
Software Wartung und Evolution
Teil 4: Software Evolution

Harald Gall
Institut für Informatik

Universität Zürich
http://seal.ifi.unizh.ch

2

Evolution: General Definition 1/2

! Evolution is the process of progressive change
over time in characteristics, attributes,
properties of some material or abstract, natural
or artificial, entity or system or of a sequence of
these
! Changes are progressive when they result in a

definable trend of, for example, increasing value,
growing precision or better fit to a changing domain
or context

! Changes are not by chance, incidental,
indeterministic, stochastic; there must be a trend

3

Evolution: General Definition 2/2

! Entities include objects or collections of objects (e.g.
population) such as natural species, societies, cities,
artefacts, concepts, theories, ideas or systems of
these

! Change process will, in general, be continual with
relatively slow rate of change, or discrete with
individual incremental changes, small relative to
entity as a whole

! Source: [Lehman and Ramil 2001]

4

Software Evolution

! Keine genormte Definition

! Nach Lehman/Ramil
! Software Evolution is the process of continual fixing,

adaptation, enhancement to maintain stakeholder
satisfaction

! In response to changes in domains, needs, expectations

! Nach Bennet/Rajlich
! Maintenance means general post-delivery activities

! Evolution refers to a particular phase in the staged
model where substantial changes are made to the
software

5

Software Evolution

! Nach Godfrey

! Evolution is what happens while you are busy

making other plans

! Maintenance is the planned set of tasks to effect

changes

! Evolution is what actually happens to software

6

Types of Programs

! Nach Lehman, Belady 1980, pp. 1060-1076

! S-type Programs („Specifiable“)

! Problem can be stated formally and completely

! Acceptance: Is the program correct according to its

specification?

! This software does not evolve

! A change to the specification defines a new problem, hence

a new program

7

Types of Programs

! P-type Programs („Problem-solving“)

! Imprecise statement of a real-world problem

! Acceptance: Is the program an acceptable
solution to the problem?

! This software is likely to evolve continuously
! Because solution is never perfect, and can be

improved

! Because the real-world changes and hence the
problem changes

8

Types of Programs

! E-type Programs („Embedded“)

! A system that becomes part of the world it
models

! Acceptance: Depends entirely on opinion and
judgement; criterion is the satisfaction of
stakeholder needs

! This software is inherently evolutionary
! Changes in the software and the world affect each

other

9

Types of Programs

10

Software Systeme als Feedback
Prozesse
! Der Entwicklungs- und Evolutionsprozess eines

Software Systems wird von Lehman als
! Multi-level

! Multi-loop

! Multi-agent

! Feedback System bezeichnet.

! Feedback technisch: Die Rückführung eines
Ausgangssignal als Eingangssignal in ein
System

! („Feedback: The return of a portion of the output, or
processed portion of the output, of a (usually active) device
to the input“)

11

Software Systeme als Feedback
Prozesse

12

13

Laws of Software Evolution

! In den späten sechziger Jahren untersuchen Lehman
und Belady die Release History Daten von IBM OS/360
mittels bestimmter Metriken und stoßen auf
Eigenschaften im Evolutionsprozess, die bei anderen
Systemen in späteren Untersuchungen ebenfalls
nachvollzogen werden können

! Diese Eigenschaften scheinen Gesetzmäßigkeiten zu
folgen und wurden als „Laws of Software Evolution“
postuliert

! Die „Laws of Software Evolution“ ergeben sich aus der
Beobachtung von E-type programs

14

Laws of Software Evolution

15

Laws of Software Evolution

! Warum „Gesetze“?

! Die entdeckten Phänomene der Evolution

werden als Gesetze bezeichnet, da sie

technologie- und prozessunabhängige

Mechanismen bezeichnen

16

Laws of Software Evolution

! Nach Lehman, Belady 1980, pp. 1061-1063 und
spätere Publikationen

! (1) Law of continuing change
! “A system that reflects some external reality

undergoes continuing change or becomes
progressively less useful

! The change process continues until it becomes more
economical to replace it by a new or restructured system.”

! (2) Law of increasing entropy (or: complexity)
! “The entropy of a system increases with time unless

specific work is executed to maintain or reduce it.”

17

Laws of Software Evolution

! (3) Fundamental law of software evolution

! Software evolution is self-regulating with statistically

determinable trends and invariants

! (4) Conservation of organisational stability

(invariant work rate)

! During the active live of a software system the

average effective global activity rate is roughly

constant

18

Laws of Software Evolution

! (5) Conservation of familiarity
! In general, the average incremental growth rate

(growth rate trend) tends to decline
! As an E-type system evolves all associated with it,

developers, sales personnel, users, for example, must
maintain mastery of its content and behaviour to achieve
satisfactory evolution. Excessive growth diminishes that
mastery.

! (6) Continuing growth
! The functional content of E-type systems must be

continually increased to maintain user satisfaction

19

Laws of Software Evolution

! (7) Declining quality

! The quality of E-type systems will appear to be

declining unless they are rigorously maintained and

adapted to operational environment changes

! (8) Feedback System

! E-type evolution processes constitute multi-level,

multi-loop, multi-agent feedback systems and must

be treated as such to achieve significant

improvement over any reasonable base

20

Lehman‘s Approach: Formal

! Lehman describes software evolution on a
formal level

! Based on observations
! Empirical generalisations are made

! They provide basis for axioms in a formal theory

! Possible inferences are proposed
! Derived from the formal models

! Basis for potential theorems in formal theory

! Try to fully prove theorems

21

Formal Models of
Software Evolution: Growth
! Inverse Square Model [Turski 1996]

! S1 = S1

! Si = Si-1 + e / (Si-1)
2

! S ... Size (often number of modules)

! i ... Release sequence number (1..n, n = max release nr.)

! e ... Model parameter

! Si and Si stand for actual and predicted size at release i

! Other model: Normalised size as a function of the

normalised work rate [Lehman 2001]

! Si / S1 = (Hi / H1)
1/g´ for i >= 1

! H ... Work rate as indirect effort indicator (e.g. elements handled)

! g´ ... Model parameter

22

Formal Models: An Example

! Next slide shows the normalised size as a

function of the normalised work rate
! size measured in number of modules

! work rate measure in modules handled

! For four industrially evolved systems

! Three different organisations

! Three different application domains

! Data taken from release data history

23

Formal Evolution Prediction

24

Formal Models: Use?

! Formal Models provide means for

! Evolution planning

! Simulation, visualisation, release planning

! Process Management and Control

! Long term prognosis

! Overall process improvement

! Tools

25

Research Areas in
Software Evolution
! The driving force guiding the work will be the search for

formally supported techniques:

! logic-based declarative description and reasoning techniques

! formal models for software evolution based on rewriting

systems

! software metrics

! visualisation techniques

! generation of design documents and source code

! extraction of design and analysis documentation

! migration to component-based and web-based systems

! the use of meta-models as a general integration technique

Analyzing Software Evolution
Using Release History Data

http://seal.ifi.unizh.ch/projects/

27

What is Software Evolution Analysis?

! Investigating the evolution of a software

system to identify potential shortcomings

in its architecture or logical structure.

! Structural shortcomings can then be

subject to reengineering or restructuring.

28

Motivation

change

history

29

Software Evolution Analysis

! Goal: learn from history about evolution of a system

! Inputs:

! Version information (e.g. CVS, SVN, ClearCase)

! Change information (author, date/time, size, messages, etc.)

! Problems:

! Reveal common change behavior of classes

! Identify logical coupling among classes

! Evaluate modules and the entire system

! Identify spots of design erosion, architectural decay, etc.

30

The QCR-approach

! Quantitative Analysis (QA)
! analyzes the change and growth rates of modules (classes)

across releases and provides outliers

! Change Sequence Analysis (CSA)
! identifies common change history of modules and provides

structural dependencies based on common change
sequences (e.g. <1,3,5,6,7,8>)

! Relation Analysis (RA)
! compares modules (classes) based on CVS change history

information and reveals module dependencies, ie. logical
couplings

! units of interest = classes

! change information = CVS data

[Gall et al. 97]

[Jazayeri 02]

[Gall, Krajewski 03,06,07]

[Hajek, Gall, Jazayeri 98]

[Riva, Gall, Jazayeri 99]

Quantitative Analysis

Analyzing quantitative aspects of

software evolution

32

Quantitative Evolution Analysis

! Goals:
! Identify potential shortcomings of a

Telecommunication Switching System (TSS) by
tracking its historical development

! Use database containing structural information about
20 releases of the TSS delivered over a period of 2
years

! Focus on macro-level:
! investigate only structural information about each release

(version numbers)

! no source code metrics at all

33

QA: Approach

! Approach:

! Observe software evolution via release
history

! Detect logical coupling via
! Change Sequence Analysis, and

! Change Report Analysis

! Visualize software release histories
using color and third dimension

34

Telecommunication Switching
System (TSS)

System

Subsystem A Subsystem B Subsystem C

Module a Module b Module c

Program 100 Program 200 Program 300

system level

subsystem level

module level

program level

35

The Release Database
! For each release stored:

! Entries for elements at system, subsystem,
module, and program level together with relations
among them

! Systems and programs are characterized by
version numbers

! Program version numbers are independent of the
system’s version number

! Changes result in incremented version number(s)

! Each system release consists of
! 8 subsystems, 47 to 49 modules, and

1500 to 2300 programs.

36

Software Evolution Observations

! Problem: extract useful information from the
PRDB to reason about the evolution of the TSS

! We focus on the following system properties:
! Size of system, subsystem, or module: number of

programs (as the module “unit”)

! Change rate: percentage of programs (identified by a
different version number)

! Growth rate: percentage of programs added (or
deleted) from one release to the next

! Evolution of whole system and particular
subsystems

37

TSS: System size over time

38

TSS: Newly added programs per
release

39

TSS: Change and growth rates

40

TSS: System Observations

! High growth rate
! Increased from initially 1499 programs to 2303 at the

end

! 53% increase in 21 months

! Findings
! The size of the system is growing linearly

! Between 2.00 and 5.00 and in 7.00 major activities

! Only a few added programs in 8.00

! The structure of the whole system has become stable

! Evolution in a satisfactory way?

41

TSS Subsystems / Change and
growth

320H

15729G

-2533F

88E

785D

19325C

1816B

1811A

Growth rate (%)Change rate (%)Subsystem

42

Evolution of Subsystem C
! Characteristics of Subsystem C:

! highest growth rate and

! one of the highest change rates among all

subsystems

! therefore most likely candidate for restructuring

43

Subsystem C: Sizes of modules

44

Subsystem C: Change rates of
modules

45

Interpretation of Data

! Development of the whole system:

! becomes stable over the twenty releases

! change and growth rates decrease as do the number

of added programs per release

! structure seems fine

! Development of subsystems (Subsystem C):

! the picture changes significantly!

! high growth and change rate (Modules B & C)

! similar names with only different endings

" copying and slightly modifying!

Change Sequence Analysis

Detection of Logical Coupling

47

Detection of Logical Coupling

! Change Sequence of a program <1 2 3 5 7 11>

! program changed in releases 1, 2, 3, 5, 7, and 11

! 5 changes

! Subsequences as contiguous parts

! <1 2 3>, <3 5 7>, etc.

! Changes are represented by a (sub-) sequence

! Identify potential “logical couplings” among

programs

48

Change Sequence Analysis

! Approach:

! compare change sequences of different modules

! identify patterns of change

! identify common “change sequences” (patterns)

! Result: potential logical couplings

49

F

A

D

E

H

B

C

G
2 changes

3 changes

4 changes

5 changes

8 changes

>9 changes

Coupling among subsystems

50

Coupling among sequences

S0-S30

S31-S59

S60-S74a

S75-S79

S80-S87

S89,S90,S92a

S91,S92

S94,S95

> S96

2 changes

3 changes

4 changes

6 changes

5 changes

7 changes

8 changes

9 changes

>9 changes

A

B

C

D

E

G

F

H

SUB1=< 1 2 4>

S5

S31
S60

S73

S58S42

S49

S59

S84

S64

S40

S67

51

Change Report Analysis

! Goal / Approach:

! verify logical coupling

! examine change reports of modules with the
same change sequence

! same reason for change defines logical
coupling

! Result: logical couplings among modules /
subsystems

52

Ver 2.4 — 96/03/12 10:10:07

TSS---PROGRAM CHANGE DESCRIPTION

ELEMENT NAME: Program 111 2.3 --> 2.4

CHANGED BY: John DOE

CHANGES as follows:

CHANGE NR: 1

CHANGE TYPE: B // bug fix

REFERENCE: BR 1443 // reference to a bug report number

ERROR CLASS: A // error class, i.e. operation in working state

DESCRIPTION: hanging of the circuits in environment xy.

CHANGE NR: 2

...

Example of a change report

53

Change Reports Analysis

54

Résumé

! Identified modules and programs that should

undergo restructuring / reengineering

! Detected potential logical coupling via change

sequences

! Stronger logical couplings via longer sequences

! Verified logical coupling via change reports

Visualizing Release Histories

56

Visualization

v. 1

time

v. 2

v. 3

! Structure of the system:
visualization of tree structure (2-D
and 3-D)

! Software attributes: color, region
filling

! Multiple releases: third dimension

57

The Database & Color Scale
Subsystem Level Module Level Program Level 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

AAA BBB AAAPRG 0 0 0 0 5 5 7 7 7 7 11 11 11 14 14 14 14 14 14 14

AAA BBB BBBPRG 0 0 0 0 5 5 7 7 7 7 11 11 11 14 14 14 14 14 14 14

AAA BBB CCCPRG 1 2 3 4 5 5 7 7 9 10 11 12 12 14 15 16 17 17 19 20

AAA BBB DDDPRG 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 17 17 17 17

AAA BBB EEEPRG 0 0 0 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 19 19

AAA BBB FFFPRG 0 0 0 4 5 5 7 7 9 10 11 12 12 14 15 16 17 18 19 20

AAA CCC 000PRG 1 1 1

AAA CCC 222PRG 1 2 2

AAA CCC 333PRG 1 1 1

AAA CCC 444PRG 1 1 1

AAA CCC 555PRG 1 2 2

AAA CCC 666PRG 1 1 1

AAA DDD XXXXPRG 1

AAA DDD YYYYPRG 1

AAA DDD ZZZZPRG 1

AAA DDD KKKKPRG 1

AAA DDD JJJJPRG 1

AAA DDD LLLLPRG 1

01234567891011121314151617181920

RSN

RSN

RSN

01234567891011121314151617181920

RSN

RSN

ABCDEFGH

TSS visualized

B C

D E F G

H

Relation Analysis

Finding Class Couplings via

Change Dependencies

64

Relation Analysis (RA)
! ideally, components could be changed independently

of each other, but …

! evolution of classes is compared to identify those that
were most frequently changed together

! comparison is based on author name, date and time
of the check-in of a particular change

! based on the strong code ownership in case study
and time window (4 minutes) for check-in

! as a result RA reveals logical coupling

! the number of common changes = strength of the
logical coupling

65

Case study: PACS
! A Picture Archiving and Communication System

(PACS)
! mission: medical pictures that doctors can view and

archive for diagnosis; supporting different kinds of
workstations:

! viewing-only

! additional diagnostic features allowing to change attributes of
images, mark particular regions, sort and arrange pictures in
sequences, annotate with information, etc.

! implemented in Java, 5.500 classes (~500.000 LOC)

! configuration files

! analysis period: April 2000 – July 2002, ie. 28 months

! vendor wants to support product families

Submodule 13.c.9

GUI

user inter-

action frame-

work

graphical

represen-

tation

logical

coupling

strength

> 8

classes

focal

point

Submodule 13.c.18

Printing framework
imaging

framework

printing

framework

user inter-

action frame-

work
GUI

threading

engine

“MVC” ?

Submodule 29.a.4

Storage media access

storage

media

access

protocol/format

translation

 29.a.4

 29.a.5

 29.a.2 29.a.7

29.a.5.

A

29.a.5.

B

29.a.4.

C

29.a.4.

E

29.a.4.

H

29.a.4.

I

29.a.4.

F

29.a.4.

G

29.a.4.

D 29.a.4.

K

29.a.7.

B

29.a.2.

A

coupling strength 85x

classes > 1000 LOC

internal „coupling“

+ external

change rate:

40%

symmetry !!!

Submodule 29.a.5

Storage media access

storage

media

access

protocol/format

translation

 13.c.23

 13.c.5

13.c.5.

H

13.c.5.

G

13.c.5.

E

13.c.5.

B

13.c.5.

N

13.c.5.

Q

13.c.5.

R

13.c.5.

C

13.c.5.

A

13.c.5.

L

13.c.5.

M

13.c.5.

O

13.c.5.

J

13.c.5.

K

13.c.5

I

13.c.5.

F

13.c.5.

D

13.c.5.

P

13.c.23

A

changes every

month

inheritance

hierarchy

change rate

 25%

change intensity

 80%

Submodule 13.c.5

Imaging framework

71

Résumé

! RA combines all levels of decomposition: from
classes to (sub-)modules through their CVS
change data

! RA reveals many couplings (internal and
external)

! Points to “bad smells”:
! spaghetti code, bad inheritance hierarchies, poorly

designed interfaces, god classes, etc.

! Visualization simplifies understanding and
navigation

! Domain knowledge an important ingredient for
interpretation

Populating a Release History
Database

Providing qualitative history data

for reasoning and visualization

73

Building a Release History DB

! 3 main sources:
! Modification reports (MR) $ CVS

! Problem reports (PR) $ Bugzilla

! program and patch information $ release packages

! Relevant MRs and PRs are filtered, validated
and stored in a Release History DB (RHDB)

! Problem: Identify change dependencies among
system parts

74

Version control data

! A release represents a snapshot of the CVS

repository for given software system

! release number of product;

! revision number of each file

! for every release there is a symbolic name

! branches as self-maintained lines of development

75

Case study: Mozilla

! Mozilla (www.mozilla.org)
! analysis period: 1999-2002

! 2.500 subdirectories

! Source code: ~ 36.000 files, > 2 MLOC

! CVS repository (revision information and
modification reports)

! > 180.000 bug reports

! > 430.000 modification reports

! Particular profiling data

! Online documentation: roadmap, release notes,
design documents

76

Example log-file from Mozilla source tree
RCS file: /cvsroot/mozilla/layout/html/style/src/nsCSSFrameConstructor.cpp,v

Working file: nsCSSFrameConstructor.cpp
head: 1.804

branch:

symbolic names:

 MOZILLA_1_3a_RELEASE: 1.800

 NETSCAPE_7_01_RTM_RELEASE: 1.727.2.17

 PHOENIX_0_5_RELEASE: 1.800
 ...
 RDF_19990305_BASE: 1.46

 RDF_19990305_BRANCH: 1.46.0.2

keyword substitution: kv

total revisions: 976; selected revisions: 976

description:

revision 1.804

date: 2002/12/13 20:13:16; author: doe@netscape.com; state: Exp; lines: +15 -47

Don’t set NS_BLOCK_SPACE_MGR and NS_BLOCK_WRAP_SIZE on ...

...

revision 1.638

date: 2001/09/29 02:20:52; author: doe@netscape.com; state: Exp; lines: +14 -4

branches: 1.638.4;

bug 94341 keep a separate pseudo frame list for a new pseudo block or inline frame ...

....

77

Bugzilla bug reports
! bug id: This ID is referenced in modification report. Since the IDs are

stored as free text in the CVS repository, the information can not be
reliably recovered from the change report database.

! bug status (status whiteboard): Describes the current state of the
bug and can be unconfirmed, assigned, resolved, etc.

! product: Determines the product which is affected by a bug.
Examples in Mozilla are Browser, MailNews, NSPR, Phoenix,
Chimera, etc.

! component: Determines which component is affected by a bug.
Examples for components in Mozilla are Java, JavaScrip,
Networking, Layout, etc.

! dependson: Declares which other bugs have to be fixed first, before
this bug can be fixed.

! blocks: List of bugs which are blocked by this bug.

! bug severity: blocker, critical, major, minor, trivial, enhancement

! target milestone: Possible target version when changes should be
merged into the main trunk.

78

Bugzilla snippet <bug_id> 100069

<bug_status> VERIFIED

<product> Browser

<version> other

<rep_platform> All

<assigned_to> doe@mozilla.org

<delta_ts> 20020116205154

<component> Printing: Xprint

<reporter> doe@mozilla.org

<target_milestone> mozilla0.9.6

<bug_severity> enhancement

<creation_ts> 2001-09-17 08:56

<qa_contact> doe@mozilla.org

<op_sys> Linux

<resolution> FIXED

<short_desc> Need infrastructure for new print dialog

<keywords> patch, review

<dependson> 106372

<blocks> 84947

<long_desc>

<who> doe@mozilla.org

<bug_when> 2001-09-17 08:56:29

</long_desc>

79

Populating a Release History DB

! Problem = re-establishment of links between
modification reports (MRs) and problem reports
(PRs) since no mechanisms provided by CVS

! We used the PR-IDs found in the MRs of CVS

! PR-IDs in MRs are detected using a set of
regular expressions. A match is rated
according to the confidence value:
high (h), medium (m), or low (l)
! confidence is considered high if expressions such

as <keyword><ID> can be detected

! confidence is considered low a six digit number just
appearing somewhere in the text of a modification
report without preceding keyword

80

Import process

81

RHDB schema
a first meta-

model !

82

Views on Mozilla evolution

! 50% of files have been modified in last quarter of observation

! although only 25% of files have been integrated

83

Mozilla evolution

time [RSN]

size [LOC]

84

Views on Mozilla evolution /2

modules

size

85

Résumé

! RHDB offers some characteristics for evolution
analysis
! linkage between changes and bugs (qualified)

! files logically coupled via changes and bugs

! branch/merge revision data

! data set as a basis for further analyses and
visualizations (e.g. MDS-view)

! a basis for data exchange among research groups in
the direction of a meta-model for release data

Multi-dimensional Visualization
of Evolution Data

Allowing to locate hidden feature

and module dependencies

87

Selection of Problem Reports

! Filtering those concerned with admin issues
! “license foo” (PR-ID #98089, 7961 referenced files)

! “printfs and console window info needs to be boiled
away for release builds” (#47207, 1135), or

! “Clean up SDK includes” (#166917, 888)

! “repackage resources into jar files” (#18433, 289)

! We used 255 as limit for the amount of bug
reports to be accepted
! no major or critical PRs filtered

88

Feature evolution
! Goal of the feature extraction process is to map

the abstract concept of features onto a concrete
set of files which implement a certain feature.

! … an observable and relatively closed behavior or
characteristic of a (software) part [16]

! We first created a single statically linked version
of Mozilla (v1.3a with the official freeze date 2002-
12-10)

! with profiling support enabled. From several test-runs
where the defined scenarios were executed, we
created the call graph information using the GNU
profiler.

! The call graph information again was used to
retrieve all functions and methods visited during
the execution of a single scenario.

! We mapped function and method names onto file
names.

! Next “feature data” were extracted from file name
mappings

89

Scenarios and features

90

Multidimensional scaling
! the goal is to map objects to points in such a way that

given dissimilarities are well approximated by the
distances
|| xi – xj || in a k-dimensional solution space.

! minimization of a stress function

! A problem report descriptor di of a problem report pi is
built of all artifacts an which refer to a particular
problem report via their modification reports mk

! di = {an | an R mk ^ mk R pi }

! distance data for every pair of problem report
descriptor <di, dj> are computed

! XGvis: a system for multidimensional scaling and
graph layout in any dimension (research.att.com)

91

Views

! feature-view focuses on the problem

report based coupling between the

selected features

! project-view depicts the reflection of

problem reports onto the structure of the

project-tree (ie. directory structure)

92

Feature View /1

93

Feature View /2

94

Project view – structure & features

95

Http, https,
html

96

All
features

97

core & features

98

Results
! Final visualization:

! all problem reports rated major or critical;

! number of PR references: >= 50

! resulting graph: 25 nodes, 215 edges via PRs

! Most critical subsystems are concerned with
visualization – that’s what we have seen via
MDS

! Nodes with highest density in severe PRs are
! .content (595 references)

! .layout.html (438); .layout.xul.base (220); .layout
(210)

! Spreading of edges
! .htmlparser 15; .xpfe 21

99

Conclusions
! Software Evolution Analysis

! integrates quantitative analysis and common
change sequence analysis

! helps to identify different types of architectural
shortcomings

! in combination with graphical representation
facilitates the understanding of certain syste,
characteristics

! allows reasoning about a software system on a
macro level (no source code analysis)

! requires very little data to be kept

! Integrating modification reports and bug
reports with feature profiling reveals many
couplings
! couplings among features (feature view)

! couplings (not) along project-tree paths (project
view)

! Domain/application knowledge important for
interpretation!

100

Next steps

! Refine analysis and enhance visualization and
navigation

! Integrate with other evolution analyses and evolution
data in a SEA framework
! bug report data

! modification report data

! test data and properties

! feature information

! multi-dimensional visualization

! Additional case studies

! More Papers at seal.ifi.unizh.ch/publications/

101

References

! [Godfrey 2001]

