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1. INTRODUCTION

Computer software has been touted as a panacea for the engineer because it
is so malleable compared to physical construction media such as concrete,
steel, and silicon. However, its apparent flexibility has not been successfully
exploited—software maintenance (enhancement and repair) remains dispro-
portionately expensive relative to the expected cost of the required changes
and the quality of the resulting software [35].
In studies of 0S/360 and other large systems, Belady and Lehman [7]

observed that the cost of a change grew exponentially with respect to a
system’s age. They associated these rising costs with decaying structure
caused by the accumulation of unanticipated changes:

The addition of any function not visualized in the original design will inevitably
degenerate structure. Repairs, also, will tend to cause deviation from structural
regularity since, except under conditions of the strictest control, any repair or
patch will be made in the simplest and quickest way. No search will be made
for a fix that maintains structural integrity [8, p. 113].

They conclude that this cannot go on indefinitely without having to rebuild
the system from scratch, and the need to minimize software cost

suggests that large-program structure must not only be created but must also
be maintained if decay is to be avoided or postponed. Planning and control
of the maintenance and change process should seek to ensure the most cost-
effective balance between functional and structural maintenance over the
lifetime of the program. Models, methods and tools are required to facilitate
achieving such balance [33, p. 383].

The structural principle of information hiding is used to isolate within a
module each design decision that is likely to change. Effective isolation
reduces costs by localizing—to the implementation of a module—the parts of
a system that must be modified when one of these design decisions later
changes [41].
Unfortunately, the initial design of a system cannot isolate all design deci-

sions. First, Parnas emphasizes that modules are used to isolate design
decisions that the designer anticipates are likely to change [40]. But many
changes, especially user-driven enhancements, cannot be anticipated by the
original designers. Second, given the range of possible future changes, it is
not economically feasible to accommodate every one, even if they are properly
anticipated [9, pp. 20–2 1, 40]. Third, the module concept allows only one
decomposition of a program. Given a set of design decisions to hide, there
may be conflicting feasible modulariza~ions of a program. One must be chosen
in favor of the others.
Because you cannot isolate every design decision, inevitably a change will

be requested that cannot be implemented by modifying a single module. Thus
some system changes must cross module boundaries, requiring consistent
modification of module interfaces and implementations [40]. This inherent
need for consistent nonlocal change is the key characteristic of structural
degradation.
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One way structural degradation can be reduced is to restructure
the program to isolate a different, more appropriate set of design deci-
sions. In essence, restructuring is redesign in the presence of more accurate
information about pending changes.

Maintaining structure, however, is itself a complex and costly activity.
Indeed, it is just like making a functional change in a structurally inade-
quate system: global search and change are required to maintain the behav-
ioral relationships between a modified interface and the references to
it throughout the program. This difficulty leads to the well-known phe-
nomenon that software maintenance—be it for enhancement, correction, or
restructuring—generally injects additional defects into a system as an unde-
sirable side-effect of the basic maintenance activity. Belady and Lehman [8]
characterize this in terms of a stratification of changes that leads to exponen-
tially complex system structure. Collofello and Buck, as another example,
have measured that when adding a product feature, 539% of the new defects
were to existing features [14].

Belady and Lehman [8] conclude that progressive activities such as
enhancement require continual cm tiregressiue efforts to keep the inevitable
exponential growth in complexity manageable. However, antiregressive activ-
ities in practice get ignored under financial and time pressures, and also
because they are not usually as psychologically satisfying as progressive
activities. Thus there is a general preference for quick fixes over those that
retain or improve structural integrity.

1.1 An Alternative Approach

We use the power of the computer to overcome some of the inherent costs in
making manual nonlocal changes. In particular, we believe that restruc-
turing can reduce the cost of software maintenance if it is supported by
a tool that performs the nonlocal aspects of restructuring in a way that
assures that no errors are introduced.
In our approach the software engineer applies a local structural change to a

syntactic form in the program, with the tool performing the (usually nonlocal)
compensating changes necessary to maintain consistency throughout the
program. Our tool ensures that an automated change is consistent by assur-
ing that the meaning of the program has not changed.

This approach has two benefits. First, it uses automation to free the
engineer from the highest costs of structural changes: nonlocal search
and change, and later, debugging to repair inconsistencies in the distri-

buted changes. Second, it leaves the engineer in control of the subjective
activities of choosing the appropriate structure for the redesign. This is cri-
tical since the selection of appropriate designs (or, in restructuring, redesigns)
cannot be done automatically.
The abbreviated program in Figure 1 shows a simple example of such a

transformation. When the engineer swaps push’s formal parameters to con-
form to interface rules, the tool is responsible for swapping the arguments in
its calls. If evaluation order of the arguments can affect the values of the
arguments-as in the call h (m yStack) in the second call on push—the tool is
ACM Transactions on Software Engmeermg and Methodology, Vol 2, No 3, July 1993
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procedure push (s, v)
insert (v, s head)
return s

end

*

push (my Stack, l)

push(myStack, h(rftyStack) )

procedure push(v, s)
insert (v, s.head)
return s

end

push(l, mystack)
.

push(h(myStack) ,rnyStack)

Fig. 1. Swapping theparameters ofprocedure push.

responsible for prohibiting the change and alerting the engineer to the
problem. For a restructuring tool to b= precise enough to be useful, then, it
must be able to examine the definitions of functions (such as h) to determine
properties such as side-effects to arguments.
A tool can perform the nonlocal aspects of other structural changes such as:

replacing an expression with a variable that has its value; swapping the
formal parameters in a procedure’s interface and the respective arguments in
its calls; adding a parameter to a procedure definition and the appropriate
argument to its calls; replacing inline code with a call to a function that
contains that code. These can be extended to module-level and class-level
manipulations.

1.2 Restructuring and the Software Process

In conventional process models, the maintenance phase usually includes
both restructuring and general maintenance activities. In these process
models, restructuring is not explicitly identified. Thus one iteration of the
maintenance phase is

IM; VM,

where 1~ is the activity of implementing the enhancements, corrections, etc.
that were the initial intention of the maintenance phase, and VM is the
validation of IM.

Some models explicitly identify redesign:

DR; IRM; VRM,

where DR is the activity that determines appropriate new structures intended
to ease subsequent general maintenance; 1~~ represents the combination of
the implementation activities for restructuring and for maintenance, and
VR ~ represents the validation of 1~~{.
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Completely separating the restructuring and general maintenance activi-
ties leads to process models where the structure of the maintenance phase is

DR; IR; VR; IM; VM.

That is, the activities of defining, implementing, and validating the restruc-
turing of the system take place prior to the activities of implementing and
validating general maintenance. Separating the restructuring activity from
general maintenance activities (such as enhancement, correction, and retar-
geting) gives the software engineer intellectual leverage. During the restruc-
turing activity, the engineer determines a new design that is more suitable
for the upcoming modifications 1~.

Our approach augments the power of this intellectual separation with a
restructuring tool, defining the new process model

DIVR; IM; VM,

where DIVR combines the design, implementation, and validation activities
of restructuring into a single activity. The implementation activity, lR, is
eliminated because the tool keeps the essence of the implementation constant
in the face of the redesign, DR. That is, the basic algorithms and representa-
tions of the system stay constant, although their location within modules may
change. (Later, of course, IM might change these algorithms and representa-
tions as a part of general maintenance.) The validation activity, VR, is
eliminated because the tool ensures that the meaning of the restructured
program is unchanged from the original program; further validation is not
needed.1
An added benefit of this process model is that the 1~ and VM activities are

more focused than the 1~ ~ and VR ~ activities described above. Thus, IM and
V~ should be simpler because they no longer include restructuring activities.
Also, IJI and VM should be simpler because of the better structure created by
DWR in anticipation of IM.

These models do not suggest when restructuring should be performed. Nor
is there much experience in making such decisions. The availability of a
restructuring tool may help us to identify, over time, suitable policies for
reducing maintenance costs through restructuring.

1.3 Overview
We demonstrate that automated assistance for restructuring is feasible for
imperative programming languages. Section 2 demonstrates how automating
the meaning-preserving activities of restructuring through transformation
improves the manual process of restructuring. We define, in Section 3, a
set of transformations that can restructure programs, also discussing an
experiment that compares the manual restructuring of a matrix multiply
program to the same restructuring using our prototype tool for restructuring

10f course, this also implies that any defects in the original will still be present m the
restructured program
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Scheme programs. We also briefly describe the restructuring of Parnas’
KWIC program, which demonstrates that the prototype’s transformations are
powerful enough to restructure a program from a functional decomposition to
a data decomposition. In Section 4 we describe our model for meaning-
preserving source-to-source transformation and its use to help correctly and
efficiently implement our prototype. Section 5 examines related research. To
conclude, in Section 6 we evaluate the current limits of our approach and the
contributions made.

2. A RESTRUCTURING EXAMPLE

To give a feeling for the sorts of structural problems encountered during
maintenance and how a tool can help, consider a simplified model of a
computer system for community transit that actively tracks the distance
traveled by each bus on the road. The bus module exports this value as
variable miles _traveled. Every three minutes the bus sends its trip odometer
reading to the central computer, which assigns it to miles –traveled. This
information is used by the tracking module to display the location of the bus
on a map for the dispatcher. The total accumulated miles are also used for
scheduling preventive maintenance of the buses. The module structure of the
initial system is shown in Figure 2.
When the transit authority decides to put buses onto ferries to service

nearby islands, the job of the software engineer is to add ferries to the system
without changing its nonferry behavior. In the updated system, miles –traveled
can no longer be used for both scheduling maintenance and locating a bus,
since not all miles traveled will be rolling miles. New abstractions are needed
that distinguish rolled miles from those due to ferry trips. Further, it is
necessary to determine which expressions currently using miles _traveled
should be just rolled miles, and which should be the combined value. This
determination cannot be made automatically, but it can be guided by our tool.
With a restructuring tool the engineer can locally specify structural changes

without changing the meaning of the program. Further, by preceding the
enhancement with restructuring, the changes needed to implement
the enhancement will be local, and thus easier to perform.

First, the bus module variable miles –traveled needs to be renamed to
rolled _m iles to reflect more precisely its true meaning. With the tool, the
engineer invokes the transformation rename-variable on the declaration of
miles –traveled to change all references of the variable to rolled _miles. This is
not a purely textual substitution. For example, to preserve meaning, the tool
must verify that the new name does not conflict with any names in the
modified scope.
Now a new abstraction, total _miles, must be created for eventually combin-

ing the values of rolled –miles and ferry trip miles. To begin, the engineer
needs to introduce a function total –miles that returns the value of rolled _miles.
This is done by invoking the transformation extract-function on a use
of roiled –miles. Then the engineer invokes the transformation scope-
substitute-call on the definition of total –miles, which finds each expression
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maintenance trackinx 1

Fig 2. Module export-import structure MT MT
of the initial transit system (MT = m! Ies
traveled, variable declaration in italics).

equivalent to the function—each reference to rolled _miles—and asks the
engineer for approval to substitute a function call. The engineer approves
the matches in the bus-tracking module and denies the ones in the bus
maintenance module. Meaning is preserved by these substitutions because
each call exactly represents the reference to rolled _miles that was replaced.z
Next, the engineer creates the ferry -miles variable using create-variable.

Again, this is not just a syntactic change; the operation verifies that it does
not mask or conflict with any existing variable declarations. This new vari-
able is not referenced, so it does not affect the system’s meaning. Up to this
point, the program performs exactly the same function as before.
Finally, the engineer augments total –miles by adding code that sums

rolled –miles with ferry –miles and initializes ferry –miles to zero. The remain-
ing changes are enhancements that involve introducing the ferry module.
Figure 3a shows the final module structure of the restructured and enhanced
system.
The tool eased the structural change of splitting the two miles concepts by

creating the total _m iIes function and finding all uses of the original expres-
sion, but let the engineer decide which uses represented the abstraction
total –miles. The actual enhancement—adding ferry miles to rolled miles
throughout the system—was simplified by encapsulating the total-
miles concept in a function. This localized the travel concept: only one
addition was required to incorporate ferry miles.
In the absence of a restructuring tool, a software engineer would likely

perform the enhancement by making the fewest changes possible, To do this,
the engineer could augment each expression referencing the original miles _
traveled variable to include a reference to ferry miles. In the short term this
minimizes the cost of maintenance and the chances of introducing an error,
but also distributes several identical expressions throughout the program.
Thus, a subsequent change to the miles concept would require finding and
changing all those expressions again. In the restructured version, by con-
trast, there is only a single instance of the expression to change. Figure 3b

2If the search finds an instance that updates rolled _mlles, and if the engineer wants it to be
total _mlles, there M probably an encapsulation vlolatlon m the system, That 1s, rolled _miles
should be updated solely by readings from the odometer m the bus module. However, this could
occur if there is already another kind of mile that is not strictly a rolling rode. The substitution
by scope-substitute-call on such a match M prohibited because It 1s syntactically dlegal to assign
a value to a functzon call.
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maintenance trackintl maintenance trackinfc

RM TM MT MT FM
bus ferrv bus ferw

TM ● 4
FM FM MT FM A$f

(a) (b)

Fig. 3. Export-import structure of the enhanced system with restructuring (a) and without
(b) (RM = rolled _mlles, FM = ferry _mlIes, TM = total _mdes, MT = miles _traveled, variable
declaration in italics).

depicts the enhanced (but unrestructured) system, which shows the nonlocal-
ized references to miles _traveled (MT) in the maintenance and tracking
modules.

3. TRANSFORMATION-BASED RESTRUCTURING
The transformations in the tool have several basic properties. First, when a
transformation is applied by the engineer, it is guaranteed either to succeed
and produce a new program with the same meaning as the original program,
or else to fail and leave the program unchanged. Second, the engineer applies
a transformation to a syntactic construct. Third, to preserve the meaning
of the program, the tool will typically make nonlocal changes to compensate
for the local syntactic change. These properties assure preserving the pro-
gram’s meaning and free the engineer from the work involved in the updates.
In essence, the tool is a semantics-preserving structure editor, allowing the
engineer to focus on the design aspects of the restructuring.
A tool transformation, when applied by the engineer, makes a meaning-

preserving structural change by modifying how the relationships between
program components are expressed without affecting the inputs to operations
that perform actual computation (such as +, –, or wt-ite). SO, for example, the
only legitimate changes to a procedure involve the manipulation of its name,
its parameters, and the location of the computations within its body. None of
these changes alone is likely to preserve meaning, so each implies particular
updates to the calls on the procedure. Changing the procedure’s name implies
changing the names of calls to it; changing the order of parameters implies
changing the order of arguments in the requisite calls, and moving an
expression out of the procedure implies adding a parameter to the procedure
(and an argument to each call) to pass the value of that expression in when
called. Checks are typically performed by the tool to assure that these
changes to the calls are sufficient to preserve meaning. The globalization
paradigm, then, exploits the link between a definition of an abstraction and
its uses. Since there are normally many uses for a single definition, it is
natural that, for most transformations, the engineer’s change is specified on
the definition, and the uses are updated by the tool. However, in some cases

ACM Transactions on Software Engineering and Methodology, Vol. 2, No. 3, July 1993.



236 . W. G. Griswold and D, Notkin

the roles may be reversed if the transformation is to disassociate the relation-
ship of a particular use from its definition, say by inlining the abstraction at
the point of the use.

3.1 Techniques for Representing Structure

The usefulness of a transformation can be shown by demonstrating how it
changes modules to modify structure. Harold Ossher described the following
basic structural mechanisms that support concise organization of informa-
tion, reuse, and localization of changes [39].

Grouping identifies a set of program components as being part of an
aggregate component. Denoting a group denotes all the components within it.
Typical grouping constructs are the statement sequencing construct, the
function body, and the module body. Abstraction allows identifying a (possi-
bly grouped) component through a protocol that hides the details of the
internals. Procedures and modules fall into this category. A procedure’s
protocol is a name and a list of parameters to be processed by the named
function. A module’s protocol is the union of its exported procedures’ protocols
(with implicit or explicit constraints on how they may be ordered). Abstrac-
tion is useful because it allows reuse of a potentially complex program
component through a simple interface, and there is only one instance of
the component’s internals. This means that a single change to the definition
automatically propagates to all uses without any further change—as long as
the interface does not have to be changed as well. Analogy and deviation
constructs a component by exploiting its similarity to an existing component,
and then adding some things to account for differences. An example is the
wrapping of a procedure with another to modify its output. Using inheritance
to build a subclass is another. Closely related to deviation is approximation,
which is defining a component that similar to what is desired, but not quite.
The desired component can be created through deviation, and the approxima-
tion can be reused to help create other components. A superclass is an
example of an approximate component that can be reused through the
deviation process of subclassing.
There are two basic structural problems that can arise when considering a

software change, both of which force the change of a single concept into
nonlocal consistent updates on multiple program components. Our tool is
capable of assisting with both of these.
The first problem occurs when two components that are not strongly

related are contained in the same abstraction. This incidental relationship
can lead to an intertwined implementation of the components [40, 50].
This implies that changing one component can undesirably affect the other;
avoiding these undesirable effects may require compensating changes to the
other component. Commingled components can be separated with meaning-
preserving transformations that remove the offending abstraction, grouping,
or deviation of the components.
The second problem is an unnecessarily low-level relationship between

two conceptually related components. Consider, for example, two modules
that must execute the same code. If the code is replicated in the two

ACM TransactIons on Software Engmeermg and Methodology, Vol. 2, No, 3, July 1993



Automated Assistance for Program Restructuring . 237

modules, then repairing the code requires finding and changing the code in
both modules. However if the code is encapsulated in a procedure, then
procedure calls can be used to execute the code, and only one change is
required to repair it. Such a relationship can be pulled into an abstraction
using meaning-preserving transformations that abstract the implementations
into a single function definition. In the transit example, for instance, the
extract-function transformation created a procedure abstraction of the con-
cept total –miles, which was implemented by returning the rolled _miles vari-
able. This localized the addition of ferry miles to rolled –miles, since the only
reference to rolled –miles was within total –miles.

3.2 Transformations

This section introduces many of the transformations useful for restructur-
ing programs. (Although the transformations are relevant to most any impera-
tive programming language, they are described with LISP’s terminology,
rather than, say, Pascal’s. For example, the term expression refers to any
syntactically complete component in the program.) These transformations
were derived from experience in restructuring and have proved sufficient
thus far. The next section shows how a Scheme matrix multiply program is
relayered using them. Omitted from this list are transformations that manip-
ulate data structures, such as grouping scalar variables into a record, or
converting a scalar variable into a pointer or list variable [24].

Moving an Expression. Moving a program component is perhaps the most
common transformation—usually as part of another transformation, but also
on its own via move-expr. When moving an expression, there are no compen-
sating transformations, just checks to ensure that the change preserves
meaning. In particular, the bindings of the variables referenced in the
expression cannot change; the movement will change the order of evalua-
tion of some expressions, which must not change the values returned from
expressions; finally, the moved expression must be evaluated in the same
circumstances as before.

Moving an object closer to others, specifically when it is being moved
between scopes, is regrouping. Also, moving an object next to another will
allow them to be grouped by a subsequent transformation.

Renaming a Variable. Transformation rename-variable takes a variable
binding and a new name and renames the variable and all its uses. The
transformation must check each use site of the variable to make sure that the
new name does not conflict with any existing names.

Renaming is important to structure, for example, because it may be desir-
able to group two objects of the same name that previously were in separate
scopes. One must be renamed to make this possible. It was used in the transit
example to give a more precise name to the variable miles _traveled to reduce
ambiguity with respect to other names being used, such as ferry –miles.

Inlining an Expression. The transformation var-to-expr replaces the uses
of a variable definition with the defining expression. The engineer selects the
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assignment to be inlined and the tool handles finding and inlining the uses.
An alternative version of the transformation takes a single variable use and
inlines only the single use, not others from the same definition. Since the
expression is moving, it must satisfy all the conditions for a move to each of
the variable uses. Additionally, if the result will allow multiple evalua-
tions of the expression, the transformation must assure that there are
no side-effects in the expression, since repeating the side-effects could
change the meaning of the program. Similarly, if there are multiple uses to
be inlined, the expression cannot, in general, have side-effects. Finally, if
a use has two potential definitions-this can occur with a conditional
assignment—the transformation is prohibited.

A variation of var-to-expr is binding-to-expr. Given a variable bind-
ing by the engineer, the transformation finds all the assignments to the
variable and performs var-to-expr on each. When this is applied to a
function definition’s parameter, the tool must check that each call of
the function passes the same expression for the argument being inlined. This
is because each call represents an independent binding of the parameter, but
when inlined all the binding expressions must be merged into the one inlined
expression.
Both versions allow specifying whether the variable binding should be

deleted (if possible). The flexibility is important because it is not always clear
that it should be deleted. The engineer may have another use for the variable
after the transformation is complete.
Inlining removes abstraction. It generates multiple instances of the

abstracted program component, allowing individual instances to be modified
without affecting others. After applying this, it is possible to change an
inlined instance without affecting the other uses. The version that inlines
function bindings not only inlines the parameter, removing its abstrac-
tion, but it also narrows the interface of the function abstraction.

Abstracting an Expression. Given an expression by the engineer and
a name and location for a binding, expr-to-binding performs roughly the
inverse of binding-to-expr, moving an expression into a scope binding, assign-
ing the result of the expression to the new binding variable, and putting a
reference to the variable in the old location of the expression. This can be
successful only if the expression at the new location would have the same
value as in its original location. It also requires that the newly defined
variable binding not conflict with the scope of any existing bindings of the
same name.

This transformation has a broader impact when taking an expression from
inside a function body and abstracting it to become a parameter of the
function. This requires that the abstracted expression be passed as an
argument in all calls on the function. The benefit of this is that the resulting
function is parameterized and hence more general.

Abstracting a Function. The transformation extract-function turns a
sequence of expressions into a function, and if so desired, it replaces the
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abstracted statements with a call on the function. This is a more general
version of expression abstraction; however, since a function can take parame-
ters, variables that would be undefined in the new location have their values
passed into the procedure as arguments. The engineer provides the expres-
sions, a name for the function, the expressions or variables to be made
parameters, the names of the parameters, and the location of the new
function. Transformation extract-function is implemented by first creating
the function inline, and then doing an expr-to-binding. For this transforma-
tion to succeed requires that the right parameters get abstracted so that
moving the function to a new location does not leave any free variables. The
tool can find these parameters if asked by the engineer.

This has the same benefits as expression abstraction, but with more
potential for reuse, and hence localization. Also, by abstracting a new func-
tion from a significant part of an existing one, the new function can
be treated as an approximation of the original. In the transit example,
extract-function was used to localize the reference to rolled _miles with the
function total –miles.

Procedure abstraction is reversed with inline-function; it can remove
undesirable grouping and abstraction.

Scope-Wide Function Replacement. The transformation scope-
substitute-call replaces repeated sequences of the code of an existing function
with calls on the function. This is often used after function extraction.

Matching repeated sequences is complicated by the fact that when trying to
match a function to an expression, the function’s parameters must be matched
against actual code. That is, to match a function to inline code, an inference
must try to select which parts match the function body and which parts
should be passed as parameters. This requires something like logical infer-
ence, although this is not straightforward since two references to a function
parameter can have different values (due to side-effects). This means that
function parameters cannot be treated strictly as logical variables.

Even without parameters, finding the repeated codings requires a program
equivalence test, which in general is infeasible [16]. However, there are
conservative techniques that are fast but can still yield nontrivial matches
[57] (See Section 4.3). As a backup, a heuristic technique can be used, such as
comparing the usage of an expression with the usage of the function call that
is being substituted. For example, if each produces a value of the same type,
and if each uses variables of the same types, then there is some likelihood of
a match. Of course, a heuristic requires guidance by the engineer.
User approval of each substitution is also required because two semanti-

cally identical expressions are not necessarily instances of the same abstrac-
tion. For example, in the transit example, instances of rolled _miles were to be
replaced with calls to the semantically y identical m iIes –t raveled function.
However, the references to rolled –miles in the maintenance module were to
remain unchanged, since they did not (conceptually) represent total miles
traveled, but only those miles that resulted in wear and tear on mechanical
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components. This required allowing the engineer to filter matches. Compar-
ing the usage of matching expressions, as suggested in the previous para-
graph, works well here since semantically identical expressions that are the
same abstraction will tend to be used in a similar way.3

Scope-wide function replacement has the same localization benefits as
function extraction, but it can help recover structure after redundant code
has been introduced. Transformation extract-function can be used only to
avoid future redundant coding.
This transformation is a slight departure from the paradigm of local change

by the engineer compensated by the tool. There is no local change, and so
there is no necessary compensation—hence the need to prompt the engineer
for each substitution. What is really changing is the engineer’s perceived
structure of the system and how it is best represented. The tool helps by
finding all the candidates, making the substitutions, and assuring that the
substitutions preserve meaning.

3.3 Restructuring a Matrix Multiply Program

To show how these transformations are used to restructure, we transform a
matrix multiply program [ 17] shown in Fig-are 4a. Matrices in this program
are represented as vectors of (equal length) vectors, although the representa-
tion is hidden from the multiplication function through the use of auxiliary
functions.

The restructuring centers around three local functions and an implicit,
inlined function embedded in the main function. Extracting a form of these
functions may prepare for later functional changes or for reuse by other
programs. The first two local functions, matrix-rows and matrix-columns,
respectively report the number of rows and of columns in a matrix. The third
local function, match-error, reports an error if the two matrices do not match
in size. This function also has an embedded constant, ‘matrix-multiply, used for
reporting the name of the function that received the incorrectly sized matri-
ces. All of these functions, if at the top level, could be reused to implement,
for example, a matrix-add function. Finally, the part of the inner loop of the
matrix multiply that computes the innerproduct of a row of one matrix and
a column of another is an operation that could be extracted and invoked as a
separate function.
The restructuring tasks are:

Modify match-error to accept a parameter that is the symbol name of the
function that received the mismatched matrices.

3Alan Demers (personal communication, 1991) suggested this techrnque for eliminating spurious
equivalent matches. The problem posed was the removal of the embedded uses of the file number
1 m C programs. Since C programs use 1 for mcrementmg integers, incrementing structure
pointers, and as a file number for the standard output, there are too many matches for the
engineer to interactively filter However, restricting the tool to selecting matches that only use
the number 1 m write M sufficient to differentiate those uses that should be abstracted as file
numbers.
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(define 1+ (lambda (x) (+ x 11))

(clef lne make-matrix ( lambda ( rows columns)
(do ( (m (make-vector rows) )

(lo(l+ i)))
((= I row9) m)
(vector-set ! m i (make-vector columns) ) ) ) )

(define matrix? (lambda (x)
(and (vector? x)

( > (vector-length x) O)
(vector? (veccor-ref x 0) ) ) ) )

(define matrix-ref (lambda (m i j )
(veccor-ref (vector-ref m i) j )1 )

(define matrix-set! (lambda (m i j x)
(vector-set ! (veccor-ref m i) j x) ) )

(define matrix-multiply (lambda (ml M2)
( lecrec

( (match-error
( lambda (whatl what2 )

(error ‘matrix-multiply
“‘s and ‘s are incompatible operanda”
whacl what2 ) ) )

(matrix-rows
(lambda (x) (vector-length x) ) )

(matrix-columns
(lambda (x)

(veccor-length (veccor-ref x O) ) ) ) )

(lee” ( (nrl (matrix-rows ml) )
(nr2 (macrlx-rows M2) )
(nc2 (matrix-columns M2) )
(r (make-matrix nrl nc2) ) )

(lf (not (= (matrix-colufnns ml) nr2) )
(match-error ml M2 ) )

(do ([10 (1+1)))
((= i nrl) nil)

(do((j 0(1+ j)))
((= j nc2) nil)

(do ((k O (1+ k))
(a O (+ a (“ (matrix-ref ml i k)

(matrix-ref m2 k j) ) ) ) )
((= k nr2) (matrix-set’ r i j a))

nil)))
r))))

(a)
Fig. 4. Matrix multiply before restructuring.

—Move the three local functions to the top level; then remove the Ietrec that
contained them.

—Make the inlined innerproduct function a callable, top-level function that
computes the dot product of a row of one matrix and a column of another.
The parameters to the function are to be the two matrices and the
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(define I+ (lambda (x) (+ x

(define meke-matrix ( lanbie
(do ( (m (make-vector rows)

(io (1+ i)))
((= i rows) m)

)))

rows columns)

(veccor-set I m i (make-veccor columns) ) ) ) )

(define matrix? (lambda (x)
(and (veccor? x)

(> (vector-length x) O)
(vector? (veccor-ref x O) ) ) ) )

(define matrix-ref (lambda (m i j
(vector-ref (veccor-ref m i) j )

(define matrix-set ! (lambda (m i
(vector-set ! (vector-rraf m i) j

(define match-error
( lambda (whatl what2 header)
( error header

)

.%)
x)))

“‘s end ‘s are incompatible operands”
whatl what2 ) ) )

(define matrix-rows
(lamkxle (x) (vector-length X) ) )

(define matrix-columns
(lambda (x) (vector-length (vector-ref x 0) 1 ) )

(clef ine inner-product ( lambda (ml i m2 j )
(do ((k O (1+ k))

(a O (+ a (’ (matrix-ref ml i k)
(matrix-ref m2 k j) ) ) )

(len (matrix-rows m2) len) )
((= k len) a) nil)))

(define matrix-multiply (lambda (ml m2)
(let” ( (nrl (matrix-rows ml))

(nr2 (matrix-rows m2) )
(nc2 (matrix-columns m2 ) )
(r (make-matrix nrl IICi?) ) )

(if (not (= (ntatrix-
(m-atch-error ml M2
nil)

(do((i 0(1+ i)))

((= i nrl) nil)
(do((j 0(1+ j)))

((= j nc2) nil
(matrix-set !

olumns ml) nr2) )
‘matrix-multiply)

r i j (inner-product ml i m2 j) ) ))
r)))

0)

Fig.4. (b) MatrlxmuItlply after restructuring.

respective row and column. The code in the inner loop that computes this

in the original program is to be replaced by a call to this new function.

The result of restructuring matrix multiply is shown schematically in
Figure 5. Solid boxes are abstractions, and dotted boxes are groupings. An
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abstraction can only see those abstractions at the same level, above it, or
those immediately inside it. On the left, then, there is only one abstraction
accessible at the top level, while on the right there are five. Four program
components that were not externally accessible before—one of them not
abstracted—become independent abstractions. The ease of reuse of these four
new top-level functions will be greater because they span a larger scope. As a
secondary consequence, the internal structure of the main object will be
simpler.
The computer-aided restructuring of the matrix multiplication program is

relatively straightforward. The first step in the restructuring is to add a
parameter to generalize match-error. The command

(expr-to-binding (’matnx-mulhply) ‘header :scope (match-error))

extracts the ‘matrix-multiply constant from the original body and makes it a
parameter, named header, of function match-error, and updates each call on
match-error to pass ‘matrix-multiply as a parameter. (In the text here we have
altered the commands slightly by denoting components of the matrix multiply
program with descriptive tags surrounded by angle braces ( ). These compo-
nents are normally selected with pattern-matching directives. ) The command
checks that the abstracted value has the same value in its new context as it
did in the old and that header is an acceptable name in the scope created by
match-error (that is, there is no existing parameter or local variable of the

error function with that name). In this case, the command succeeds and
transforms the match-error function to

(match-error (lambda (whatl what2 header)
(error header “‘s and ‘s are Incompatible operands” whatl what 2)))

and updates the (only) call to

(match-error ml m2 ‘matnx-muitlp]y)

The second step is to move the three local functions to the top level and to
remove the Ietrec that encloses them:

(move-expr (match-error) :before (matrix-multiply))
(move-expr (matrix-rows) :before (matrix-mulhply))
(move-expr (matrix-columns) :before (matrix-multiply))
(ungroup (Ietrec))

The first three commands check to make sure that there are no name
conflicts in the new scope; in this case they succeed and move the three
functions to the top level, in front of the definition of matrix-multiply. The last
transformation removes the now empty Ietrec from the body of the matrix
multiply.
The last part of the restructuring, extracting the inlined inner product, is

the hardest. There are three impediments to performing the restructuring
directly.
First, the variable nr2 is used in the inner product computation but

is defined by the enclosing main function; to allow the extraction of the
inner product, the value of nr2 must be made available in the newly
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extracted function. Second, the value that the inner loop computes is stored
in the variable r; it must be returned as the value of the extracted function.
Third, the inner product is not parameterized; before extraction, it must be
explicitly parameterized by the two matrices (m 1 and m2) and by the row and
column indices (i and j).
To handle the first problem, nr2 must be split into another equivalent

expression (called Ien):

(var-to-expr (second nr2 reference))
(expr-to-binding (result of previous) ‘Ien scope (do))

The tool checks that the new names will not conflict with others in the
designated scope and that the recomputation of the binding produces
the same value as before and causes no extra side-effects. The checks succeed,
and the command transforms the inlined inner loop of matrix-multiply to:

(do ((k O (1 + k))
(a O (+a (* (matrix-ref ml i k) (matrix-ref m2 k j))))
(Ien (matrix-rows m2) Ien))
((= k led (matrix-set! r i j a))

nil)

To handle the second problem, the independent part of the result expres-
sion must be moved out of the enclosing do loop.

(pop-out (do) (a))

This command moves the entire return result of the do loop, except for the
second parameter (the reference to a in the matrix-set! command), outside of
the do loop:

(matrix-set! r i j
(do ((k O (1 + k))

(a O (+ a (* (matrix-ref ml i k) (matrix-ref m2 k j))))
(Ien (matrix-rows m2) Ien))
((= k Ien) a)

nil))

Now the inner loop can be extracted.

(extract-function (do) ‘inner-product
:old-new-name-pairs’ ((ml ) (i) (m2) (J))
:before (matrix-multiply))

The parameter :old-new-name-pairs is the list of variables or expressions to
be abstracted as parameters to the new function. New names can be supplied
as well, but here are defaulted to their current names. Note that if the
engineer had tried to apply this transformation without moving out nr2 and r,
the value of the computed inner product, the tool would have aborted the
extract-function transformation, returning the error message:

Variables nr2, r would be unbound in new context.

This completes the restructuring of the program, which is shown in
Figure 4b.
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3.4 An Experiment

We asked six programmers to perform the restructuring of matrix multi-
ply by hand [251. Even on this program, which fits on one page, four
of the programmers made errors on their first attempt. We observed that
the programmers tended to interleave logically independent activities,
apparently in an attempt to reduce the number of editing steps. We believe
this to be one source of restructuring errors. Their approach to restructur-
ing tended to be a copy/paste/edit paradigm, with some instances of
cut/paste/edit. This was used, for example, in extracting the inner-product
function. The copy/paste/edit approach proved easier because it is easy to
compare the edited copy with the original, but it is potentially slower because
it requires an additional editing step to go back and delete the original
unedited text. Cut/paste/edit proved slower in practice because extra edit-
ing steps were required to recover the original copy. In either approach, based
on our observations, we believe that the physical distance between the group
of changes comprising a restructuring step increased the chance of errors.
Because our tool combines all the intermediate editing tasks for the

programmer, it is not necessary to interleave logically independent changes
to speed restructuring. Combining the steps also relieves the programmer of
reasoning about the textually separated changes that comprise a restructur-
ing step. Finally, our tool interface requires the engineer to select an object
and a transformation on it, and the object, in practice, is the same object that
would be cut or copied if manually modified. This implies that the restructur-
ing interface is sufficiently similar to an editor that it should be easy to use.

3.5 Discussion

Is our set of transformations sufficiently powerful to allow localizing appro-
priate design decisions in a restructured program? To localize any property
means being able to colocate any subset of program components within a
module. A proof of whether a set of transformations can do this requires
precise knowledge of the transformations, the programming language, and
perhaps even the program. Here we take a more informal approach. The
transformations shown above have been derived in the process of restructur-
ing programs by hand and with the tool. Some of these have also been
suggested in the literature [11, 27]. Although the current set may not be
complete, it is not difficult to add new transformations as needed (see Section
4.4).
An additional program we restructured with the tool comes from Parnas’

case study of modular structure for the KWIC program [24]. KWIC takes a
list of lines of text and produces a list of all circular shifts of those lines, in
sorted order. Parnas used KWIC to demonstrate the structural principle of
information hiding as a criterion for module decomposition [41]. We success-
fully used our tool to restructure a poor modularization of KWIC to a
structure preferred by Parnas.
Parnas’ study compared two modularizations of KWIC, a functional and a

data decomposition. The functional decomposition models control flow, mak-
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ing no attempt to isolate data representations. For example, the representa-
tion of the line storage is accessed directly by the input task module and the
circular shift task module. The data decomposition, conversely, isolates
the representation inside line access routines that comprise a line storage
module. Parnas’ analysis showed that a data decomposition of KWIC will be
easier to modify than a functional decomposition.
Parnas emphasizes that the two decompositions can share all representa-

tion choices and algorithms—only what is isolated in a module need be
different. Using our prototype restructuring tool, we successfully restructured
a Scheme implementation of a functional decomposition of KWIC to a data
decomposition, showing that Parnas’ claim is systematically supported by our
tool. Restructuring with the tool before performing other changes yielded two
major benefits. First, the tool performed the necessary nonlocal changes to
preserve meaning. Second, as a consequence of the new data decomposition of
KWIC, many likely subsequent changes—those to representations and algo-
rithms, for example—are now confined to a module, whereas before they
were not. These subsequent changes are not themselves automated, but as
Parnas argued, they are local, and hence easier to reason about.

4. MODEL AND IMPLEMENTATION

Our tool’s implementation must preserve meaning and perform nonlocal
updates, while at the same time preserving the readability of the program.
These properties can be managed by using three program representations:
the source,4 the control flow graph (CFG’) [2], and the program dependence
graph (PDG) [22, 311. (See Appendix A for definitions of the CFG and PDG.)
The source includes information about scopes, for instance, which is unavail-
able in either the CFG or PDG. The CFG contributes information about the
ordering of statements. The PDG acts as the arbiter of meaning of a program
[30]. The PDG also simplifies the application of distributed changes in the
program source, since these are confined to a local neighborhood in the PDG.

Consistently managing these three representations is difficult [26]. Earlier
approaches, such as those used in program version merging [29, 56] have
modeled the relationships between program, CFG, and PDG as mappings
between representations. Our approach additionally relates the functions
that transform each of these representations. The data mappings from
the AST to and from the CFG and PDG are used for composing piecewise-
local program source transformations into a single global transformation.
Function mappings are first used to reason about the correctness of glo-
bal transformation implementations, and then to make them efficient. In
particular, a program source transformation must map to a sequence of
meaning-preserving local substitution rules on the CFG and PDG. The

i We use the terms “program,” “source, “ “text,” and “Abstract Syntax Tree” (AST) casually and
interchangeably. Although the representations are not identical, the mappings between them are
straightforward—especially for Scheme programs, our prototype’s domain.
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resulting substitution transformations then can be applied directly to the
CFG and PDG, which is faster than reconstituting them from the source.
There are at least three ways to handle the relationships among these

representations, as shown in Figure 6. (The figure, and the following discus-
sion, are simplified by introducing the notion of a combined CFG/PDG,
rather than by discussing the two separately. In practice, the representations
are indeed separate, but for these purposes the reasoning about and manage-
ment of the two are essentially identical. )
Figure 6a depicts an approach in which the program P is translated by the

CFG/PDG construction function m~ into its CFG/PDG form, G. The trans-
formation i$g is applied to this representation to produce the new CFG/PDG
G‘, which is then converted (i.e., unparsed) back to the source form P‘. This
allows using the nice mathematical properties of the CFG/PDG for reasoning
about the correctness of the implementation of the transformation function,
as well as for the natural and efficient application of semantically oriented
algorithms when the transformation is applied. This approach is problematic
because it requires restructuring in absence of syntactic constraints (and can
even lead to syntactically illegal programs). For example, a pure PDG col-
Iapses scope information from permitted relationships to actual relation-
ships. This absence of scope information might allow a statement in a source
reconstituted from the PDG to be located in a different scope than it was
originally, because the statement does not use any variables defined in its
immediately enclosing scope. In this case, CFG or source information is
needed to assure that this problem does not arise. Another problem is the
cost of reconstituting the AST after each transformation to permit further
transformations by the user. Although the fact that program reconstitution
from a PDG is NP-complete is not considered a serious problem in practice
[30], even an algorithm linear in the program’s length may be too slow for
interactive transformation.
A second approach, shown in Figure 6b, has the user apply the source

transformation ~p. Since ~p directly manipulates the source, precise syntac-
tic control is assured, and scoping semantics are easily checked. However, the
CFG/PDG notation is still used to show that the transformation is imple-
mented correctly, and G is used at runtime to ensure that necessary semantic
properties hold in P. In this approach, then, the benefits of both representa-
tions are achieved, but as suggested by the dotted arrow, CFG/PDG G‘ is
reconstructed from P‘ after 8p is performed. However, the cost of recon-
structing the CFG/PDG G‘ from scratch is prohibitive.5
A third approach, then, shown in Figure 6c, suggests performing both ~p

and 8g (which are associated by m ~) directly on each representation, and
bypassing the cost of the batch application of m~ or m; 1 to keep P‘ and G‘
consistent. (Of course, the initial construction costs of G from P using m~
must be paid, but subsequent transformations do not incur this cost.G )

5For example, Larus’ Curare system reqmres at least 0(1 progranz 3) to construct a PDG that
Incorporates reasonably precise alias information (personal communication).
6Function rn ~ or nf is referred to as m when the type of the input—data or function—is clear.
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Three steps are needed to realize this solution. First, a way is needed to
map a source transformation to an associated CFG/PDG transformation.
This mapping must find 8g isomorphic to i5p without applying tip. This
avoids constructing G‘ from scratch and comparing nz( 13p(P)) to ~g( m(P)).
Second, a way is needed to show that the resulting CFG/PDG transformation
a priori preserves meaning (thus showing the source transformation pre-
serves meaning). Third, during transformation, a way is needed of mapping
back and forth between AST and CFG/PDG data elements so that semantic
queries on the AST can be executed using the CFG/PDG. These runtime
mappings of data can be efficiently handled using relations that associate
AST vertices with CFG/PDG vertices. We focus on the first two points, as the
third is straightforward.
Although the following discussion focuses on the use of CFG/PDG trans-

formations to preserve program meaning, the scenario in Figure 6a suggests
that a program transformation is not a meaning-preserving one unless it is
successful in all the representations. For example, the corresponding source
transformation must be syntactically legal, and any semantic properties
better represented in the AST, primarily scoping, must be verified there. For
example, any newly introduced variable must not conflict with existing
variables in the program.

4.1 Constructing rnf

The formal basis for constructing a mapping from functions on the program
source to functions on the CFG/PDG is in its infancy [12, 46, 53]. Lacking
a formal basis, we developed a practical technique that relies on the trans-
formation builder’s knowledge of the programming language, the CFG, and
the PDG to relate transformations. There are two practical difficulties in
mapping transformations between representations. First, source transforma-
tions are global and thus difficult to reason about. Second, a way of relating a
change in one representation to a change in another is required. We handle
the first by defining a procedure skeleton that connects a collection of local
source transformations with semantic relationships defined in the PDG. We
handle the second by providing a simple set of CFG/PDG subgraph substitu-
tion rules. As defined by the globalization skeleton, a global program source
transformation is mapped to a sequence of these substitution rules. The
substitutions preserve meaning of a CFG\PDG, so they not only aid in the
mapping, but at the same time assure that the source transformation pre-
serves meaning with respect to the PDG. The result of using these is a set of
pairs ( i3p, tig)-one for each transformation—yielding an effective m ~. First
we present the skeleton, and then the substitution rules.

4.2 Decomposing 8P Using G

Our paradigm for global transformation—that a tool user applies a local
change local–trans to an expression e in P, and the tool applies the neces-
sary compensating changes via compensation–trans to the program compo-
nents affected by e—is described by the following procedure skeleton, which
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we call the globalization skeleton:

procedure delta_p(e)
for Ui ● uses(e)do
compensation_ trans(ui)

local-tra7u7fe)
end

where uses retrieves the set of references to the value produced by e. As long
as the uses are computed before transformation begins, the sequencing of the
compensations is unimportant, since each use is in a syntactically indepen-
dent location. Each of local_ trans and compensation _trans are typically
simple movements, copies, and substitutions, along with some deletion and
creation of syntax to represent the new structure (see Section 4.4).
Two issues must be resolved for this skeleton to be useful: the computation

of uses and showing that the resulting transformation preserves meaning.
The functions uses(e) can be computed by m - 1( fs( de))), where fs retrieves
the flow dependence successors of a CFG/PDG vertex, which in this case
are the uses of e. To assure that a transformation preserves meaning, the
transformation builder shows that the transformation obeys some basic
properties—described in the next section—and implements a check function
for those properties that must be checked at runtime (see Section 4.4).

The skeleton, with this definition for uses, aids in implementing a
transformation and its check by delineating several aspects of multiple-
representation transformation: between implementation time and run-
time tasks, between data mappings and transformation mappings, and
between tasks best performed in the AST versus the PDG. For example, the
local program transformations local_ trans and compensation_ trans are
implemented by the transformation builder (who also maps them to a CFG/
PDG transformation, as described in the next section), and m~ and m; 1 are
used by the tool at runtime to access semantic relationships naturally
represented in the CFG/PDG.

4.3 Meaning-Preserving Graph Substitution Rules

The program transformation initially derived with the aid of the glo-
balization skeleton is completed and demonstrated correct by mapping
compensation_ trans(ui ) and local–trans(e) to the PDG as a composition of
PDG subgraph substitution rules, yielding 8g. The PDG substitution rules
are designed to preserve flow dependence and not change the operations
in value-changing vertices. 7 Preserving dependence between two vertices
preserves the semantic link between them [42]. Not changing the muta-
ting operations preserves the actual values passed along the preserved
dependence.

7These rules are described solely in terms of the PDG, rather than the combined CFG\PDG,
because the substitutions on the CFG portion are straightforward because of its structural
similarities to the AST and PDG.
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This notion of equivalent meaning is rigorously applied by the Sequence-
Congruence algorithm [56], which computes equivalence classes of equivalent
programs or subprograms. Members of an equivalence class, over the course
of a program execution, produce equivalent sequences of visible states.
Although the definition of the Sequence-Congruence algorithm uses a variant
of the PDG called a Program Representation Graph (PRG), with appropriate
modifications the algorithm still applies to PDGs. The key difference between
the PDG and PRG is that the PRG uses normalized variables in the style of
static single-assignment (SSA) form [15] (eliminating antidependences and
output dependence) to make the Sequence-Congruence algorithm faster. The
PRG form might be useful for restructuring. However, the normalization
process introduces new variables that appear to either complicate mapping
between the source and the PRG or else compromise the readability of the
restructured source.

By definition, subgraphs of a PDG may be modified by the substitution of
sequence-congruent vertices without changing a PDGs meaning. For exam-
ple, creating common subexpressions [3] in a PDG by replicating a vertex and
its incoming edges (the result by definition is sequence congruent to the
original) and splitting the outgoing edges between the two copies preserve
meaning. Thus PDGs can be transformed by performing replacement of
sequence-congruent vertices in the PDG. This notion is used in motivating
the PDG subgraph substitution rules, and the algorithm itself is used in
substitutions where it is necessary to identify equivalent subgraphs.
Briefly, two of the substitution rules can be described as follows. The

transitivity rude represents the fact that x := Y has the same meaning as
temp := y; x := temp, if temp is not otherwise used. The distributivity rule
states, roughly, that if an expression’s result is assigned to a variable that is
used in multiple locations, then a copy of that expression (i.e., it is sequence
congruent) may be evaluated to produce the value for one of those locations.
In Figure 7 the copying of the + vertex and moving an edge over to it is an
example of applying the distributivity rule. There are also rules for renaming
variables, introducing (or removing) indirection to values, and modifying
control flow [24]. Most of these are strict equivalence rules, so their inverses
apply as well.

4.4 Example: Using the Model to Design var-to-expr

How are the globalization skeleton and the substitution rules used? Consider
the transformation var-to-expr, which replaces each use of a variable defini-
tion with a copy of the defining expression. The user selects the assignment
to be inlined, and the tool handles finding and inlining the uses. Since the
expression is moving to its uses, the transformation must check that none of
the inputs to the expression is changed by the move. Additionally, if the
result will allow multiple evaluations of the expression, the transformation
must assure that there are not side-effects in the expression. Finally, if a
use has multiple potential definitions-this can occur with a conditional
assignment—the transformation is aborted.

ACM TransactIons on Software Engmeermg and Methodology, Vol. 2, No 3, July 1993.



252 . W G. Griswold and D. Notkin

3 s bnE -i’
E

.....................
v ~Q k

ACM TransactIons on Software Engmeermg and Methodology, Vol 2, No 3, July 1993



Automated Assistance for Program Restructuring . 253

ACM Transact~ons on Software Engmeermg and Methodology, Vol. 2, No. 3. July 1993



254 . W. G, Griswold and D Notkln

The var-to-expr specialization of the globalization skeleton, where [v, e1 is
the expression that defines v, is:

procedure var-to-expr([v, e])
for Ui = uses([v, e])do
substitute(copy( e), Ui )

remove([v, e])
end

In addition to these local AST transformations connected by the uses relation
in the PDG, the source transformation must assure scoping and syntactic
properties. For example, moving e must not move a variable reference in e
out of the scope in which it is visible. On the syntactic side, each inlining of
e results in replacing a variable reference with a direct evaluation of e. In a
program there is no way one evaluation of e could be used in different
syntactic locations without an explicit variable to transmit e‘s value, although
in the PDG this would be perfectly legal. This constraint is achieved a priorz
by designing the transformation on the AST, rather than the PDG.

It remains to be justified with substitution rules that var-to-expr is mean-
ing preserving (refer to Figure 7). First the distributivity rule justifies
replicating e (e.g., j + k on the left in Figure 7), moving outgoing edges of the
original e to its copies and relabeling them (e.g., inlining j + k and removing
the references to x because the result is now directly transmitted).8 The null
label for the edges is dictated by the source transformation’s inlining of e.
Second, the rule for modifying control flow specifies when it is legal to move e
to replace Ui that are in a conditional.

Some runtime checks are required to assure that the substitution rules are
really being obeyed by the AST transformation; these are the same checks
described in the definition of var-to-expr above. For example, the use of the
distributivity rule requires the runtime check verifying that there are not
multiple definitions of the variable reaching the vertices being modified.

The resulting transformations can be used to transform the AST, CFG, and
PDG simultaneously. The transformations are efficient because they are
incremental, modifying only the data necessary, and they use the best of
the three representations for every query. In particular, all the components
to be modified (including edge types that we have omitted here due to
space considerations) are found within one PDG edge of the locally modified
expression.

4.5 implementation

The prototype consists of over 30,000 lines of Common Lisp code, of which
approximately half is the CFG/PDG package defined by Larus for his Curare
system [32].
The implementation of our prototype tool closely follows the definition of

the model. There is a module for each of the AST and CFG/PDG, and data

8 Because an assignment IS being deleted m the program text, It appears that the transitivity

rule IS being apphed, but in the graph the associated edge IS not deleted, just relabeled.
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mappings between them are implemented with hash tables. The PDG module
is borrowed from Larus’ Curare implementation [32]. The transformations on
the AST and PDG are implemented as procedures with side-effects. The maps
between a transformation on the AST to its equivalent on the CFG/PDG are
implemented by bundling calls on the two into a single procedure.
There are several layers of function in the prototype, as shown in the

intermodule dataflow diagram in Figure 8. In the lowest layer is the indepen-
dent implementation of the individual representations, the modules for the
AST and CFG/PDG. The layer on top of them connects the two into a unified
interface, enabling familiar syntactic access to information naturally repre-
sented in the CFG/PDG. This is aided by the data-mapping functions. Using
the unified interface, the next layer defines a set of syntactic queries and
transformations, as well as semantic queries. These are used for defining
meaning-preserving transformations and are frequently reused to implement
a new transformation. On a par with the meaning-preserving transforma-
tions is the mechanism that keeps the AST and CFG/PDG consistent with
each other.
The current implementation does not support incremental update to

the CFG/PDG for all transformations, just for variable renaming, moving
expressions, and changes to simple grouping constructs. The remainder use a
mechanism based on event-mediator integration [51, 52]. Also, the CFG/PDG
implementation does not support first-class functions, but recent research
in flow analysis for LISP languages suggests that suitable solutions are
possible [47].

5. RELATED WORK

5.1 The Laws of Programming

C. A. R. Hoare et al. [27] demonstrated that imperative programming lan-
guages obey powerful and intuitive algebraic laws that permit source-to-source
transformation. For example, there is a law that says a variable reference can
be replaced by its defining expression. For example, given expression E, and
expression F using x, F(x), then x = E; F(x) is equivalent to F(E).
A law as simple as this applies only to languages with restrictions on

input/output, pointers, recursion, and procedure call to achieve a degree of
referential transparency that normally is not present in imperative lan-
guages. In the example above, E and F, by definition of the language used by
Hoare et al., are known not to have side-effects. This is important because the
order of evaluation is potentially changed by substituting E in place of X. Also
if x is referenced multiple times in F(x), then E is evaluated multiple times in
F(E). If E were allowed to contain side-effects, the substitution would cause
repeated side-effects, disallowing application of the law. Further, in an
imperative programming language with global variables and procedure call,
meaning-preserving substitution depends on how global variables are refer-
enced in the procedure calls made in the expression. In this case the proper-
ties of an expression cannot be locally determined.
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However, it was this idea that suggested to us that there could be a
rigorous approach to restructuring programs. The idea was applied manually
to restructure a prototype operating system for a shared-memory parallel
processor, easing an enhancement that allowed running different programs
on different processors. The experiment was a success, but the referential
transparency problems of the rules prevented straightforward automation of
the manual process. To overcome this problem we generalized the technique
to the PDG, which has more of the referential transparency needed to reason
algebraically y about a program.

5.2 Imposing Block Structure

A program using gotos can be automatically transformed into a program
using only the structured flow graph operators sequence, branch, and loop
[10]. The intent is to improve a program’s structure to lower the cost of
maintenance, a shared motivation with our work.

Most of the solutions involve simulating gotos with structured operators.
One possibility is to use a large case statement inside a loop [55]. This is done
by putting each jump-free section of code in the original program into a case
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in the case statement. The case label can be the constant whose name is the
original goto to that piece of code. Fall-through gotos are given an invented
tag. Then at the end of each case a flag is set to the label of the goto that
would have been jumped to next in the original program. When the top of the
case is entered again on the next loop iteration, it selects the case correspond-
ing to that label. This proves unsatisfying when the gotos are tangled, as
the result is not much prettier than the original. Some approaches try to pre-
serve the original structure of the program during goto removal [43]. These
techniques use control flow graphs, an early precursor to, and important
subrepresentation of, PDGs.
Automatic restructuring systems such as SUPERSTRUCTURE [37] and

RECODER [21] have successfully exploited reorganizing program structure
by removing or block structuring gotos to aid in the maintainability of
goto-laden programs. These tools are batch oriented, avoiding the need for
user input. Although this approach has shown some benefit in experiments, it
was also observed that it distorts structure in programs with carefully
designed use of gotos [21].
Although useful as a first step for programs with gotos, restructuring on

control statements has limited applicability. The relationship among data,
functions, and types are of interest in restructuring, but these are not
addressed. Also, these batch-oriented techniques do not address aspects of
structure that are not easy to quantify, such as restructuring toward a
particular enhancement.

5.3 Transformational Programming

Introduced in the 1970’s, transformational programming, also known as
derivational programming, feeds a functional specification of an intended
computation to a transformation system that, with guidance from a “pro-
grammer,” rewrites the specification into an efficient program [ 11]. Thus
most of the development effort is focused on the specification rather than
programming, and there is a guarantee that the program satisfies the
specification. The use of transformation is the key similarity with the restruc-
turing work. Some basic transformations are:

—Unfolding substitutes a function’s definition in place of its uses. Unfolding
can expose identities that allow other transformations to happen, leading
ultimately to its inverse, Folding.

—Abstraction substitutes a variable for every instance of an expression and
defines that variable to be the value of that expression. This exposes
similarities in the code.

—Instantiation substitutes a value or expression for a parameter. This
permits splitting a problem into cases, such as a base case and recursive
case.

The analogues of these transformations in the restructuring work are
generalized to handle the semantics of imperative programming languages.
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Recognizing the possibility to fold has the same equivalence problem as
global_ substitute_function and appears to use a similar pattern-matching
technique.g
A significant detriment to transformational programming is the large

number of transformations that must be applied to derive a program. This is
not as severe a problem in restructuring because restructuring does not need
to transform through successive language levels and also transform within a
language. Transformation between language levels is essentially the choice of
a lower-level implementation of a higher-level specification. Also, transforma-
tional programming makes more use of the algebraic knowledge of types,
which, although important for equivalence, does not affect locality.
Another problem is the large catalogue of transformations that must be

available for deriving programs. The catalogues are large enough to make it
difficult to find appropriate transformations to apply. The reason this occurs
is that there are large, potentially unbounded, numbers of appropriate imple-
mentations (choice of representation and algorithm) for a specification. Local
transformations must also be supported. This is not a serious problem in the
restructuring domain because the catalogue is practically bounded by the size
of the language’s syntax.
Recent work in derivational programming has attempted to alleviate the

tedium of choosing and applying transformations by building up higher-level
transformations from primitives [6, 20]. For example, Feather developed a
technique that uses a pattern to express the goal of a transformation. Using
a goal pattern, a tool can select the appropriate primitive transformations
to compose to achieve the goal. Such techniques might be applicable to
restructuring.

Other work has focused on trying to lower the costs of redevelopment by
automating rederivation of a program from a modified specification [19]. The
basic idea is to reuse the transformation sequence from the initial develop-
ment to automate the programming tasks of maintenance. There are doubts
about the success of these techniques because it appears that the ordering of
transformations is brittle with respect to changes in the specification [38]. To
avoid this problem and the others cited above, Narayanaswamy and Cohen’s
system uses declarative annotations that help the compiler choose transfor-
mations to derive an efficient program. This frees the programmer from
transformation tasks, and an annotation needs to be changed only when the
usage of the annotated program component changes. The specification and
implementation are still separated, but the downside is that the specification
language must be lower level for this technique to produce efficient programs.

5.4 Knowledge Representation Enhancement
A package of tools for performing structural enhancements of a knowledge
representation system [5] has the same motivations as our research, but in a

9The presence of referential transparency m this domam does not help. Program eqmvalence IS
undecidable due to looping, or equwalently, recursion, which M what functional languages use to
Iterate.
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narrower domain. The tools exploit the highly structured, declarative domain
model of a knowledge base to infer the changes to assumptions caused by a
structural enhancement. A tool locates the representations that use these
assumptions, so the programmer can update them. In some cases, the system
can perform the update as well, but lets the user provide additional input if
more of a change is desired.
The changes supported are on types and attributes and include

changing the supertype of a type or moving an attribute between types. The
updates to the model are made to not only the declarations and the code that
uses them, but also to the existing data modeled by the knowledge
representation—an aspect not addressed in the restructuring work. Chang-
ing the type of an attribute can require translating the original values of the
attribute into values of the new type. This can be automated when sufficient
information about the relationship between the types is available.

It is not the intention of the tool’s operations to preserve meaning per se;
the propagation of changes proceeds only one step to direct the programmer
to the directly affected locations. Thus the changes in structure and the
change in meaning they allow are intended to go hand in hand. Balzer’s
approach is in contrast to our style of restructuring, which propagates the
changes of the compensating transformations if necessary to preserve mean-
ing. This difference is philosophically significant, as it is widely agreed that
global changes are subject to error [8, 41], although at least with Balzer’s
work the user is directed to the sites potentially requiring change. It also
requires significantly more work on the part of the engineer. Finally, if the
user compensations are not meaning preserving, and they are global, then
interfaces of the changed object are not being made any more robust; future
change is not likely to be any more localized. Although structural enhance-
ments may not require locality of change because of the tool, functional
enhancements can receive no aid from the restructuring tool, and so will
require manual global change. This suggests, then, that the most reason-
able action in the user-driven compensations is to make meaning-preserving
compensations that localize future changes.
The semantics of type structure and attribute structure can be handled by

the techniques described in this paper, although they are not aspects that are
so readily exemplified in Scheme [24].

5.5 Bounding the Effects of Changes

We aid maintenance activities by constraining (i.e., prohibiting) the semantic
effects of changes, thus eliminating the chance for introducing errors during
restructuring. Another approach is to constrain the changes themselves. In
particular, it maybe useful if a programmer can limit the semantic effects of
enhancements to a particular subsystem, thus assuring that errors are not
introduced in the rest of the system. Gallagher and Lyle [23] have proposed a
slicing tool that computes the bounds on the effects of software changes.

(Loosely, a slice for an output variable is all the statements in a program
that may affect the value of the variable [54]. A tool using their technique can
compute a union slice for the variables of a code fragment to be modified, and
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then protect the slice of the statements not in that slice by limiting the
editing commands that can be executed. After computing the union slice and
the complement slice, the union slice is partitioned into statements that also
belong to the complement slice (i.e., affect the values of output variables in
the complement slice), called dependent, and those that are in the union slice
only, called independent. The y then constrain editing in the following fash-
ion: Any independent statement may be deleted, and no dependent one can be
deleted. A statement can be inserted if it does not modify any variables in the
complement slice. Inserting statements to control dependent statements is
not allowed. (Note that a change to a statement can be modeled as a deletion
followed by an insertion. )
Although this technique bounds the effects of changes in a program, it has

limitations. First, the slice is not the most natural unit of code. Slices in
general do not correspond to functions or modules, but instead to the flow of
data and control throughout a program. Realistically, a programmer may
prefer to prescribe bounds that correspond to natural functional units. Sec-
ond, the technique does not allow many changes. For instance, a slice
typically shares dependence with other slices, and these expressions cannot
be modified. Also, slices tend to be large [56], implying that the effects of
changes are not tightly bounded. In this respect the technique may be
inherently limited, because it is purely analytical—it does not exploit seman-
tic information to actively preserve the meaning (e.g., by transformation) of
subsystems selected by the user.

5.6 Verhcal Migration and Good System Structure

One concern about “good structure is that it can incur high execution cost
overhead. Stankovic [48, 49] investigated the tradeoffs between good struc-
ture and performance, developing an execution cost model based on structure,
and a structuring technique called uertica 1 migration to improve performance
in selected portions of code. To help identify modules that would benefit from
vertical migration, Stankovic implemented an analysis tool based on the cost
model. He also described a subset of transformations for improving program
structure.
The cost model views a system as several layers of virtual machine, and

each layer can call only the layer below it. The cost of a call from one layer
into the next is broken into three parts, a prologue that performs some setup
or perhaps checking on entry to the layer, the execution of the func-
tion called, and an epilogue executed on exit from the layer. For example,

calling into a layer could cross an address space boundary, requiring a

context switch in the prologue and again in the epilogue when returning. This

model exposes two causes for unnecessary execution overhead. One, when one

layer makes multiple calls from one layer to the next, the prologue and

epilogue are executed on each call. Two, if a layer wishes to call a function

two layers down, it must go through the intervening layer, incurring the cost
of its epilogue and prologue.
Vertical migration is the process of moving function from one layer down to

the next layer, in the process removing unnecessary overhead. For example,
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if the layer-1 call Pll makes two successive calls POI and Poz to layer O, then
a single function P{l can be created in layer O that incorporates the two calls,
and layer 2 may call it directly rather than calling Pll. This cuts the two calls
into layer O down to one, and removes the call into layer 1 altogether.
Additional savings are possible if the generality of the separate POI and P02
functions is not required, and the implementation can be optimized in their
absence.

One downside to vertical migration is that it violates the layering method-
ology by aHowing layer n + 1 to call into n – 1 directly. Good documentation
techniques can help overcome this problem. Another downside is that if
generality is optimized away, then enhancements requiring this generality
will require additional reimplementation effort. Of course, this is acceptable
if the improvement in performance is highly desired.

Stankovic performed experiments showing that improving a system’s struc-
ture through manual transformation, and then selectively migrating function
to improve performance, yielded better overall structure and improved execu-
tion time in comparison to the original system.

Stankovic claims that restructuring cannot be automated because the
choice of appropriate structure requires human judgment. What he failed to
distinguish was the automation of transformations and the choice of what
transformations are applied where. Our approach automates the former
without sacrificing human control over the latter. On the other hand, the
vertical migration transformations, although meaning preserving, cannot be
automated in the style presented here. This is because vertical migra-
tion eliminates execution of prologue and epilogue code, which cannot be
described with the existing PDG substitution rules.

5.7 Program Understanding

Program understanding—also sometimes called reverse engineering-uses
techniques such as graphical display of program structure [13], inferring
abstractions [44], or assessing modularity [18, 45] to extract program infor-
mation in a more understandable or reusable form [34].

Improving a programmer’s understanding of a system makes its existing
structure clearer—and hence better—just by making it better understood
[4, 8]. Although learning has limits on clarifying structure—because of the
increasing amount of time required for increasingly complex programs—it
requires no change to the system, which is advantageous in the short term.

More importantly, a program-understanding tool can help an engineer
navigate and understand a system that may need to be restructured. Also,
after restructuring it can accelerate the reeducation of programmers about
the system’s new structure.
At another level, an intelligent tool might be able to automate the choices

of transformations (see Section 5.3) or the actual desired structure. The latter
will be very difficult because what constitutes “good” structure is difficult to
quantify and is dependent on future changes that are often unknown and
perhaps not describable to a tool. The Programmer’s Apprentice [44], a
knowledge-based inferencing tool, generates plans from programming clich&
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that allow them to be reused in developing new code. However, the program-
mer still must choose when use of the plan is appropriate.

Many program-understanding tools, such as slicers for debugging [1, 54]
use PDGs or other flow analysis representations. This provides significant
leverage for providing several tools at low cost, since they can share complex
components.

6. CONCLUSION

Maintenance is the most expensive component of the software process [35].
The structure of a program significantly influences the cost of its mainte-
nance. Restructuring a program can isolate a design decision in a module so
that changing it will not require costly nonlocal changes. Our approach to
improving the cost-effectiveness of restructuring enables the software engi-
neer to locally specify source-to-source structural changes, while automat-
ing the nonlocal, consistent changes that complete the restructuring. This
frees the engineer from the implementation and validation tasks associated
with the restructuring, accelerating it and preventing the introduction of new
errors due to inconsistencies in the changes.

6.1 Critique

To demonstrate the validity of these ideas, we have shown how to build such
a tool using a novel semantic model and have used the tool in an experiment
and examples. Restructuring, however, is not yet a mature technology.

Transformational Restructuring Is Low-Level. After the software engineer
chooses the best structure for the next maintenance step, the transforma-
tional approach still requires the engineer to choose the transformations that
migrate the program from its existing structure to the new structure. One
solution may be to use techniques related to goal-directed program derivation
[201 (see Section 5.3), which for restructuring would allow the engineer to
specify the goal structure and let the system infer the transformations.

A more straightforward yet higher-level approach would be to integrate
analysis tools that use the AST and PDG to compute structural relationships;
these can then be visually displayed for manipulation by the engineer. For
example, the uses relation defined by Parnas can provide information to help
define a virtual-machine structure for a system [40]. Such a relation requires
significant computation, so it is best computed by a tool. Where a function
should be placed based on this mformatlon m best left to the engineer; visual
display of the uses relation may simplify the task.

The Relations ip Between Restructuring and Preserving Meaning Is
Unclear. The preservation of meaning is a central theme of this restructur-
ing work. Three aspects of this may deserve further attention. First, is
preserving meaning needed as an automation technique for restructuring?
Balzer’s tool described in Section 5.4 leads the engineer to the locations
requiring update and performs some manipulations, but does not preserve
meaning. This is more flexible than our approach, but less automatic and
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provides fewer guarantees. Which approach will engineers prefer? Our exper-
iment, described briefly in Section 3.4, suggests that a guarantee of preserved
meaning is valuable, but it is not proved, since the subjects were unaided
except for a text editor. Second, if meaning is to be preserved, must it be the
implementation meaning of the program? For example, an approach based on
preserving specification meaning would allow more flexibility. One concern is
that specification semantics may not be sufficiently constrained to allow
automated assistance. Third, is preserving meaning during restructuring too
restrictive to be useful? This reflects on the other two points, but also
questions whether global enhancement must be automated to successfully
reduce maintenance costs. This calls Parnas’ module work into question, but
the addition of a tool to automate nonlocal enhancement may qualitatively
change the basis of his assumptions.

Need Evidence that Automated Restructuring is Cost-Effective. The experi-
ment in Section 3.4 showed restructuring was haphazard and error
prone when performed manually. Although this experiment was on a small
program-where no benefit might be seen—the differences were observable.
Likewise, the restructurings of matrix multiply (Section 3.3) and the KWIC
indexing program (Section 3.5) using the prototype have strengthened the
case for tool-aided restructuring. Certainly more thorough experiments are
required, but only long-term use will provide sure evidence of the value of
tool-aided restructuring. In either case, interactive performance, a windowing
interface (now nearly complete), and a more complete and robust set of
transformations are required for further progress.

Another approach would be to discover a model that relates the cost of
maintenance to assisted restructuring. Such a model might be in the style
of that developed by Belady and Lehman [8]. A more precise analysis would
require a micromodel of software change.

Restructuring Must Be Generalized to Handle Large Programs. The great-
est potential for restructuring lies in managing the structure of large pro-
grams. At the scale of thousands or millions of lines of code, the asymptotic
term of exponential structure complexity of a program will dominate, with
great financial impact.

Modules and classes are two language structures that are useful for
building large programs, but are not handled in the current tool. Transforma-
tions for restructuring at the module level and in a class hierarchy have been
designed [24]. These transformations need to be incorporated in a tool,
justified in the model, and their success measured in use.

Performance issues are also crucial. Our substitution rules for incremental
update of the PDG promise good performance. Increasing the scale will
test this claim. Also important are environment issues such as storage of
semantic information between restructuring sessions. Finally, the ability to
transform in the presence of interdependence computed with conservative
dependence analysis may prove to be a problem. Improved dataflow analysis
techniques may be necessary.
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More importantly, manual restructuring at a large scale is likely impossi-
ble because there are so many nonlocal relationships to keep consistent. The
manual bookkeeping promises to be overwhelming, so only an automating
tool can flawlessly and tirelessly aid a software engineer in restructuring a
program with a guarantee of preserving meaning.

6.2 Contributions

We have shown how to build an interactive, source-to-source, meaning-
preserving program-restructuring tool for imperative programs that allows
the engineer to locally specify a nonlocal change. The transformations do not
just remove gotos; the technique supports a broad class of transformations for
localizing design decisions. Further, we have proved the novel idea that
program structure can be managed by transforming the abstractions
of a program without affecting its basic computations. There are several
supporting contributions.

Using Meaning-Preserving Transformation to Automate Restructuring.
Automating restructuring is enabled by requiring that structural changes not
change the runtime behavior—or even the underlying algorithms and data
representations—of the program: preserving meaning is a precise, easy-to-
understand, global consistency constraint that precludes introducing errors
during restructuring, and still allows changing structure. Using a transfor-
mational approach, Section 3 defined a set of structural changes exploiting
this constraint. The transformations as a group can manipulate structures
spanning several common types.

The transformations are not new [11, 36, 48], but their style of appli-
cation and purpose are. A transformation is applied to a single syntactic
construct, and the tool makes the compensating changes in the rest of the
program to preserve its original meaning. This style of transformation
removes the engineer from error-prone activities without sacrificing control
over the resulting structure, unlike prior restructuring tools [21, 37].
In addition to revealing the hazards of manual restructuring, the experi-

ment also confirmed that the tool automates those exact activities that are
error prone: making consistent, physically dispersed changes. It also showed
that the tool’s style is consistent with observed manual-restructuring tech-
niques, which should improve usability. In particular, the common manual
technique of applying copy-paste to a construct, and then editing it and its
uses, is supported by the tool. The tool allows the engineer to apply the first
part of the action, with the tool completing the editing and compensations to
the uses.

Development of a Practical Model for Defining Meaning-Preserving Source-
To-Source Transformations. The model introduced in Section 4 defined
a small set of local, meaning-preserving subgraph substitution rules and
scope manipulation rules. By relating the CFG and PDG to the program
source via the mappings of a commutative diagram, the rule set locally
describes a transformation’s physically distributed textual changes. This
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simplified understanding the meaning-preserving properties of program
transformations.

The globalization skeleton, derived from the commutative diagram, pro-
vides guidance for mapping PDG transformations to program transforma-
tions during implementation. Only searches are dynamically mapped between
the program and the PDG; all updates to the program and PDG can be
performed directly on each. Consequently, a source-to-source transformation
is applied directly to the program, leaving unchanged those syntactic features
of the program that are not explicitly manipulated. This is in contrast to
standard PDG unparse techniques [28, 32].

A Working Implementation of a Restructuring Tool. Successfully imple-
menting a restructuring tool validated the claim that a restructuring trans-
formation can be invoked locally by the engineer and compensated by a tool
to preserve meaning. The tool was successfully used on two programs: the
matrix multiply used in the experiment and the functional decomposition of
KWIC. The implementation also supports the claim that the model is
a powerful tool. In particular, the model’s abstractions and the globaliz-
ation skeleton helped define the tool structure and reason about the correct-
ness of its transformations. The implementation also tested incremental
update of the PDG in two instances, evidence that a restructuring tool can be
efficient.

APPENDIX A

Control Flow Graphs and Program Dependence Graphs

The CFG is a set of vertices that are the primitive operations of a program
and a set of directed edges that represent the flow of control between the
vertices. The primitive operations, derived from the program’s expressions,
are called statements, and are triples of the form (operation, result, argu-
ments), where operation is either operator call, function call, or a predicate;
result is a variable to hold the result, and arguments are the variables that
contain the inputs to the operation. A predicate statement will have two
outgoing edges, one with the label true, the other false, indicating that the
respective successor statement is conditionally evaluated based on the suc-
cess or failure of the predicate. Nonpredicate statements are linked by
unlabeled edges, indicating straight-line sequential execution.
A program dependence graph [22, 31] is a set of vertices that represent the

primitive operations in the program (i.e., the statements of the CFG) and a
set of directed edges that connect the vertices. An edge e representing the
flow of data between two operations u and u is called a flow dependence and
is denoted e = FYI( u, u). There is such an edge if and only if, in the CFG, the
result operand of u is an argument to u, and there exists a traversal of
the CFG from u to u such that there does not exist a vertex w whose result
operand is the same as u’s [42]. If the dataflow dependence is due to a
variable s being set in u and used in v, the edge is labeled by the variable
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local x := 1
begin
local y
ifx<5 then ~
X:=2

y:=x

X:=y+l
end

Do:x

2

FD:y

Fig. 9, A program and Its program dependence graph

definition carrying the flow, es = FD( u, u ),. By convention, if the variable is
not a program variable, it may be omitted from a figure. A control depen-
dence edge represents an on-off switch for its destination vertex. It denotes
the success or failure of the predicate vertex at its source. A control depen-
dence edge is labeled true or false to denote whether the destination vertex is
activated on success or failure of the predicate vertex. Thus a true branch of
predicate vertex p to v is denoted CD( p, u )t,Ue. By definition, in the program
only one of the paths denoted by e~,U, or ef~l.. can execute on evaluation of the
predicate denoted by p.

Some operation vertices generate a constant dataflow dependence. In the
figure they are denoted as a constant value on the flow dependence with no
source vertex. Another special class of vertices are the input and output
vertices, which denote the read and write statements of the program. These
are different from other vertices because the value on an output edge is not
entirely dependent on the values on the input edge. They are treated conser-
vatively as modifying a common global variable (i.e., the file system).
A PDG may also support some additional edge types: antidependences,

clef-order dependence, and output dependence. Each, for a different case.
implies that the source vertex is necessarily executed before the destination
vertex in the program, even though there is no explicit flow of data or control
between them. The PDG representation used in the prototype [32]
has antidependences (edges denoted by AD in Figure 9) and clef-order
dependence [30] (denoted by DO).
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