
A Model for Change Propagation Based on Graph Rewriting 

Vficlav Rajlich 
Department of Computer Science 

Wayne State University 
Detroit, MI 48202 

rajlich @ cs.w ayne.edu 

Abstract 

This paper presents a model of change propagation 
during software maintenance and evolution. Change 
propagation is modeled as a sequence of snapshots, 
where each snapshot represents one particular moment 
in the process, with some software dependencies being 
consistent and others being inconsistent. A snapshot is 
changed into the next one by a change in one software 
entity and the dependencies related to it. The formalism 
for this process is based on graph rewriting. The paper 
discusses two basic processes of change propagation: 
change-and-jix, and top-down propagation. I t  also 
describes a prototype tool "Ripples 2" which supports 
both processes, and an example of the use of the tool. 

1. Introduction 

Change propagation is one of the key parts of software 
maintenance and evolution. In order to explain change 
propagation, we have to understand that software 
consists of entities (classes, objects, functions, etc.) and 
their dependencies. The dependency between entities A 
and B means that entity B provides certain services, 
which A requires for its correct function. Function call 
is an example of a dependency among functions. 
Examples of dependencies among classes include 
composition, where one class is composed of instances 
of other classes, and inheritance, where one class 
inherits properties from another class. Different 
programming languages or software systems may 
consist of different entities and dependencies. The 
dependency is consistent if requirements of A are 
satisfied by what B provides. 

When a programmer makes a change in software, he 
starts by changing a specific entity of the software. After 
the change, the entity may no longer fit with the other 

1063-6773/97 $10.00 0 1997 IEEE 

entities of the software, because it may no longer 
provide what the other entities require, or it may now 
require different services from the entities it depends on. 
The dependencies which no longer satisfy the require- 
provide relationships are called inconsistent 
dependencies (inconsistencies for short), and they may 
arise whenever a change is made in the software. In 
order to reintroduce the consistency into software, a 
change propagation process keeps track of the 
inconsistencies and the locations where the secondary 
changes are to be made. The secondary changes, 
however, may introduce new inconsistencies, etc. The 
process in which the change spreads through the 
software is sometimes called the ripple effect of the 
change [ 191. 

For the software maintainer, change propagation is a 
key process. The maintainer must guarantee that the 
change is correctly propagated, and that no 
inconsistency is left in the software. An unforeseen and 
uncorrected inconsistency is one of the most common 
sources of errors in software. 

Change propagation is made easier by supporting 
tools and techniques which improve both the efficiency 
and quality of the process. However, in order to develop 
effective tools, the problem must be correctly 
understood. This understanding is best formulated in 
terms of a formal model, which extracts the essential 
properties and separates them from accidental ones. 
Each model is based on a certain set of assumptions, 
both explicit and implicit. The model creates the 
foundation on which the tool developer bases the tools 
and techniques. The implementation of a prototype tool 
is a first validation of the model, and of the abstractions 
and assumptions built into it. In the final phase, 
validation of the tool must be made in a practical 
setting, where the usability, practical importance, 
effectiveness, etc., is assessed. Needless to say, all three 
phases are important for progress in the area of software 
tools, and there is no real conflict between them. This 

84 

http://ayne.edu


paper presents both the model and a prototype tool based 
on it. Furthermore, it presents an example of the use of 
the tool. 

In literature, several formal models of change 
propagation have been proposed; see the overview in 
[1,2]. Particular attention has been paid to the prediction 
of the size and location of a change [6,7,13], and to the 
analysis of the dependencies in the software 
[4,8,9,10,12,15,18]. This paper does not deal with the 
first topic, and uses the results of the second topic as a 
starting point, i.e. assumes that the dependencies in the 
program are known. The process of change propagation 
has also been described, for example, in [11,19], but 
here we provide a more complete treatment. 

In our model, the evolution of the dependency graph 
is modeled as a sequence of snapshots, where each 
snapshot represents one particular phase in change 
propagation. In each snapshot, the dependencies are 
either consistent or inconsistent. A snapshot is changed 
into the next one by a change in one entity, which 
changes some inconsistent dependencies into consistent 
ones and vice versa. The formalism for this process is 
based on the graph rewriting of [14], and is presented in 
Sections 2, 3, and 4. As a step towards validation of the 
model, we implemented a prototype tool "Ripples 2" 
described in Section 5.  Section 6 contains an example of 
the use of the tool. Section 7 contains conclusions. 

2. Basic model 

The basic definition of this section is a definition of a 
program with both consistent and inconsistent 
dependencies. Formally, this is expressed in the 
following way: 

Let C be a set of entities of the program; for example, 
a set of classes. Then a dependency between two classes 
a,b E C is a labeled couple D<a,b>. I<a,b> denotes an 
inconsistency between class a and class b, where b is to 
be updated. Then a program P is a set of dependencies 
and inconsistencies such that for every I<a,b> E P, there 
is either D<a,b> E P or D<b,a> E P. Set of entities of a 
program is ent(P) = {a,b I D<a,b> E P}, set of marks is 
the set mark(P) = (b  I there exists I<a,b> E P}. 
Dependencies of the program is the set depend(P) = 
(D<a,b> I D<a,b> E PI, and inconsistencies of the 
program are inconsist(P) = {I<a,b> I E P}, A consistent 
program is a program P for which inconsist(P) = 
mark(P) = 0. 

Graphically, we denote the programs as directed 
graphs, where directed arcs represent dependencies, and 
additional large arrows represent inconsistencies 
pointing in the direction of change, see Figures 2 and 3. 

Examples of the entities are classes in C++, and 
functions and global variables in C. Examples of 
dependencies are inheritance, use, friendship, etc. in 
C++, or calls among the functions, and references of 
functions to global variables in C. Other languages have 
different entities and dependencies. In our model, we are 
assuming that all updates always change one specific 
entity at a time. This is captured in the following 
definitions: 

T(a) = { D<b,a>l D<b,a> E P} (top dependencies of a) 
B(a)= {D<a,c>l D<a,c> E P}(bottom dependencies of a) 
I(a)=( I<b,a>l I<b,a>E P}(incoming inconsistencies of a) 
O(a)=( I<a,c>l I<a,c>E P)(outgoing inconsistencies of a) 
P(a) = T(a) U B(a) U I(a) U O(a) (neighborhood of a) 

A step in change propagation is the replacement of an 
entity and its neighborhood by an updated one. This is 
formally defined in the following way: Let P be a 
program before a change, and P be the same program 
after the change. Denote P(a) to be the neighborhood of 
an entity a before the change, and P(a) to be the 
neighborhood of entity a after the change. Then 
P = (P-P(a)) U P'(a). 

In other words, a step is a replacement of just one 
entity and its neighborhood. Please note that the formula 
for the change follows the notation of [14]. It simplifies 
the algebraic complexities of the graph rewriting, and 
still captures all essential properties of graph rewriting 
which are needed for the model. 

Let a E ent(P). Then 

3. Change-and-fix process 

In the previous section, we defined formally a change 
in one entity of a program. A process of change is a 
sequence of such changes. In this section, we are going 
to explore one such process, called the change-and-fix 
process. In this process, P(a) = T(a) U B'(a) U O'(a). 
We are assuming that all incoming inconsistencies were 
resolved by the change, i.e. after the change there are no 
longer any incoming inconsistencies and I'(a) = 0. 

For outgoing dependencies, we distinguish two cases: 
In the first case, the change does not propagate to any 
neighboring entities. In that case, O(a) = 0, and P(a) = 
P(a) - I(a). In the other case, the change may propagate 
to all neighboring entities, which all have to be marked. 
We are not dealing with intermediate situations where 
some of the neighboring entities are marked and some 
are not. The new inconsistencies always point away 
from the entity a which was changed, towards the 
neighbors. We also assume that the changes do not 
"bounce back", i.e. do not point to neighbors which were 
changed in the previous rounds and whose 
inconsistencies forced the change in entity a. Formally, 

85 



O'(a) = {I<b,a> I D<a,b> E P'(a) or D<b,a> E P'(a)} - 
{I<a,c> I I<c,a> E P(a)}. 

We also assume that T'(a) c T(a), i.e. the change in 
entity a does not remove any top dependencies (i.e. the 
entities dependent on a will still be dependent on a even 
after the change). However the change in entity a may 
change bottom dependencies in an arbitrary manner, i.e. 
either B'(a) = B(a) (a will be dependent on the same 
entities), or B'(a) != B(a) (the general case where entity 
a will be dependent on a different set of entities after the 
change), with the special cases B'(a) c B(a) (entity a 
will be dependent on fewer entities after the change), 
and B'(a) 2 B(a) (entity a will be dependent on more 
entities after the change). 

The process of change propagation is defined in the 
following way: 

Change-and-fix process of change propagation 

given a consistent P; 
select a; 
change(a); 
P = (P - P(a)) U P(a); 
do { 

select a E mark(P); 
change(a); 
P = (P - P(a)) U P(a); 

} while (mark(P)!= 0); 

Example 

Let us consider a process of modification for the 
telephone directory from [16]. The phone directory uses 
a file of names and phone numbers, which the program 
reads and then creates an internal data structure. When 
the user enters a name of a person, the program searches 
the data structure for the phone number. Figure 1 shows 
the entities of the program Po, where "Main" controls 
the execution of the program, "Input" is the function 
through which the user inputs the name, "Data" is the 
data structure containing the names and phone numbers 
which is being initialized by "Init" and searched by 
"Search". The function "Search" implements binary 
search where function "C" implements alphabetical 
comparison of two names, needed for the binary search. 
Formally, ent(Po) = {Main, Input, C, Search, Data, 
Init}, dependent(Po) = { D<Main,Input>, D<Main, 
Search>, D<Main,Init>, D<Search,Input>, D<Search, 
C>, D<Search,Data>, D<Init,Dato}, inconsist(Po) = 
mark(Po) = 0. 

A-% Init 

Figure 1 

The change in the program is the change from the 
binary search to a hash search. As the first step, the 
algorithm of function "C" is changed into a hashing 
algorithm, and C returns a hash value for a given name. 
The resulting situation is pictured in Figure 2. In it, 
program PI has entities ent(P1) = ent(P,), dependent(P1) 
= dependent(Po), inconsist(P,) = { I<Search,C>}, and 
mark(Pl) = {Search}. Please note that the inconsistency 
is denoted in Figure 2 by large arrow. 

Figure 2 

In the next step, the function Search must be changed, 
because it uses a new algorithm. The program after the 
change is in Figure 3. In it, ent(P2)= ent(Po), depend(P,) 
= depend(Po), inconsist(P2) = {I<Search, Data>, 
I<Search,Main>, I<Search,Input>}, and mark(P2) = 
{Input, Main, Data}. 

Figure 3 

86 



In the next step, the marked entity "Input" is checked 
and left without change because it still has the same 
implementation. Also, the interface of function "Search" 
remains the same, since the change involves only the 
internal algorithm and not the interface of the function, 
and therefore there is no change of "Main". However 
data structure "Data" must be changed, since the data 
structure for hash search is different from the data 
structure for binary search. The situation after the 
change is depicted in Figure 4, where ent(P3) = ent (PO), 
depend(P3) = depend (Po), inconsist(P3) = { I<Data, 
Init>}, 

Figure 4 

In the next step, entity "Init" is changed and "Main" is 
marked. Finally, "Main" is checked and left unchanged 
because the prototype of function "Init" remained the 
same, and the program becomes consistent again. 

The Change-and-fix process is the most common 
process of software maintenance. However many of its 
properties are unclear. For example, it is conceivable 
that the entities will be visited several times or even that 
there may be an infinite process, where the change 
propagates in a circle and repeatedly revisits the 
previously changed entities. Therefore, in the next 
section we are going to model a more predictable 
process, where changes propagate only from top-down. 

4. MSE: a top-down change propagation 

The process was originally described in [16] and 
called Methodology for Software Evolution (MSE). A 
special case of this process was described in [ 171. Let us 
start with the following definitions: 

Let P be a program, where there are no loops among 
the dependencies. Then, define bottom slice in the 
following way: B*(a) = {c I c = a or there exists D<e,c> 
E P such that e E B*(a)}. Scheduled entities are the 
"highest" marks defined in the following way: 
scheduled(P) = {c I c E mark(P) and if d E mark(P), c E 

B*(d), then c = d}. Also define top entities top(P) = {cl 
for no b E ent(P), D & , o  E P}. 

During the top-down process, a change always starts 
in the top entities; i.e., entities which do not support any 
other entities. This follows from the fact that all 
specifications are tied together in top entities, although 
parts may be delegated to supporting entities. Hence it is 
logical to look at the top as the first place where the 
change may be implemented. If the change is not needed 
there, then it can be localized in those supporting 
entities, which provide the functionality to be changed. 
The change propagates top-down to supporting entities, 
i.e. O+(a) c B'(a), P+ = O+(a) U T(a) U B'(a). In order 
to avoid multiple visits to entities, we always visit the 
scheduled entities of set scheduled(P) only. The process 
is described in the following way: 

Top-down process of change propagation (MSE) 

given a consistent P; 
select a E top(P); 
change( a); 
P = (P - P(a)) U P,'(a) 
do 

select a E scheduled(P); 
change(a); 
P = (P - P(a)) U P+(a) 

} while (mark(P)!= 0); 

This process always terminates. For proof, consider 
the number of classes in the union of all bottom slices 
for all marks (i.e. Iu, E -k(p) B*(a)l.) This number is 
always greater or equal to 0. This number decreases by 
one in each loop. Since the set of integers greater or 
equal to 0 is well founded and does not contain an 
infinite decreasing sequence, the loop terminates. 

The MSE process has more predictable properties 
than the change-and-fix process of the previous section, 
and is therefore preferable whenever it is applicable. A 
more detailed description of the MSE process and an 
example can be found in [16], or a special case of MSE 
can be found in [17]. On the other hand, this process 
assumes that there are no loops in the dependencies of 
the entities. Since loops in dependencies among entities 
are present in some programs, this process is not always 
applicable. 

5. Tool "Ripples 2" 

"Ripples 2" is a prototype tool that supports both the 
Change-and-Fix and MSE processes. It is an updated 
version of an earlier tool "Ripples" [16], and a more 
detailed description can be found in [3]. 

The tool starts out with the user specifying the 
directory of the project. The external parser gen++ [ 5 ]  

87 



parses the files of the directory and displays the 
dependencies between the classes. Then, depending on 
the mode and prior status of the project, Ripples 2 
determines a set of marks. 

If the user chooses not to modify a marked class 
because the code for the class is acceptable as is and the 
change is not propagating to the next classes, he can 
erase the mark. If on the other hand, the user chooses to 
change the code for a class, Ripples 2 brings up the text 
editor. Upon completion of changes to the class 
(including deletion), Ripples 2 invokes the scheduler to 
assess the impact of the change and derive a new set of 
marks. 

Ripples 2 has three operating modes, listed and 
explained as follows: 

difference is in the fact that the user is free to modify 
any class at any time, even if it is not marked. 

The strict process reduces the options which the 
programmer can use. Since errors are more likely when 
there isn’t tight control, the strict mode would be the 
best in an unfamiliar project environment, and should 
always be used by a novice programmer. However the 
expert programmer may feel uncomfortable with the 
control exerted by the strict mode. For him, the random 
mode acts as a guide, helping him to be organized and 
not to forget any ripple effect, while allowing him the 
complete freedom to update any class. 

An example of the use of the tool Ripples 2 is in the 
next section. 

6. An example of use of Ripples 2 
Top-down process (MSE) 

The top down evolution process of MSE follows the 
process described in Section 4, and begins by the 
function main() being the first mark. When changes to 
this function are done, the classes that are used by 
function main are marked. After them, the classes they 
depend on are marked, etc. Among the marked classes, 
the scheduled classes (see section 4) are the only ones 
available for modification. The rest of the classes are not 
available for modification at any point. The change thus 
propagates from top to bottom, and ends when the last of 
the marked classes has been checked or modified. 

Strict change-and-fix process 

In this process, the change can begin anywhere in the 
system and propagates according to the process 
described in Section 3 .  The user is free to choose any of 
the classes for the first modification. After the first 
modification is performed, the user is forced to work 
only on the marked classes. When all the marked classes 
and their ripple effects have been taken care of, the 
system again returns to the consistent state. This 
approach differs from the top down approach in the 
following two assumptions: 

- Ripple effects of changes propagate in all directions, 
not just downwards. 

- The first change can begin anywhere, not just in the 
topmost class. 

Random change-and-fix process 

The random change-and-fix approach follows the 
same basic assumptions as the strict change-and-fix 
process. Changes begin anywhere in the system. 
Changes always propagate in all directions. The 

In this example, we create an interactive TV guide 
from an existing program for an interactive calendar 
manager. The conversion was performed using Ripples 
2 in the strict change-and-fix process mode, see a more 
detailed description in [ 3 ] .  

The source system. The source system is an 
interactive calendar manager, which keeps track of 
appointments. Each appointment has a start time and 
end time, and is entered into the system by the user. It is 
stored in a database to be retrieved when required. The 
system checks for overlaps and rejects overlapping 
appointments. User selections are made through the text 
based menus. There are no limitations on the number of 
events that the system can hold. Figure 5 displays the 
complete architecture of the source system. In it, all 
dependencies are depicted as edges, without distinction 
whether they are use, inheritance, or data flow 
dependencies. The source system consists of 19 classes 
and about 2,000 lines of code. 

The target system. The target system is a TV guide 
system which keeps track of programs that will be aired 
on various TV channels. This TV guide is an interactive 
system into which the user enters data through menus. 
The user also can query the program for various 
channels at various times. In the target system, there 
will be overlapping programs, but in different channels. 
There cannot be any overlapping programs in the same 
channel. 

Following is a detailed step-by-step explanation of the 
strict change-and-fix process that evolved the source 
system into the target system. 

Step 1 : Adding class Channel. In the target domain, 
all television programs are classified according to the 

88 



channel on which they are aired. So, the class Channel 
is very important as a distinguishing concept between 
the two systems. The class Channel will hold the 
channel number, the name of the channel, and the 
appropriate functions. The class was added using the 
Add option of Ripples 2. 

Class Channel will be used in a currently nonexistent 
class ChannelList, which the user adds to the system 
with the help of Ripples 2. Ripples 2 generates the 
skeleton for ChannelList and marks it. Another class to 
be marked is the class Event, which will also use 
information from Channel. 

Step 2 : Change in ChannelList. There can be 
multiple channels in the system, and there is no 
restriction on the number of channels that are allowed. 
Hence, class ChannelList represents a list of objects of 
type Channel. The code for this class contains functions 
to manipulate individual Channel objects and to perform 
collective operations such as sort, save, load, etc. 

Class ChannelList is used by a currently nonexistent 
class ChannelMenu, which the user adds to the system 
with the help of Ripples 2. Ripples 2 generates the 
skeleton for ChannelMenu and marks it. 

Step 3 : Change in ChannelMenu. This class 
manipulates the classes ChannelList using the add, 
delete, and modify functions, and allows the user to view 
all channels. Since the existing three menus are 
subclasses of Abstractsubmenu, ChannelMenu also is 
derived from Abstractsubmenu. 

ChannelMenu is used by classes Choice and Cmenu 
and they will be marked. Another class which is marked 
is Abstractsubmenu. However the class 
Abstractsubmenu does not change, and hence after 
inspection the mark can be removed. 

Step 4 : Change in CMenu. Class CMenu is one of 
the classes marked at this point, and it defines the main 
menu of both the source and target systems. This 
requires defining an object of type ChannelMenu as a 
data member of class CMenu. 

Class CMenu is derived from AbstractMenu, which is 
therefore marked. Also Choice, YearMenu, DayMenu, 
and MonthMenu are marked, because class CMenu uses 
all these classes. None of these classes requires a 
change. Function main() is marked because it uses 
CMenu. There is a small change to be made to function 
main(). Choice is marked again as a result of that, but 
does not require a change. 

Step 5 : Change in class Event. At this point, class 
Event is the only marked class in the program. It should 
now contain information regarding the program as well 
as the channel on which the program is aired. All 
functions of class Event have been modified to handle 
this change in the data members. 

Event is one of the core classes of the source system. It 
supports Event-list, CFile, and Cbase. It uses CDate, 
Key, and CTime, and Channel. Of these, Channel, 
CDate, CTime, and Key do not change. But, Event-list, 
CFile, and CBase have to be changed in the following 
steps. 

Step 6 : Changes in Event-list. Event-list creates a 
list of objects that belong to type Event. There are 
various places where Event-list makes references to 
functions that handle the newly added data members. 
Hence, these references have to be changed. 

Classes Key, CFile, CBase, and CDay are marked 
after the change. Cday and Key are not affected and 
their marks are erased. CFile and CBase are the classes 
that handle the events in a disk file and database 
abstraction levels, respectively. They are affected and 
handled in the following steps. 

Step 7 : Changes in CFile. Class CFile handles 
physical file i/o related to the events. The i/o functions 
are affected. They are modified to accommodate the 
changes made to Event-list. 

Key is marked again after this change, but remains 
without a change. CBase is marked again and will be 
visited next. 

Step 8 : Changes in CBase. CBase handles the 
events in a database abstraction level. It also handles the 
queries on the events. It is changed in response to the 
change in specifications. 

Class Key is marked after the change, but remains 
without change. 

Architecture of the target system. Please note that 
during the changes, three new classes were added, two 
existing classes were changed extensively, there were 
minor changes to several additional classes, and no 
existing class was deleted. Tool Ripples 2 was 
extensively used to monitor the propagation of the 
change. 

89 



Figure 6. Architecture of the source program. 

but important kind of query: Find all marked entities 
which have to be changed in order to make software 
consistent. These kinds of tools help the programmer to 

In the paper, we presented a model of change be organized during the process of software 
maintenance. We believe that they may play an 
important role in the future. 

References 

7. Conclusions 

propagation in software, together with a model of two 
different processes of change propagation: change-and- 
fix, and a more structured process MSE (methodology 
for software evolution). During the change, the software 
is represented as a graph of dependencies among the 
entities of the software, where some of the dependencies [ l ]  R.S. Arnold, S.A. Bohner, Impact Analysis - Toward a 
are inconsistent. Each change removes some Framework for Comparison, Proc. Int. Con$ Software 
inconsistencies, but it may create new ones. The Maintenance, 1993,292-301. 

modeling notation is based on graph rewriting. 
As a partial validation of the model, we presented a 

tool “Rimles 2” which sumorts both the change-and-fix 

[2] S.A. Bohner, R.S. Arnold, Software Change Impact 
Analysis, EEE Computer Soc. Press, ISBN 0-8186-7384-2, 

and the MSE processes of change propagation. 
The tools which support change propagation are 

closely related to browsers. While browsers [4,15] deal 
with dependencies in software, they leave the particular 
query to the programmer. Change propagation tools 
differ from browsers in the fact that they maintain 
information about both dependencies and 
inconsistencies in software, and provide a specialized 

[3] S.S. Chandrasekaran, Change-and-Fix Software Evolution 
Using Ripples 2, M.S. thesis, Dept. of Computer Science, 
Wayne State University, Detroit, 1997. 

[4] Y.F. Chen, M.Y. Nishimoto, C.V. Ramamoorthy, The C 
Information Abstractor System IEEE Transactions on 
Software Engineering Vol. 16, 1990,325 - 334 

90 



[5] P. Devambu, "GENOA- A Language and Front-End 
independent source code analyzer generator", Proceedings of 
the Fourteenth International Conference on Software 
Engineering, 1992, 307-317. 

[6] K.B. Gallagher, Evaluating surgeon's assistant: Results of 
a pilot study. Proceedings of the Conference on Software 
Maintenance 1992.236-255. 

[7] K.B. Gallagher, J. Lyle; Using Program Slicing in 
Software Maintenance. IEEE Transactions on Software 
Engineering, 17(8), August 1991,751-761. 

[8] S .  Horwitz, T. Reps, and D. Binkley, Interprocedural 
slicing using dependence graphs. ACM Transactions on 
Programming Languages and Systems 12( l), January 1990, 
35-56. 

[9] J. Keables, K. Roberson, A. von Mayrhauser, Data Flow 
Analysis and Its Appplication to Maintenance, IEEE 
Conference on Software Maintenance, Phoenix, AZ, Oct. 
1988,335-347. 

[lo] J.P. Loyall, S.A. Mathisen, Using Dependence Analysis 
to Support the Software Maintenance Process, Proc. Int. Con$ 
on Sofmare Maintenance, 1993,282-291. 

[ l l ]  Luqi, A Graph Model for Software Evolution, IEEE 
Trans. on Software Engineering, 1990,917-927. 

[13] P.P. Queille, J.F. Vodroit, N. Wilde, M. Munro, The 
Impact Analysis Task in Software Maintenance: A Case Study. 
Proc. Int. Con$ on Software Maintenance, 1995,235-252. 

[15] V. Rajlich, Theory of Data Structures by Relational and 
Graph Grammars, In Automata, Languages, and Programming, 
Lecture Notes in Computer Science 52, Springer Verlag, 1977, 
391 -5 1 1. 

[15] V. Rajlich, N. Damaskinos, P. Linos, W. Khorshid, 
"VIFOR: A Tool for Software Maintenance," Software Practice 
and Experience, 20( l), January 1990,67-77. 

[I61 V. Rajlich, MSE: A Methodology for Software Evolution, 
Journal of Software Maintenance, Vol. 9, 1997, 103-125. 

[17] V. Rajlich, J. Silva,, Evolution and Reuse of Orthogonal 
Architectures, IEEE Trans. On Software Engineering, 22(2), 
1996. 153-157. 

[18] N. Wilde, R. Huitt, Maintenace Support for Object- 
Oriented Programs, Proc. Con$ on Software Maintenance, 
1991, 162-170. 

[19] S.S. Yau, R.A. Nicholl, J.J. Tsai, S. Liu, 'An Integrated 
Life-Cycle Model for Software Maintenance', IEEE Trans. 
Software Engineering, 15(7), 1988, 58-95. 

[12] K. Ottenstein and L. Ottenstein, The program dependence 
graph in software development environments. Proceedings of 
the ACM SIGSOFT/SIGPLAN Software Engineering 
Symposium on Practical Software Development Environments, 
May 1985, 177-185. 

91 


