Software Wartung und Evolution
Teil 4: Software Evolution

Harald Gall

Institut fur Informatik

Universitat Zurich
http://seal.ifi.unizh.ch

> il | fi)

5L - oy I

> it 2 Universitat Zdrich S.€.d.l.
s re evolution & architecture lab

oftwal

Evolution: General Definition 1/2

Evolution is the process of

over time in characteristics, attributes,
properties of some material or abstract, natural
or artificial, entity or system or of a sequence of
these

Changes are progressive when they result in a

definable of, for example, increasing value,
growing precision or better fit to a changing domain
or context

Changes are not by chance, incidental,
Indeterministic, stochastic; there must be a trend

A5 . . .
(2% University of Zurich
/' Department of Informatics 2

Evolution: General Definition 2/2

include objects or collections of objects (e.qg.
population) such as natural species, societies, cities,
artefacts, concepts, theories, ideas or systems of
these

will, in general, be continual with
relatively slow rate of change, or discrete with
individual incremental changes, small relative to
entity as a whole

Source: [Lehman and Ramil 2001]

E1E%) University of Zurich
/' Department of Informatics 3

Software Evolution

Keine genormte Definition

Nach Lehman/Ramil

Software Evolution is the process of continual fixing,
adaptation, enhancement to maintain stakeholder
satisfaction

In response to changes in domains, needs, expectations

Nach Bennet/Rajlich

Maintenance means general post-delivery activities

Evolution refers to a particular phase in the staged
model where substantial changes are made to the
software

AR University of Zurich

/' Department of Informatics 4

Software Evolution

Nach Godfrey

Evolution is what happens while you are busy
making other plans

Maintenance is the planned set of tasks to effect
changes

Evolution is what actually happens to software

|/ University of Zurich
/' Department of Informatics 5

Types of Programs

Nach Lehman, Belady 1980, pp. 1060-1076

Programs (, ‘)
Problem can be stated formally and completely
Acceptance: Is the program correct according to its
specification?
This software does not evolve

A change to the specification defines a new problem, hence
a new program

A5 . . .
(2% University of Zurich
/' Department of Informatics 6

Types of Programs

Programs (, ‘)
Imprecise statement of a real-world problem

Acceptance: Is the program an acceptable
solution to the problem?

This software is likely to evolve continuously
Because solution is never perfect, and can be
improved

Because the real-world changes and hence the
problem changes

£40% University of Zurich
/' Department of Informatics 7

Types of Programs

Programs (,)
A system that becomes part of the world it
models

Acceptance: Depends entirely on opinion and
judgement; criterion is the satisfaction of
stakeholder needs

This software is inherently evolutionary

Changes in the software and the world affect each
other

£40% University of Zurich
/' Department of Informatics

5 SN

University of Toronto

Department of Computer Science

may
relate .~

'ro__.-‘

real

~ world

maybe of h

interest to

formal
statement K controls the
of pr‘oblem roduction

of
“ PROGRAM
provides
solution
S-type

Source: Adapted from Lehman 1980, pp1061-1063

real world

PROGRAM

specification

abstract
view of worl

model

P-type
real
world
abstract
view of worl
compare} requirements
specification
solution 4—| PROGRAM ‘

© 2001, Steve Easterbrook

Software Systeme als Feedback
Prozesse

Der Entwicklungs- und Evolutionsprozess eines

Software Systems wird von Lehman als
Multi-level
Multi-loop
Multi-agent

Feedback System bezeichnet.

Feedback technisch: Die Ruckfuhrung eines
Ausgangssignal als Eingangssignal in ein
System

(,Feedback: The return of a portion of the output, or
processed portion of the output, of a (usually active) device
to the input®)

|/ University of Zurich
/' Department of Informatics 10

Software Systeme als Feedback
Prozesse

Evolving
understanding

and structure
Computational

procedures
and Theories, models
algorithms procedures, laws
of application and
system domains

Program Requirements
definition analysis

, R (orporate
Users : [anagement

Jser Support . 'i A ‘f ;

Exogenous LSy w e ot ad

A
Ch: nge »l [‘P]lu ion

_oncept

Operational
Program
Project &
Process Evolving

Managers = ‘_> Unders 1mllm

and S nuluu

. ; : Theories, Models
Computational IF 4 Procedures, Laws
e A = ; >
Procedures i<} of Application and
;m_d System Domains
Algorithms

Program Requirements
Definition Analysis

Laws of Software Evolution

/,_

In den spaten sechziger Jahren untersuchen Lehman
und Belady die Release History Daten von IBM OS/360
mittels bestimmter Metriken und stol3en auf
Eigenschaften im Evolutionsprozess, die bei anderen
Systemen in spateren Untersuchungen ebenfalls
nachvollzogen werden konnen

Diese Eigenschaften scheinen Gesetzmaldigkeiten Zu
folgen und wurden als ,
postuliert

Die ,Laws of Software Evolution® ergeben sich aus der
Beobachtung von E-type programs

%) University of Zurich
/" Department of Informatics 1 3

Laws of Software Evolution

0S/360 7.5k4 ICL VME Kernel o
6k * .
L 5k -
4K - Lot _'
.l. 25k" ...'.
2k‘ ..o. ‘
8 e’ T T T T T T T T T
S O 5 10 15 20 25 0 5 10 15 25
o
O
E . il . y [s 8
5 4k Logica FW . 100k Lucent Syi1 . .
[] 80k N “*
1.8k - o .
oo 60k **°
1.2K -
5 10 15 20 RSN 5 10 15

,/ _\ University of Zurich

&3 / Department of Informatics

14

Laws of Software Evolution

Warum ,Gesetze"?

Die entdeckten Phanomene der Evolution
werden als Gesetze bezeichnet, da sie
technologie- und prozessunabhangige
Mechanismen bezeichnen

(4% University of Zurich
/' Department of Informatics

15

Laws of Software Evolution

Nach Lehman, Belady 1980, pp. 1061-1063 und
spatere Publikationen

“A system that reflects some external reality
undergoes continuing change or becomes
progressively less useful

The change process continues until it becomes more
economical to replace it by a new or restructured system.”

“The entropy of a system increases with time unless
specific work is executed to maintain or reduce it.”

A5 D . . .
(2% University of Zurich
/' Department of Informatics 16

Laws of Software Evolution

Software evolution is self-regulating with statistically
determinable trends and invariants

(invariant work rate)

During the active live of a software system the
average effective global activity rate is roughly
constant

./ University of Zurich

Department of Informatics 1 7

Laws of Software Evolution

E1E%) University of Zurich
X /' Department of Informatics

In general, the average incremental growth rate
(growth rate trend) tends to decline

As an E-type system evolves

developers, sales personnel, users, for example, must

maintain mastery of its content and behaviour to achieve

satisfactory evolution. Excessive growth diminishes that
mastery.

The functional content of E-type systems must be
continually increased to maintain user satisfaction

18

Laws of Software Evolution

£ [

) University of Zurich

The quality of E-type systems will appear to be
declining unless they are rigorously maintained and
adapted to operational environment changes

E-type evolution processes constitute multi-level,
multi-loop, multi-agent feedback systems and must
be treated as such to achieve significant
Improvement over any reasonable base

Department of Informatics 1 9

Lehman’s Approach: Formal

Lehman describes software evolution on a
formal level

Based on observations

Empirical generalisations are made

They provide basis for axioms in a formal theory
Possible inferences are proposed

Derived from the formal models

Basis for potential theorems in formal theory

Try to fully prove theorems

A5 D . . .
(2% University of Zurich
/' Department of Informatics 20

Formal Models of
Software Evolution: Growth

Inverse Square Model [Turski 1996]
S, =S,
S;=Ste/ (S
. S..Size (oftén number of modules)
i ... Release sequence number (1..n, n = max release nr.)
e ... Model parameter
S;and S; stand for actual and predicted size at release i

Other model: Normalised size as a function of the
normalised work rate [Lehman 2001]
S./S,=(H/H,)" fori>=1
H ... Work rate as indirect effort indicator (e.qg. elements handled)
g’ ... Model parameter

|/\ University of Zurich

/' Department of Informatics 2 1

Formal Models: An Example

Next slide shows the normalised size as a

function of the normalised work rate

size measured in number of modules
work rate measure in modules handled

For four industrially evolved systems
Three different organisations
Three different application domains

Data taken from release data history

A5 D . . .
(2% University of Zurich
/' Department of Informatics 22

Normalised Size as Function of Normalised Cum. Modules Handled

S/S1 ~ (HHI1)Y*(1/
. (H/H1Y(1/g)

B2

210 University of Zuric

/' Department of Informatics

Formal Models: Use?

Formal Models provide means for

Evolution planning
Simulation, visualisation, release planning

Process Management and Control
Long term prognosis

Overall process improvement
Tools

A5 . . .
(2% University of Zurich
/' Department of Informatics

24

Research Areas in
Software Evolution

The driving force guiding the work will be the search for
formally supported techniques:
logic-based declarative description and reasoning techniques

formal models for software evolution based on rewriting
systems

software metrics

visualisation techniques

generation of design documents and source code
extraction of design and analysis documentation

migration to component-based and web-based systems
the use of meta-models as a general integration technique

|/ University of Zurich

/' Department of Informatics 2 5

Analyzing Software Evolution
Using Release History Data

http://seal.ifi.unizh.ch/projects/

SA eA a A I A
‘soﬁware evolution & architecture lab

What is Software Evolution Analysis?

Investigating the evolution of a software
system to
or logical structure.

Structural shortcomings can then be
subject to or restructuring.

(4% University of Zurich
/' Department of Informatics 27

Motivation

20 University of Zurich
g ;/J Department of Informatics 28

Software Evolution Analysis

Goal: learn from history about evolution of a system

Inputs:

Version information (e.g. CVS, SVN, ClearCase)
Change information (author, date/time, size, messages, etc.)

Problems:
Reveal common change behavior of classes
|dentify logical coupling among classes
Evaluate modules and the entire system
|dentify spots of design erosion, architectural decay, etc.

|/\ University of Zurich

/' Department of Informatics 2 9

The QCR-approach

[Gall et al. 97]
Quantitative Analysis (QA) ;&azayeri 02] J

analyzes the change and growth rates of modules (classes)
across releases and provides outliers

[Hajek, Gall, Jazayeri 98] ’
Change Sequence Analysis (CSA) v Gl cazayer o]
identifies common change history of modules and provides

structural dependencies based on common change
sequences (e.g. <1,3,5,6,7,8>)

wewski 03,06,07] ’
Relation Analysis (RA)

compares modules (classes) based on CVS change history
information and reveals module dependencies, ie. logical
couplings

units of interest = classes
change information = CV'S data

|/ University of Zurich

X2/ Department of Informatics 30

Quantitative Analysis

Analyzing quantitative aspects of
software evolution

software evolution & architecture lab

Quantitative Evolution Analysis

Goals:

|dentify potential shortcomings of a
Telecommunication Switching System (TSS) by
tracking its historical development

Use database containing structural information about
20 releases of the TSS delivered over a period of 2
years

Focus on

investigate only structural information about each release
(version numbers)

no source code metrics at all

SN . . .
i %) University of Zurich
/' Department of Informatics 32

QA: Approach

Approach:

Observe software evolution via release
history

Detect logical coupling via
Change Sequence Analysis, and
Change Report Analysis

Visualize software release histories
using color and third dimension

A5 . . .
(2% University of Zurich
/' Department of Informatics

33

Telecommunication Switching

System (TSS)

system level

System

subsystem level

Subsystem A

Subsystem B

Subsystem C

module level

Module a

Module b

Module ¢

program level

|/ _\ University of Zurich

<=3 / Department of Informatics

Program 100

Program 200

Program 300

34

The Release Database

£ [

) University of Zurich

For each release stored:

Entries for elements at system, subsystem,
module, and program level together with relations
among them

Systems and programs are characterized by

Program version numbers are independent of the
system’s version number

Changes result in incremented version number(s)

Each system release consists of

8 subsystems, 47 to 49 modules, and
1500 to 2300 programs.

Department of Informatics

35

Software Evolution Observations

Problem: extract useful information from the
PRDB to reason about the evolution of the TSS

We focus on the following system properties:

Size of system, subsystem, or module: number of
programs (as the module “unit”)

Change rate: percentage of programs (identified by a
different version number)

Growth rate: percentage of programs added (or

deleted) from one release to the next
Evolution of whole system and particular
subsystems

|/ University of Zurich
/' Department of Informatics 36

Ime

System size over t

TSS

00-8
- 00-4
- ¢l9
- 11-9
- 019
- 60-9
- 80-9
- 2079
- 90-9
- G0-9
- ¥0-9
- €09
- ¢0-9
- 1079
- 009
- 00-9
- 00-¥
- 00-€
- 00-¢

2500

2000 +

1500 -
1000 +
500 +

sweubouid jo #

00-1

Releases

37

l/’ —\ University of Zurich

-/ Department of Informatics

Newly added programs per

release

TSS

Q
'

swelboud pappe Aimau jo #

00-8
00-4
¢l-9
L-9
0L-9
60-9
80-9
£0-9
90-9
G0-9
¥0-9
€0-9
c0-9
10-9
00-9
00-9
00-v
00-€
00-¢

Releases

40 University of Zurich

5 ~/ Department of Informatics

38

i

TSS: Change and growth rates

w b A~
U1 © O

w
o
\ | |

— changed
— new

N
(&)]

Percentage

= AN
O O1 o010
! l

/\/\’\—l—,/\ﬂ—/-\!-_!‘é

2- 3 4 5 6- 6- 6- 6- 6- 6- 6- 6- 6- 6- 6- 6- 6 7- 8-
00 00 00 00 00 O1 02 03 04 05 06 07 08 09 10 11 12 00 00

Releases

0% University of Zurich

\ / Department of Informatics 39

TSS: System Observations

High growth rate

Increased from initially 1499 programs to 2303 at the
end

53% increase in 21 months

Findings
The size of the system is growing linearly
Between 2.00 and 5.00 and in 7.00 major activities
Only a few added programs in 8.00
The structure of the whole system has become stable

/:,,_Ebl_olutfizo_r} in a satisfactory way?
(7 4% University of Zuric
/' Department of Informatics 40

TSS Subsystems / Change and

growth

Subsystem | Change rate (%) | Growth rate (%)

A 11 18

B 16 18

C 25 193

D 5 78

E 8 8

F 33 -25

G 29 157

H 20 3

|/ _\ University of Zurich

<=3 / Department of Informatics

8%

21%

14%

41

Evolution of Subsystem C

Characteristics of Subsystem C:
highest growth rate and

one of the highest change rates among all
subsystems

therefore most likely candidate for restructuring

Module C

Module B 49

13%

Module A
83%

£ ’? \ University of Zurich

\ ; Department of Informatics 42

Subsystem C: Sizes of modules

450 +

400 —+
g 350 T /—/—
© 300 + — Module B
S 288 | —— Module C
o T —
w150 Module A
#* 100 +

50 +
0 % % % %

Releases

l/’ —\ University of Zurich

fex / Department of Informatics 43

: Change rates of

Subsystem C
modules

-—— Module B
- Module C

\//\/_¥ [

3- 4- 5- 6- 6- 6- 6- 6- 6- 6- 6- 6- 6- 6- 6- 6- 7- 8-

120 +

v | | |
I I I I
o O O O
0 O© < N

abejuaoiad

100 e

-20 2-

00 00 00O OO 00 01 02 03 04 05 06 07 08 09 10 11 12 00 00

releases

44

of Informatics

1) University of Zurich
/ Department

hes

Interpretation of Data

Development of the whole system:
becomes stable over the twenty releases

change and growth rates decrease as do the number
of added programs per release

structure seems fine

Development of subsystems (Subsystem C):
the picture changes significantly!
high growth and change rate (Modules B & C)

similar names with only different endings
p > copying and slightly modifying!

(44 University of Zurich
/' Department of Informatics 45

Change Sequence Analysis

Detection of Logical Coupling

software evolution & architecture lab

Detection of Logical Coupling

Change Sequence of a program<12357 11>
program changed in releases 1, 2, 3, 5, 7, and 11
5 changes

Subsequences as contiguous parts
<12 3> <35 7>, etc.
Changes are represented by a (sub-) sequence

|dentify potential “logical couplings”™ among
programs

|/ University of Zurich
/' Department of Informatics 47

Change Sequence Analysis

Approach:
compare change sequences of different modules
identify patterns of change
identify common “change sequences” (patterns)

Result: potential logical couplings

./\ University of Zurich

Department of Informatics 48

Coupling among subsystems

_Z e 2 changes I
s 3 changes

. 7
Py 2N \\\ 4 changes

77 v E 5changes ==
o /7 ! \ > ' 8 changes
3 ! \ >9 changes

) University of Zurich
; / Department of Informatics 49

Coupling. among sequences

SUB,=< 124>

S73

S67

S64

S42

S5
S31
S40
S84

(£ il
\ 3 -/ Department of Informatics

10 University of Zurich

S60

S0-S30 2 changes
S31-S59 3 changes
S60-S74a 4 changes
S75-S79 5 changes
S80-S87 6 changes
S$89,590,S92a7 changes
S91,592 8 changes
S94,S95 9 changes
> S96 >9 changes

A

B

D —====-

E correvreneencens

G cereerreneeeens

H — e

50

Change Report Analysis

Goal / Approach:
verify logical coupling
examine change reports of modules with the
same change sequence

same reason for change defines logical
coupling

Result: logical couplings among modules /
subsystems

E1E%) University of Zurich
/' Department of Informatics 51

Example of a change report

Ver 2.4 — 96/03/12 10:10:07
TSS---PROGRAM CHANGE DESCRIPTION

ELEMENT NAME: Program 111 2.3 --> 2.4
CHANGED BY: John DOE
CHANGES as follows:

CHANGE NR: 1

CHANGE TYPE: B // bug fix

REFERENCE: BR 1443 // reference to a bug report number
ERROR CLASS: A // error class, i.e. operation in working state

DESCRIPTION: hanging of the circuits in environment Xxy.

CHANGE NR: 2

|/ \ University of Zurich

X2/ Department of Informatics

Change Reports Analysis

SUB 1 =<2 4.6:7>

systemreleases 1 2 4 .5 6 T 8

AR BR 1443
I

FD1 R

A.ac.10 %-% Fp2 [
B.be.20 % % .
B.bh.27 \\N FD3

«

|/\ University of Zurich
- E /' Department of Informatics

R

(5

1 4 ' 4

esume

modules and programs that should
undergo restructuring / reengineering

Detected potential via change
Sequences
Stronger logical couplings via longer sequences

Verified logical coupling via change reports

%) University of Zurich

Department of Informatics 54

Visualizing Release Histories

SA EA a A I A
‘soﬁware evolution & architecture lab

Visualization

Structure of the system:
visualization of tree structure (2-D
and 3-D)

Software attributes: color, region
filling

Multiple releases: third dimension\

\

V. 2

|/’—\ University of Zurich\ time

‘\7/ Department of Informatics V_ 1 56

The Database & Color Scale

Subsystem Level | Module Level [Programlevel [1]2]3]4[5/6]7]8]9[10]11][12]13[14]15 [16]17 [18]19]20
AAA BBB AAAPRG 0 00065 5 7 77 7 11 1M1 1414 1414 1414 14
AAA BBB BBBPRG 0 00 05 5 7 77 7 1111 1414 1414 14 14 14
AAA BBB CCCPRG 1 23 45 57 79 101 1212 1415 1617 17 19 20
AAA BBB DDDPRG dEEN R R N R N N I Er Ak A kAR
AAA BBB EEEPRG 0 00 44 44 44 4 4 44 44 44 4 1919
AAA BBB FFFPRG 0 00 4557 79 1011212 1415 1617 18 19 20
AAA ccc 000PRG 1111

AAA ccc 222PRG 1 2 |2

AAA ccc 333PRG 1111

AAA ccc 444PRG 1 (1 [1

AAA ccc 555PRG 1 (2 |2

AAA ccc 666PRG 1 1111

AAA DDD XXXXPRG 1

AAA DDD YYYYPRG 1

AAA DDD Z777PRG 1

AAA DDD KKKKPRG 1

AAA DDD JJJIPRG 1

AAA DDD LLLLPRG 1

\ ./ Department of Informatics

%) University of Zurich

57

Weecoo 0 0 o

RSN

RSN B

ﬂfrr rr

:IT

11

1 RT

il

ili g

TEET

Relation Analysis

Finding Class Couplings via
Change Dependencies

software evolution & architecture lab

Relation Analysis (RA)

ideally, components could be changed independently
of each other, but ...

evolution of classes is compared to identify those that
were most frequently changed together

comparison is based on author name, date and time
of the check-in of a particular change

based on the strong code ownership in case study
and time window (4 minutes) for check-in

as a result RA reveals logical coupling

the number of common changes = strength of the
logical coupling

\ University of Zurich

3 /' Department of Informatics 64

Case study: PACS

A Picture Archiving and Communication System
(PACS)

mission: medical pictures that doctors can view and
archive for diagnosis; supporting different kinds of
workstations:

viewing-only

additional diagnostic features allowing to change attributes of

Images, mark particular regions, sort and arrange pictures in
sequences, annotate with information, etc.

implemented in Java, 5.500 classes (~500.000 LOC)

configuration files
analysis period: April 2000 — July 2002, ie. 28 months

vendor wants to support product families

VAN LN . i i
(2% University of Zurich
/' Department of Informatics 65

Submodule 13.c.9
GUI

graphical
represen-
tation

focal
point

classes

logical
coupling
strength
> 8

Submodule 13.c.18
Printing framework

imaging
framework
threading
engine
-2 ‘MVC” ? o
printing
framework

user inter-
action frame-
f work

Submodule 29.a.4 29.a7
Storage media access 20.a7.

' storage
media
access

protocol/format
translation

Submodule 29.a.5

Storage media access
29.a.7

N - coupling strength 85x
o classes > 1000 LOC

change rate:

40%
protocol/format
translation

internal ,coupling”

storage
media
access

Submodule 13.c.5
Imaging framework

inheritance
hierarchy

change rate
25%

change intensity
80%

changes every
month

1 4

Résumeé

RA combines all levels of decomposition: from
classes to (sub-)modules through their CVS

change data

RA reveals many couplings (internal and
external)

Points to “bad smells”:

spaghetti code, bad inheritance hierarchies, poorly
designed interfaces, god classes, etc.

Visualization simplifies understanding and
navigation

(6 Preyrain knowledge an important ingredient for

intarnratatinn

Populating a Release History
Database

Providing qualitative history data
for reasoning and visualization

software evolution & architecture lab

Building a Release History DB

3 main sources:
Modification reports (MR) < CVS
Problem reports (PR) < Bugzilla
program and patch information < release packages

Relevant MRs and PRs are filtered, validated
and stored in a Release History DB (RHDB)

Problem: ldentify change dependencies among
system parts

(4% University of Zurich
N5/ Department of Informatics 73

Version control data

A release represents a snapshot of the CVS
repository for given software system
release number of product;
revision number of each file
for every release there is a symbolic name
branches as self-maintained lines of development

SN . . .
i %) University of Zurich
/' Department of Informatics

74

Case study: Mozilla

Mozilla (www.mozilla.org)
analysis period: 1999-2002
2.500 subdirectories
Source code: ~ 36.000 files, > 2 MLOC

CVS repository (revision information and
modification reports)

> 180.000 bug reports
> 430.000 modification reports
Particular profiling data

Online documentation: roadmap, release notes,
design documents

FLE%) University of Zurich
/' Department of Informatics

75

Example log-file from Mozilla source tree

RCS file: /cvsroot/mozilla/layout/htmli/style/src/nsCSSFrameConstructor.cpp,v

Working file: nsCSSFrameConstructor.cpp
head: 1.804

branch:

symbolic names:

MOZILLA 1 _3a RELEASE: 1.800
NETSCAPE_7 01 _RTM_RELEASE: 1.727.2.17
PHOENIX_0 5 RELEASE: 1.800

RDF_19990305_BASE: 1.46
RDF_19990305_BRANCH: 1.46.0.2
keyword substitution: kv
total revisions: 976; selected revisions: 976
description:

revision 1.804
date: 2002/12/13 20:13:16; author: doe@netscape.com; state: Exp; lines: +15 -47
Don’t set NS_BLOCK_SPACE_MGR and NS_BLOCK_WRAP_SIZE on ...

revision 1.638

date: 2001/09/29 02:20:52; author: doe@netscape.com; state: Exp; lines: +14 -4
branches: 1.638.4;

bug 94341 keep a separate pseudo frame list for a new pseudo block-orintire-frerre=mm—

(147 University of Zurich
\;/ Department of Informatics 7 6

Bugzilla bug reports

bug id: This ID is referenced in modification report. Since the IDs are
stored as free text in the CVS repository, the information can not be
reliably recovered from the change report database.

bug status (status whiteboard): Describes the current state of the
bug and can be unconfirmed, assigned, resolved, etc.

product: Determines the product which is affected by a bug.
Examples in Mozilla are Browser, MailNews, NSPR, Phoenix,
Chimera, etc.

component: Determines which component is affected by a bug.
Examples for components in Mozilla are Java, JavaScrip,
Networking, Layout, etc.

dependson: Declares which other bugs have to be fixed first, before
this bug can be fixed.

blocks: List of bugs which are blocked by this bug.
bug severity: blocker, critical, major, minor, trivial, enhancement

target milestone: Possible target version when changes should-be
AR Ummwgguchnto the main trunk.

' Department of Informatics 7 7

. § <bug_id> 100069
Bugzi lla sni ppet <«ug stais> VERIFIED
<product> Browser
<version> other
<rep_platform> All
<assigned to> doe@mozilla.org
<delta ts>20020116205154
<component> Printing: Xprint
<reporter> doe@mozilla.org
<target _milestone> mozilla0.9.6
<bug_severity> enhancement
<creation ts>2001-09-17 08:56
<ga_contact> doe@mozilla.org
<op_sys> Linux
<resolution> FIXED
<short _desc> Need infrastructure for new print dialog
<keywords> patch, review
<dependson> 106372
<blocks> 84947
<long_desc>
<who> doe@mozilla.org
<bug_when> 2001-09-17 08:56:29
</long_desc>

,/ _\ University of Zurich

N1/ Department of Informatics 78

Populating a Release History DB

Problem = re-establishment of links between
modification reports (MRs) and problem reports
(PRs) since no mechanisms provided by CVS

We used the PR-IDs found in the MRs of CVS

PR-IDs in MRs are detected using a set of
regular expressions. A match is rated
according to the confidence value:

high (h), medium (m), or low ()

confidence is considered high if expressions such
as <keyword><ID> can be detected

confidence is considered low a six digit numberjust
(1 uesivaippearing somewhere in the text of a modificatiop
reoort without precedina kevword

Import process

Retrieve Source Tree

l

Get log file information

'

Import log file information

'

Get bugreport IDs

'

Get bugreports

'

Import bugreports

CVS item

Release
History
Database

bugreport

,/ _\ University of Zurich

<=3 / Department of Informatics

RHDB schema

cvsallas

Id

name

date
usagecount

a first meta-

projstruct

Id

parentid
nodenama
nodestale

E1) University of Zurich

model !
ovsilemallas cvsltamlaalura 1 lfealure 1 featureset
ovsitem - * cvsliEmid Id reaturex
cvsalias fealurex ma:ne subkatureld
revision ala
evalresult cvsilem ovsllemiog | | 1 cysauthor
1] . 1 1d Id H
cvsitem resflie ovsilem author
enkay workflle revision [\
eviype 1] head dale tugreport
evdass locks author
evobpct accass slak H
keysubst ladd tughie_koe
revtot Ided bug_se_wem,'
L revsel branches shor dase
cvsitemprojectsiruct \ revision description op_sys
. lon
cvsitemid N 1 j gm:{; tugreportdesc
projectsiructy . version
histo component)
¥ cvsitemlogbugreport resolution tugreportid
programkey . target_milestona |1 ‘| who
poclass cvsitemiog qa_contact bug_when
p@tﬂte buglepm k@"ﬁ\:‘ﬁ Ihatext
81

3 / Department of Informatics

Views on Mozilla evolution

= 50% of files have been modified in last quarter of observation
= although only 25% of files have been integrated

Size
A s 3 0 L P P O L Tl O 1 0 L Pl O 5 O L [(O — O L
O L D O e e e O O O O O O O O G SiE = = st = L L0 L
- - 100%
IIIIIIIIIIIIIIIIIIIIIII —
|||||||||||||||||||||| —
- —
||||||||||||||||||||||| p—
o
|||||||||||||||| = 75%
|||||||| -
IIIIIIIIIIIIII —
|||||||||||| — 50%
|||||||||| —
|||||||
|||||||| — 25%
i —
|||||||
_ Oo/o

&aﬁ University o1 zunun

—.—g— Department of Informatics

Mozilla evolution

size [LOC] a

> time [RSN]

0% University of Zurich

\ /‘ Department of Informatics 83

Views on Moazilla evolution /2

modules

Q;E University of Zurich

{2/ Department of Informatics

m o calendar.
M_ _ oepeeeewes content.
e i ____ directony.
. Wm dom.
e W oo editor.
NN _ _ DN oo embedding.
O _ _ _ _ _ I Ueeeeaeeees extensions.
N wewew gry.
W htmlparser.
s _ _ e intl.
B . s
B o o_ [10n.
B oo - . _ s EEWINS
[T I [mailnews.
M . . ol modules.
W _ DM o netwerk.
[nsprpub.
L L. memepemes o other-licenses.
L T raf.
IR TS o _ _ SeCUrity.
L S themes,
L wehshell.
s _ _ _Ee _ _ oo o_ wiclget.
NS W oo ¥pcom.
BT OO xpfe.
L ¥pinstall.
%

84

Résumeé

RHDB offers some characteristics for evolution
analysis
linkage between changes and bugs (qualified)
files logically coupled via changes and bugs
branch/merge revision data

data set as a basis for further analyses and
visualizations (e.g. MDS-view)

a basis for data exchange among research groups in
the direction of a meta-model for release data

|/\ University of Zurich

/' Department of Informatics 8 5

Multi-dimensional Visualization
of Evolution Data

Allowing to locate hidden feature
and module dependencies

software evolution & architecture lab

Selection of Problem Reports

Filtering those concerned with admin issues
“license foo” (PR-ID #98089, /961 referenced files)

“printfs and console window info needs to be boiled
away for release builds™ (#47207, 1135), or

“Clean up SDK includes” (#166917, 888)
“repackage resources into jar files” (#18433, 289)

We used 255 as limit for the amount of bug
reports to be accepted

no major or critical PRs filtered

,/ \ University of Zurich

Department of Informatics 8 7

Feature evolution

Goal of the feature extraction process is to map
the abstract concept of features onto a concrete
set of files which implement a certain feature.
... an observable and relatively closed behavior or
characteristic of a (software) part [16]
We first created a single statically linked version
of Mozilla (v1.3a with the official freeze date 2002-
12-10)
with profiling support enabled. From several test-runs
where the defined scenarios were executed, we
created the call graph information using the GNU
profiler.
The call graph information again was used to
~retrieve all functions and methods visited durlng
~thHe&"éXecution of a sinale scenario.

Scenarios and features

Scenario Description Feature Color Files
Core mozilla start / blank window /stop | Core White 705
HTTP TrustCenter.de via HTTP! Http DeepPink 28
HTTPS TrusterCenter.de via SSL/HTTP Https MediumGreen 6
File read TrustCenter.de from file - - -
MathML mathematic in Web pages’ MathMIExtension YellowGreen 13
About “about:™ protocol About Gold 3
PNG sample image? ImagePNG DarkOrange 10
XML XML Base’ Xml MediumOrchid 65
IPG JPEG Karlskirche® Imagel PG Cyan 16
fBlank read blank html page from file’ Html DeepSkeyBlue 76
hBlank blank html page via HTTP® - . .
ChromeGIF ~ Mozilla logo” ImageGIF SlateBluel 4
Image - Image OrangeRed | 3

407 University of Zurich

< _ / Department of Informatics

89

Multidimensional scaling

the goal is to map objects to points in such a way that
given dissimilarities are well approximated by the
distances

|| X; — X; || in @ k-dimensional solution space.

minimization of a stress function

A problem report descriptor d; of a problem report p; is
built of all artifacts a,, which refer to a particular
problem report via their modification reports m,

d={a,|la,Rm,"*m Rp,;}

distance data for every pair of problem report
descriptor <d,, d;> are computed

XGuvis: a system for multidimensional scaling and
Umgmphn!@yout in any dimension (research.att.com)

Views

feature-view focuses on the problem
report based coupling between the
selected features

project-view depicts the reflection of
problem reports onto the structure of the

project-tree (ie. directory structure)

£40% University of Zurich
/' Department of Informatics 9']

Feature View /1

010/About
1001/Http 1009/Xml 1001/Http

1002/Https

1003/Htm 1003/Html

1004/Image 1004/Image
i P

(a) 1999 (b) 2000

“40) University of Zurich
T ‘zi.'./'J Department of Informatics 92

Feature View /2

.0 10/About

1005/ImagePNG
i} a

(a)y 2001

10 University of Zurich

i Department of Informatics

1005/magePNG
iJ d

(b) 2002

93

Project view — structure & features

-
-’) 9)

Features:

Core

Http

Https

Html

Image

ImagePNG

ImagedPG

ImageGIF

MathMIExtension

Xml

About

OO RO EEEEEO

oS
10 University of Zurich _
: ; / Department of Informatics 9 4

Http, https, C Featwro il
htm I : i . 4 H@veut himl base

o, -XPCOM.proxy

~-layout.html

L o€
.dom. e .conlent.ba.,e

layout.base
.netwerk.cache 18

o) \ .contefll. |
: .in -
A out
- -netwerk socket .dom
u ’
~-netwerk ,:{'ofnj -Xpcom
. 1‘
o-netwerk pre ocol -,
elwerk base o-db
metwerk.protocol. htt
i prol ttp\ _ ~,-db.mork
. .extensions
A .sscur . .editor
.securlty.manager S8l

2, -editor libeditor
Security.manager

t) -
~{.extensions.cookie

o .editor.txmgr

< .security.manager.boot

T Universi . Feature Hitp & Hit
0% University of Zurich ’e P

\ / Department of Informatics 95

AI I) A Jayout.mathml
featu res .content.himl.content

.content.xml

< .content.xml.content
o Jayout.mathml.base

' fligf%gcu ment

%

rshoyRibt s forrmii ssmueexemidom

|| ..
BSeuFee !

Features: 5 intl .
0 Core . .modules libpror
B Hip L "B exiensions.cookie
O Hitps Wﬁ%ﬁ@ﬁoto < hrjﬂgdules.libprOn.decoders
Html) werk ' .sec'urily.mhager.ssl
B image editor.txmgr - —— g shlclsoek et
~{-Xpcom.proxy
0 ImagePNG S
O ImageJPG
B ImageGIF iocol
MathMIExtension -Pro 0(_30
@ Xml b xpfe.appshell - -security.manager
O About

.security.manager.boot

nk

96

core & features

himlparser
[y P

- xulb Jayout
ayout.xul.base .." y

Y

| ’\ University of Zurich

\ / Department of Informatics 97

Results

Final visualization:
all problem reports rated or critical;
number of PR references: >= 50
resulting graph: 25 nodes, 215 edges via PRs

Most critical subsystems are concerned with

visualization — that’'s what we have seen via
MDS

Nodes with highest density in severe PRs are
.content (595 references)

Jlayout.html (438); .layout.xul.base (220); .layout
(210)

| Wispiésding of edges o8

Conclusions

Software Evolution Analysis

integrates quantitative analysis and common
change sequence analysis

helps to identify different types of architectural
shortcomings

In combination with graphical representation
facilitates the understanding of certain syste,
characteristics

allows reasoning about a software system on a
macro level (no source code analysis)

requires very little data to be kept

Integrating modification reports and bug
reports with feature profiling reveals many
cou?hn gs

' Unlversnyof rich

geUPliINgs among features (feature view)

Next steps

Refine analysis and enhance visualization and
navigation

Integrate with other evolution analyses and evolution
data in a SEA framework
bug report data
modification report data
test data and properties
feature information
multi-dimensional visualization

Additional case studies
More Papers at seal.ifi.unizh.ch/publications/

,/ TR University of Zurich
| 100

ke Department of Informatics

References

[Godfrey 2001]

,/\ University of Zurich
\ ./ Department of Informatics ,IO ,I

