than the correlation between Bugs and LM. In
particular, 12 out of 15 cases show a stronger correlation to-
wards SCC with an average difference of 0.16. In some cases
the differences are even more pronounced, e.g., 0.51 for Team
Core or 0.25 for Debug UI. Other projects experience smaller
differences such as 0.01 for JDT Debug UI and jFace, and 0.04
for JDT Core. Only in three cases the correlation of LM is
stronger. The largest difference is 0.06 for Eclipse Help.

We used a Related Samples Wilcoxon Signed-Ranks Test to test
the significance of the correlation differences between LM
and SCC. The rationale for such a test is that (1) we calculated
both correlations for each project resulting in a matched cor-
relation pair per project and (2) we can relax any assumption
about the distribution of the values. The test was significant
at α = 0.05 rejecting the null hypothesis that the two medi-
ans are the same. Based on this result we can accept H 1—
SCC does have a stronger correlation with Bugs than LM.

As part of investigating H 1, we also analyzed the correla-
tion between bugs and the SCC categories we have defined in
Table 2 to answer the question whether there are differences
in how change types correlate with bugs.

The columns 4–10 on the right hand side of Table 5 show
the correlations between the different categories and bugs for
each Eclipse project. Regarding their mean, the categories
stmt, func, and mDecl show the strongest correlation with
Bugs. For some projects their correlation values are close or
above 0.7, e.g., func for Resource or JDT Core; mDecl for Re-
source and JDT Core; stmt for JDT Debug UI and Debug UI.
oState and cond still have a substantial correlation with the
number of bugs indicated by an average correlation value of
0.53 and 0.51. cDecl and else have means below 0.5. This in-
dicates that SCC categories do correlate differently with the
number of bugs in our dataset.

To test whether this assumption holds, we first performed
a Related Samples Friedman Test. The result was significant at
α = 0.05, so we can reject the null hypothesis that the dis-
tribution of the correlation values of SCC categories, i.e., the
rows on the right hand side in Table 5 are the same. The Fried-
man Test operates on the mean ranks of related groups. We
used this test because we repeatedly measured the correla-
tions of the different categories on the same dataset, i.e., our
related groups, and because it does not make any assump-
tion about the distribution of the data and the sample size.

A Related Samples Friedman Test is a global test that only
tests whether all of the groups differ. It does not tell any-
thing between which groups the difference occurs. To test
whether some pairwise groups differ stronger than others or
do not differ at all post-hoc tests are required. We performed
a Wilcoxon Test and Friedman Test on each pair including α-
adjustment.

The results showed two groups of SCC categories whose
correlation values are not significantly different among each
other: (1) else, cond, oState, and cDecl, and (2) stmt, func, and
mDecl. The difference of correlation values between these
groups is significant.

In summary, we found strong positive correlation between
SCC and Bugs that is significantly stronger than the correla-
tion between LM and Bugs. This indicates that SCC exhibits
good predictive power, therefore we accepted H 1. Further-
more, we observed a difference in the correlation values be-
tween several SCC categories and Bugs.

3.4 Predicting Bug- & Not Bug-Prone Files
The goal of H 2 is to analyze how SCC performs compared

to LM when discriminating between bug-prone and not bug-
prone files in our dataset. We built models based on differ-
ent machine learning techniques (in the following also called
classifiers) and evaluated them with our Eclipse dataset.

Prior work states that some machine learning techniques
perform better than others. For instance, Lessman et al. found
out with an extended set of various classifiers that Random
Forest performs the best on a subset of the NASA Metrics
dataset [20]. But in return they state as well that performance
differences between classifiers are marginal and not neces-
sarily significant.

For that reason we used the following classifiers: Logis-
tic Regression (LReg), J48 (C 4.5 Decision Tree), RandomForest
(RFor), Bayesian Network (BNet) implemented by the WEKA
toolkit [35], Exhaustive CHAID, a Decision Tree based on chi
squared criterion by SPSS 18.0, Support Vector Machine (Lib-

Study 2: Bug Prone?

• Bug-prone vs not bug-prone

•A priori binning using the median

•Different binning cut points =
different prior probabilities

•Area under the curve (AUC)

Figure 2: Scatterplot between the number of bugs and

number of SCC on file level. Data points were obtained

for the entire project history.

3.5 Predicting Bug- & Not Bug-Prone Files
The goal of H 3 is to analyze if SCC can be used to dis-

criminate between bug-prone and not bug-prone files in our
dataset. We build models based on different learning tech-
niques. Prior work states some learners perform better than
others. For instance Lessman et al. found out with an ex-
tended set of various learners that Random Forest performs
the best on a subset of the NASA Metrics dataset. But in re-
turn they state as well that performance differences between
learners are marginal and not significant [20].

We used the following classification learners: Logistic Re-
gression (LogReg), J48 (C 4.5 Decision Tree), RandomForest (Rnd-
For), Bayesian Network (B-Net) implemented by the WEKA
toolkit [36], Exhaustive CHAID a Decision Tree based on chi
squared criterion by SPSS 18.0, Support Vector Machine (Lib-
SVM [7]), Naive Bayes Network (N-Bayes) and Neural Nets (NN)
both provided by the Rapid Miner toolkit [24]. The classifiers
calculate and assign a probability to a file if it is bug-prone or
not bug-prone.

For each Eclipse project we binned files into bug-prone and
not bug-prone using the median of the number of bugs per file
(#bugs):

bugClass =

�
not bug − prone : #bugs <= median

bug − prone : #bugs > median

When using the median as cut point the labeling of a file is
relative to how much bugs other files have in a project. There
exist several ways of binning files afore. They mainly vary in
that they result in different prior probabilities: For instance
Zimmerman et al. [40] and Bernstein et al. [4] labeled files as
bug-prone if they had at least one bug. When having heavily
skewed distributions this approach may lead to high a prior
probability towards a one class. Nagappan et al. [28] used a
statistical lower confidence bound. The different prior prob-
abilities make the use of accuracy as a performance measure
for classification difficult.

As proposed in [20, 23] we therefore use the area under
the receiver operating characteristic curve (AUC) as perfor-
mance measure. AUC is independent of prior probabilities
and therefore a robust measure to asses the performance and
accuracy of predictor models [4]. AUC can be seen as the
probability, that, when choosing randomly a bug-prone and

Table 6: AUC values of E 1 using logistic regression with

LM and SCC as predictors for bug-prone and a not bug-
prone files. Larger values are printed in bold.

Eclipse Project AUC LM AUC SCC
Compare 0.84 0.85

jFace 0.90 0.90
JDT Debug 0.83 0.95

Resource 0.87 0.93

Runtime 0.83 0.91

Team Core 0.62 0.87

CVS Core 0.80 0.90

Debug Core 0.86 0.94

jFace Text 0.87 0.87
Update Core 0.78 0.85

Debug UI 0.85 0.93

JDT Debug UI 0.90 0.91

Help 0.75 0.70
JDT Core 0.86 0.87

OSGI 0.88 0.88
Median 0.85 0.90

Overall 0.85 0.89

a not bug-prone file the trained model then assigns a higher
score to the bug-prone file [16].

We performed two bug-prone vs. not bug-prone classifica-
tion experiments: In experiment 1 (E 1) we used logistic re-
gression once with total number of LM and once with total
number of SCC as predictors. E 1 investigates H 3–SCC can
be used to discriminate between bug- and not bug-prone files–
and in addition whether SCC is a better predictor than code
churn based on LM .

Secondly in experiment 2 (E 2) we used the above men-
tioned classifiers and the number of each category of SCC
defined in Section 3.1 as predictors. E 2 investigates whether
change types are good predictors and if the additional type
information yields better results than E 1 where the type of a
change is neglected. In the following we discuss the results
of both experiments:
Experiment 1: Table 6 lists the AUC values of E 1 for each
project in our dataset. The models were trained using 10 fold
cross validation and the AUC values were computed when
reapplying a learned model on the dataset it was obtained
from. Overall denotes the model that was learned when merg-
ing all files of the projects into one larger dataset. SCC achieves
a very good performance with a median of 0.90–more than
half of the projects have AUC values equal or higher than
0.90. This means that logistic regression using SCC as predic-
tor ranks bug-prone files higher than not bug-prone ones with
a probability of 90%. Even Help having the lowest value is
still within the range of 0.7 what Lessman et al. call ”promis-
ing results” [20]. This low value is accompanied with the
smallest correlation of 0.48 of SCC in Table 4. The good per-
formance of logistic regression and SCC is confirmed by an
AUC value of 0.89 when learning from the entire dataset.
With a value of 0.004 AUCSCChas a low variance over all
projects indicating consistent models. Based on the results of
E 1 we accept H 3—SCC can be used to discriminate between
bug- and not bug-prone files.

With a median of 0.85 LM shows a lower performance than
SCC . Help is the only case where LM is a better predictor
than SCC . This not surprising as it is the project that yields
the largest difference in favor of LM in Table 4. In general the
correlation values in Table 4 reflect the picture given by the
AUC values. For instance jFace Text and JDT Debug UI that
exhibit similar correlations performed nearly equal. A Re-

Study 2: Bug Prone?

• Prediction Experiment 1:

• Logistic Regression with the number
of LM and SCC per file as predictors

• Logistic Regression = non linear
regression when dependent variable
is dichotomous

Study 2: Bug Prone?

Figure 2: Scatterplot between the number of bugs and

number of SCC on file level. Data points were obtained

for the entire project history.

3.5 Predicting Bug- & Not Bug-Prone Files
The goal of H 3 is to analyze if SCC can be used to dis-

criminate between bug-prone and not bug-prone files in our
dataset. We build models based on different learning tech-
niques. Prior work states some learners perform better than
others. For instance Lessman et al. found out with an ex-
tended set of various learners that Random Forest performs
the best on a subset of the NASA Metrics dataset. But in re-
turn they state as well that performance differences between
learners are marginal and not significant [20].

We used the following classification learners: Logistic Re-
gression (LogReg), J48 (C 4.5 Decision Tree), RandomForest (Rnd-
For), Bayesian Network (B-Net) implemented by the WEKA
toolkit [36], Exhaustive CHAID a Decision Tree based on chi
squared criterion by SPSS 18.0, Support Vector Machine (Lib-
SVM [7]), Naive Bayes Network (N-Bayes) and Neural Nets (NN)
both provided by the Rapid Miner toolkit [24]. The classifiers
calculate and assign a probability to a file if it is bug-prone or
not bug-prone.

For each Eclipse project we binned files into bug-prone and
not bug-prone using the median of the number of bugs per file
(#bugs):

bugClass =

�
not bug − prone : #bugs <= median

bug − prone : #bugs > median

When using the median as cut point the labeling of a file is
relative to how much bugs other files have in a project. There
exist several ways of binning files afore. They mainly vary in
that they result in different prior probabilities: For instance
Zimmerman et al. [40] and Bernstein et al. [4] labeled files as
bug-prone if they had at least one bug. When having heavily
skewed distributions this approach may lead to high a prior
probability towards a one class. Nagappan et al. [28] used a
statistical lower confidence bound. The different prior prob-
abilities make the use of accuracy as a performance measure
for classification difficult.

As proposed in [20, 23] we therefore use the area under
the receiver operating characteristic curve (AUC) as perfor-
mance measure. AUC is independent of prior probabilities
and therefore a robust measure to asses the performance and
accuracy of predictor models [4]. AUC can be seen as the
probability, that, when choosing randomly a bug-prone and

Table 6: AUC values of E 1 using logistic regression with

LM and SCC as predictors for bug-prone and a not bug-
prone files. Larger values are printed in bold.

Eclipse Project AUC LM AUC SCC
Compare 0.84 0.85

jFace 0.90 0.90
JDT Debug 0.83 0.95

Resource 0.87 0.93

Runtime 0.83 0.91

Team Core 0.62 0.87

CVS Core 0.80 0.90

Debug Core 0.86 0.94

jFace Text 0.87 0.87
Update Core 0.78 0.85

Debug UI 0.85 0.93

JDT Debug UI 0.90 0.91

Help 0.75 0.70
JDT Core 0.86 0.87

OSGI 0.88 0.88
Median 0.85 0.90

Overall 0.85 0.89

a not bug-prone file the trained model then assigns a higher
score to the bug-prone file [16].

We performed two bug-prone vs. not bug-prone classifica-
tion experiments: In experiment 1 (E 1) we used logistic re-
gression once with total number of LM and once with total
number of SCC as predictors. E 1 investigates H 3–SCC can
be used to discriminate between bug- and not bug-prone files–
and in addition whether SCC is a better predictor than code
churn based on LM .

Secondly in experiment 2 (E 2) we used the above men-
tioned classifiers and the number of each category of SCC
defined in Section 3.1 as predictors. E 2 investigates whether
change types are good predictors and if the additional type
information yields better results than E 1 where the type of a
change is neglected. In the following we discuss the results
of both experiments:
Experiment 1: Table 6 lists the AUC values of E 1 for each
project in our dataset. The models were trained using 10 fold
cross validation and the AUC values were computed when
reapplying a learned model on the dataset it was obtained
from. Overall denotes the model that was learned when merg-
ing all files of the projects into one larger dataset. SCC achieves
a very good performance with a median of 0.90–more than
half of the projects have AUC values equal or higher than
0.90. This means that logistic regression using SCC as predic-
tor ranks bug-prone files higher than not bug-prone ones with
a probability of 90%. Even Help having the lowest value is
still within the range of 0.7 what Lessman et al. call ”promis-
ing results” [20]. This low value is accompanied with the
smallest correlation of 0.48 of SCC in Table 4. The good per-
formance of logistic regression and SCC is confirmed by an
AUC value of 0.89 when learning from the entire dataset.
With a value of 0.004 AUCSCChas a low variance over all
projects indicating consistent models. Based on the results of
E 1 we accept H 3—SCC can be used to discriminate between
bug- and not bug-prone files.

With a median of 0.85 LM shows a lower performance than
SCC . Help is the only case where LM is a better predictor
than SCC . This not surprising as it is the project that yields
the largest difference in favor of LM in Table 4. In general the
correlation values in Table 4 reflect the picture given by the
AUC values. For instance jFace Text and JDT Debug UI that
exhibit similar correlations performed nearly equal. A Re-

AUC using logistic regression with
LM and SCC to classify source files
into bug- prone or not bug-prone.

Study 2: Bug Prone?

• Results of Prediction Experiment 1:

• LM and SCC are good predictor with
average AUC of 0.85 and 0.9

• Related Samples Wilcoxon Signed-Ranks
Test on the AUC values of LM and SCC was
significant at α = 0.01

• SCC has significantly higher AUC values in
our dataset

Study 2: Bug Prone?

• Prediction Experiment 2: Using change
types as predictors

• There are large differences in the
frequencies of change types, i.e. how often
certain change types occurs

• We used the following change type
categories: cDecl, func, oState, mDecl, stmt,
cond, else

• 8 different machine learning algorithms

Study 2: Bug Prone?

• Results of Prediction Experiment 2:

• Change type categories are good indicators of bug-
prone files.

• Some classifiers such as, e.g. SVM (avg. AUC of 0.88),
perform explicitly well (as possibly better as well)

• But statistical test show that the better performance
is not necessarily significant

• The knowledge of change types of categories does
not improve performance

Study 3: Number of
Bugs?

• Predicting the number of bugs in files
using LM and SCC

•What kind of function fits and
describes the relation of the number
of bugs with LM and SCC the best?

• Linear, Cubic,

Study 3: Number of
Bugs?

#SCC
40003000200010000

#B
ug
s

6 0

40

20

0

Page 1

Team Core

Study 3: Number of
Bugs?

•Non linear regression with asymptotic
model:

• f(bugs) = a1 + b2*eb3*SCC

•Using this function we model a
saturation effect

• This is similar to Logistic Regression

Study 3: Number of
Bugs?Table 8: Results of the nonlinear regression in terms of R

2

and Spearman correlation using LM and SCC as predictors.

Project R2
LM R2

SCC SpearmanLM SpearmanSCC

Compare 0.84 0.88 0.68 0.76

jFace 0.74 0.79 0.74 0.71
JDT Debug 0.69 0.68 0.62 0.8

Resource 0.81 0.85 0.75 0.86

Runtime 0.69 0.72 0.66 0.79

Team Core 0.26 0.53 0.15 0.66

CVS Core 0.76 0.83 0.62 0.79

Debug Core 0.88 0.92 0.63 0.78

Jface Text 0.83 0.89 0.75 0.74
Update Core 0.41 0.48 0.43 0.62

Debug UI 0.7 0.79 0.56 0.81

JDT Debug UI 0.82 0.82 0.8 0.81

Help 0.66 0.67 0.54 0.84

JDT Core 0.69 0.77 0.7 0.74

OSGI 0.51 0.8 0.74 0.77

Median 0.7 0.79 0.66 0.77

Overall 0.65 0.72 0.62 0.74

of the models, i.e., an accompanied increase/decrease of the
actual and the predicted number of bugs.

With an average R2
LM of 0.7, LM has less explanatory pow-

er compared to SCC using an asymptotic model. Except for
the case of JDT Debug UI having equal values, LM performs
lower than SCC for all projects including Overall. The Re-

lated Samples Wilcoxon Signed-Ranks Test on the R2 values of
LM and SCC in Table 8 was significant, denoting that the ob-
served differences in our dataset are significant.

To asses the validity of a regression model one must pay at-
tention to the distribution of the error terms. Figure 3 shows
two examples of fit plots with normalized residuals (y-axis)
and predicted values (x-axis) of our dataset: The plot of the
regression model of the Overall dataset on the left side and
the one of Debug Core having the highest R2

SCC value on
the right side. On the left side, one can spot a funnel which
is one of the ”archetypes” of residual plots and indicates that
the constance-variance assumption may be violated, i.e., the
variability of the residuals is larger for larger predicted val-
ues of SCC [19]. This is an example of a model that shows
an adequate performance, i.e., R2

SCC of 0.72, but where the
validity is questionable. On the right side, there is a first sign
of the funnel pattern but it is not as evident as on the left
side. The lower part of Figure 3 shows the corresponding his-
togram charts of the residuals. They are normally distributed
with a mean of 0.

Therefore, we accept H 3–SCC (using asymptotic nonlin-
ear regression) achieves better performance when predicting
the number of bugs within files than LM. However one must
be careful to investigate wether the models violate the as-
sumptions of the general regression model. We analyzed all
residual plots of our dataset and found that the constance-
variance assumption may be generally problematic, in par-
ticular when analyzing software measures and open source
systems that show highly skewed distributions. The other
two assumptions concerning the error terms, i.e., zero mean

and independence, are not violated. When using regression
strictly for descriptive and prediction purposes only, as it
is the case for our experiments, these assumptions are less
important, since the regression will still result in an unbi-
ased estimate between the dependent and independent vari-
able [19]. However, when inference based on the obtained
regression models is made, e.g., conclusions about the slope

Predicted Values (Overall)
250.00200.00150.00100.0050.00.00

nr
m.

 R
es

idu
als

1.50

1.00

.50

.00

- . 50

-1 .00

Predicted Values (Debug Core)
200.00150.00100.0050.00.00

nr
m.

 R
es

idu
als

1.00

.50

.00

- . 50

-1 .00

nrm. Residuals (Overall)
1.501.00.50.00- . 50-1 .00

6,000.0

5,000.0

4,000.0

3,000.0

2,000.0

1,000.0

.0

nrm. Residuals (Debug Core)
1.00.50.00- . 50-1 .00

200.0

150.0

100.0

50.0

.0

Figure 3: Fit plots of the Overall dataset (left) and Debug

Core (right) with normalized residuals on the y-axis and

the predicted values on the x-axis. Below are the corre-

sponding histograms of the residuals.

(β coefficients) or the significance of the entire model itself,
the assumptions must be verified.

3.6 Summary of Results
The results of our empirical study can be summarized as

follows:
SCC correlates strongly with Bugs . With an average Spear-
man rank correlation of 0.77, SCC has a strong correlation
with the number of bugs in our dataset. Statistical tests in-
dicated that the correlation of SCC and Bugs is significantly

higher than between LM and Bugs (accepted H 1).
SCC categories correlate differently with Bugs . Except for
cDecl all SCC categories defined in Section 3.1 correlate sub-
stantially with Bugs. A Friedman Test revealed that the cate-
gories have significantly different correlations. Post-hoc com-
parisons confirmed that the difference is mainly because of
two groups of categories: (1) stmt, func, and mDecl, and (2)
else, cond, oState, and cDecl. Within these groups the post-hoc
tests were not significant.
SCC is a strong predictor for classifying source files into

bug-prone and not bug-prone. Models built with logistic re-
gression and SCC as predictor rank bug-prone files higher than
not bug-prone with an average probability of 90%. They have
a significant better performance in terms of AUC than logis-
tic regression models built with LM as a predictor (accepted
H 2).

In a series of experiments with different classifiers using
SCC categories as independent variables, LibSVM yielded
the best performance—it was the best classifier for more than
half of the projects. LibSVM was closely followed by BNet,
RFor, NBayes, and NN. Decision tree learners resulted in a
significantly lower performance. Furthermore, using cate-
gories, e.g., func, rather than the total number of SCC did not
yield better performance.

Results of the nonlinear regression in terms of R2 and Spearman correlation using LM and
SCC as predictors.

Study 3: Number of
Bugs?

• Results:

• Adequate explanatory power

• Average R2: LM 0.7 vs. SCC 0.79

• Related Samples Wilcoxon Signed-Ranks Test on
the R2 values of LM and SCC was significant at α =
0.01

• SCC has a significantly higher R2 values in our
dataset

• Error terms?

Error Terms

Table 8: Results of the nonlinear regression in terms of R
2

and Spearman correlation using LM and SCC as predictors.

Project R2
LM R2

SCC SpearmanLM SpearmanSCC

Compare 0.84 0.88 0.68 0.76

jFace 0.74 0.79 0.74 0.71
JDT Debug 0.69 0.68 0.62 0.8

Resource 0.81 0.85 0.75 0.86

Runtime 0.69 0.72 0.66 0.79

Team Core 0.26 0.53 0.15 0.66

CVS Core 0.76 0.83 0.62 0.79

Debug Core 0.88 0.92 0.63 0.78

Jface Text 0.83 0.89 0.75 0.74
Update Core 0.41 0.48 0.43 0.62

Debug UI 0.7 0.79 0.56 0.81

JDT Debug UI 0.82 0.82 0.8 0.81

Help 0.66 0.67 0.54 0.84

JDT Core 0.69 0.77 0.7 0.74

OSGI 0.51 0.8 0.74 0.77

Median 0.7 0.79 0.66 0.77

Overall 0.65 0.72 0.62 0.74

of the models, i.e., an accompanied increase/decrease of the
actual and the predicted number of bugs.

With an average R2
LM of 0.7, LM has less explanatory pow-

er compared to SCC using an asymptotic model. Except for
the case of JDT Debug UI having equal values, LM performs
lower than SCC for all projects including Overall. The Re-

lated Samples Wilcoxon Signed-Ranks Test on the R2 values of
LM and SCC in Table 8 was significant, denoting that the ob-
served differences in our dataset are significant.

To asses the validity of a regression model one must pay at-
tention to the distribution of the error terms. Figure 3 shows
two examples of fit plots with normalized residuals (y-axis)
and predicted values (x-axis) of our dataset: The plot of the
regression model of the Overall dataset on the left side and
the one of Debug Core having the highest R2

SCC value on
the right side. On the left side, one can spot a funnel which
is one of the ”archetypes” of residual plots and indicates that
the constance-variance assumption may be violated, i.e., the
variability of the residuals is larger for larger predicted val-
ues of SCC [19]. This is an example of a model that shows
an adequate performance, i.e., R2

SCC of 0.72, but where the
validity is questionable. On the right side, there is a first sign
of the funnel pattern but it is not as evident as on the left
side. The lower part of Figure 3 shows the corresponding his-
togram charts of the residuals. They are normally distributed
with a mean of 0.

Therefore, we accept H 3–SCC (using asymptotic nonlin-
ear regression) achieves better performance when predicting
the number of bugs within files than LM. However one must
be careful to investigate wether the models violate the as-
sumptions of the general regression model. We analyzed all
residual plots of our dataset and found that the constance-
variance assumption may be generally problematic, in par-
ticular when analyzing software measures and open source
systems that show highly skewed distributions. The other
two assumptions concerning the error terms, i.e., zero mean

and independence, are not violated. When using regression
strictly for descriptive and prediction purposes only, as it
is the case for our experiments, these assumptions are less
important, since the regression will still result in an unbi-
ased estimate between the dependent and independent vari-
able [19]. However, when inference based on the obtained
regression models is made, e.g., conclusions about the slope

Predicted Values (Overall)
250.00200.00150.00100.0050.00.00

nr
m.

 R
es

idu
als

1.50

1.00

.50

.00

- . 50

-1 .00

Predicted Values (Debug Core)
200.00150.00100.0050.00.00

nr
m.

 R
es

idu
als

1.00

.50

.00

- . 50

-1 .00

nrm. Residuals (Overall)
1.501.00.50.00- . 50-1 .00

6,000.0

5,000.0

4,000.0

3,000.0

2,000.0

1,000.0

.0

nrm. Residuals (Debug Core)
1.00.50.00- . 50-1 .00

200.0

150.0

100.0

50.0

.0

Figure 3: Fit plots of the Overall dataset (left) and Debug

Core (right) with normalized residuals on the y-axis and

the predicted values on the x-axis. Below are the corre-

sponding histograms of the residuals.

(β coefficients) or the significance of the entire model itself,
the assumptions must be verified.

3.6 Summary of Results
The results of our empirical study can be summarized as

follows:
SCC correlates strongly with Bugs . With an average Spear-
man rank correlation of 0.77, SCC has a strong correlation
with the number of bugs in our dataset. Statistical tests in-
dicated that the correlation of SCC and Bugs is significantly

higher than between LM and Bugs (accepted H 1).
SCC categories correlate differently with Bugs . Except for
cDecl all SCC categories defined in Section 3.1 correlate sub-
stantially with Bugs. A Friedman Test revealed that the cate-
gories have significantly different correlations. Post-hoc com-
parisons confirmed that the difference is mainly because of
two groups of categories: (1) stmt, func, and mDecl, and (2)
else, cond, oState, and cDecl. Within these groups the post-hoc
tests were not significant.
SCC is a strong predictor for classifying source files into

bug-prone and not bug-prone. Models built with logistic re-
gression and SCC as predictor rank bug-prone files higher than
not bug-prone with an average probability of 90%. They have
a significant better performance in terms of AUC than logis-
tic regression models built with LM as a predictor (accepted
H 2).

In a series of experiments with different classifiers using
SCC categories as independent variables, LibSVM yielded
the best performance—it was the best classifier for more than
half of the projects. LibSVM was closely followed by BNet,
RFor, NBayes, and NN. Decision tree learners resulted in a
significantly lower performance. Furthermore, using cate-
gories, e.g., func, rather than the total number of SCC did not
yield better performance.

Study 3: Number of
Bugs?

•Asymptotic Model: Adequate Results

• Check regression assumptions

• Probably as good as it gets given the
data

• Segmented Regression?

Conclusions

• SCC is significant better than LM

• Advanced learners are better, but not
always significant

• Change types do not yield extra
discriminatory power

• Predicting the number of bugs is
possible to some extend - But: Be
careful!

Paper: Comparing Fine-Grained Source Code Changes And Code Churn For Bug
Prediction, E. Giger, M. Pinzger, and H. C. Gall, MSR 2011, pp. 83-92, ACM, IEEE CS
Press, 2011.

