Knowledge-Based
Program Analysis

PAT provides highdevel
support for program
maintenance. H uses
an object-oriented
framework of
programming concepts
and a heuristic-based
concept-recognition
mechanism to
understand programs.

74

Mehdi T. Harandi and Jim Q. Ning, University of lllinois

ithout an adequate un-

derstanding of a program’s

meaning, it is impossible to
maintain it effectively. This is especially
true for large, complex programs. To
modify a program, a programmer usually
develops a mental model of its intended
function. He then uses this model as a
basis when he modifies the intended func-
tion or corrects the encoded implementa-
tion of the function. However, itis very dif-
ficult to construct such a mental model.
Without automated support, a large part
of the maintenance time is spent trying to
understand what is to be maintained.

In this article, automatic program analy-
sis is both the mechanized process of un-
derstanding high-level concepts from pro-
gram text and the use of those conceptsto
guide program maintenance. The un-
derstanding element constructively de-
rives a program’s underlying meaning by
statically examining its source code
without using any specification or execu-
tion information.'? Maintenance support
offers high-level assistance to the main-
tainer in documentation, correction, en-

0740-7459/90/0100/0074/$01.00 © 1990 IEEE

hancement, and other maintenance activ-
ities. While high-level support for pro-
gram maintenance is the goal, program
understanding is the means to achieve
thisgoal.

We have realized this notion of auto-
mated program analysis in our knowl-
edge-based Program Analysis Tool. PAT
uses an object-oriented framework to rep-
resent programming concepts and a heu-
ristic-based concept-recognition mecha-
nism to derive high-level functional
concepts from the source code.

Program views

Conceptually, you can view a program
from different levels of detail. Program un-
derstanding transforms a program from a
more detailed view into a more abstract
view. Based on the abstraction level, we clas-
sify program views into four broad catego-
ries: implementation-level, structure-level,
functiondevel, and domainevel views>*

The implementation-level view ab-
stracts away a program’s language- and
implementation-specific features. To un-
derstand a program at this level, you need

IEEE Software

knowledge of the language’s syntax and
semantics and, possibly, some knowledge
of the implementation. Typically, an im-
plementation-level view is represented as
an abstract syntax tree and a symbol table
of program tokens.

The structure-level view further ab-
stracts a program'’s language-dependent
details to reveal its structure from differ-
ent perspectives. The result is an explicit
representation of the dependencies
among program components. Examples
of structure-level views are dataflow and
controlflow graphs, data and control de-
pendency graphs, interprocedural calling
relations, ripple-effect graphs, petri nets,
structure charts, and other intermediate-
to-low-end design graphs. Recently, some
effort has been made to generalize these
representations to capture all the interest-
ing structural features of programs in a
unified representation.*”’

The function-level view relates pieces of
the program to their functions to reveal
the logical (as opposed to the syntactical
or structural) relations among them.
Each component of a function-level view
is an abstract representation of a class of
functionally equivalent, but structurally
different, implementations.

The domain-level view further abstracts
the function-level view by replacing its al-
gorithmic nature with concepts specific to
the application domain. For example, in
the context of studentrecord keeping, a
program functionally understood as
“computing average by summing its in-
puts divided by the number of inputs” is
interpreted as a “grade-point-average
computation” routine.

Figure 1 shows how these abstraction cate-
gories roughly correspond to the informa-
tion used in different stages of the develop-
ment life cycle. While this article’s focusis on
the functiondevel view, you can easily extend
the methods and tools presented here to
deal with domain-evel understanding.

January 1990

Expert’s model

Observations show that human experts
have a better problem-solving model than
previous automatic-program-analysis sys-
tems: They can usually comprehend a
program efficiently without using a for-
mal method of proof. To understand a
program, experts do not exhaustively
apply all their knowledge about program-
ming to repeatedly transform the pro-
gram. Nor do they extract all the informa-
tion about dataflow and control flow to
make abstractions.

An expert views a program not only as a
text file of sequenced characters but also
as a set of interrelated concepts. He un-
derstands a program by learning abstract
concepts from it. Initially, he may un-
derstand a program only syntactically.
Then, discrete, otherwise unrelated low-
level concepts may help him recognize
higher level concepts until he can com-
prehend the whole program as a single
functional unit.

He uses his programming knowledge to
recognize high-level concepts. Typically,
this knowledge includes stereotyped code
patterns of common programming
strategies, data structures, and algo-
rithms. When he sees a concept’s stereo-
typed pattern, he looks for evidence that
suggests its existence. This conceptrecog-
nition process results in a plausible con-

clusion, rather than a rigorous proof.

Using this heuristic-based knowledge,
he skips trivial parts and looks only for
things he deems important. He can relate
concepts that are not adjacent because all
the conceptsin his concept base —simple
and complex — are equally visible at all
times. In the end, he forms a functional
model of the program, usually a hierar-
chical structure that relates all the con-
cepts recognized and rooted in the origi-
nal concepts. He then uses this model to
guide maintenance.

PAT overview

The PAT system, illustrated in Figure 2,
is based on the human expert’s analysis
model. PAT tries to help maintainers an-
swer three questions:

* What does this program do (what
high-level concepts does it implement)?

* How are the concepts encoded, in
terms of low-level concepts?

® Are the recognized concepts imple-
mented incorrectly?

To do this, the Program Parser first re-
writes the program into a set of language-
independent objects, called events, and
puts them in the Event Base. Using this
event set, the Understander recognizes
higher level events that represent more
function-oriented concepts. The Un-
derstander adds these newly recognized

[] Forward program development [>
Requirement Formal Design Implementation
specification specification specification specification
Domain-level Function-level Structure-level Implementation-level

abstraction abstraction abstraction abstraction

<] Program understanding/abstraction []

Figure 1. Diagram of forward program development and backward program abstraction.

75

Plan

Parser Plans

Plan Base JTMS

Understander|

Event Base

Program

Parser Source cod®

oS 2 S22 N

Command
interpreter

Explanation

Generator Explanation

Paraphraser Document

Debugger Bug report

N> =t =~

Editor User

Figure 2. PAT’s architecture.

I

statement

AN

control

sequential-
update

I\

data
enumerate
assign

declaration

module-call counter

—1

variable for-loop

constant adder| | subtracto

procedure dec-counter

procedure-call

inc-counter

program-gvent

strategy

data-movement

accumulator enumerator

map-
enumerator

forward-map-
enumerator

data-structure

7N\

map stack

algorithm

N

sort

S|mple move sequentlal map

L\

sequential-
swap map-swap

transposition-
sort

map swap

bubble-sort

filtered-sequential-
map-swap
simple-swap
filtered-
map-swap

bubble-
sort-map

Figure 3. Part of the program event classification hierarchy.

events to the eventsetand repeats the pro-
cess until it recognizes no more high-level
events. The final event set, presented to
the maintainer, answers the first question.

The Understander’s main component
is a deductive-inference-rule engine. It
uses a library of program plans, stored in a
plan base, as inference rules to derive new,
high-level events. The program plans,

76

which have been parsed by the Plan
Parser, contain understanding, para-
phrasing, and debugging knowledge.
When the Understander generates a new
event, it may trigger other rules to fire,
causing the derivation of more events.
Discovering new events is of little use
without the ability to explain the logical
connections among them. To do this, PAT

maintains a justification-based truth-
maintenance system to model the un-
derstanding process.® When the Under-
stander identifies a new event, the JTMS
records the result and its justifications.
The Explanation Generator uses the
JTMS to show how high-level events are
derived from the low-level events, thus an-
swering the second question.

For example, the Explanation Genera-
tor gives the following explanation when
an original set of events {sl, s2, s3} causes
the recognition of a new set of events {el,
2}, where el isderived from s1, s2,and £ is
derived from sl, 53, and el:

1. sl is asimple event.

2. 52 is asimple event.

3. s3is asimple event.

4. el isa composite eventbased on 1 and 2.

5. 2 is a composite event based on 1, 3,
and 4.

The Paraphraser translates these explana-
tions into naturallanguage descriptions.

The Debugger examines the final set of
recognized events to answer the third
question. Each program plan contains
knowledge on near-miss implementation
patterns that are commonly associated
with events that are recognizable by that
plan. The Debugger uses this information
to identify a possible misimplementation.

Finally, the Editor lets you interactively
modify the program; such changes may
trigger more inferences, the results of which
are updated in the JTMS automatically.

Knowledge
representation

PAT represents two types of knowledge
explicitly: program knowledge and analy-
sis knowledge. Program knowledge is rep-
resented by programming concepts con-
tained in program text. Analysis
knowledge embodies information neces-
sary for program analysis and is repre-
sented by information contained in pro-
gram plans.

Program knowledge. In our paradigm,
each syntactic or semantic concept con-
tained in a program is expressed in an ob-
ject-oriented abstract representation,
called a program event. Program events
are organized in a hierarchy. At the lowest
level — the source level — are events rep-
resenting language constructs like state-
ments and declarations. At a higher level

IEEE Software

are events corresponding to common
programming patterns and strategies like
structure enumerators, accumulating a
sequence of values, and counting. Events
can also represent data structures or de-
signs like stacks, queues, trees, and their
corresponding operations. At an even
higher level, events can represent stan-
dard algorithms for common problems
like mathematical computation algo-
rithms, searching, and sorting.

Whatever it represents, each event is an
instance of an event class. Figure 3 shows a
partial hierarchy of event classes.

All events have attributes. Each event
has an interval, which comprises two parts:
a control interval and a lexical interval.
The control interval determines where
the event is in the control path when the
code is executed. The lexical interval de-
termines where the event is in the nested
hierarchy of the program text. An event
also has an external form, for presenta-
tion.

Events have an event-class attribute,
which denotes their class. We define com-
mon attributes in the top-level class (the
program-event), and they are inherited by
all classes. In addition to inherited attri-
butes, an event may have its own attri-
butes, as Figure 4 shows.

Figure 4 shows a program segment and
the event representation of the concept
contained in the segment, simple-swap. In
Figure 4, the control-interval, [0 (120 43
44 45)], says that this simple-swap event
comprises three subevents at locations 43,
44, and 45 and that they are in a module
(usually a procedure) that is invoked from
location 120. The event at location 120 is
part of the main program module. We al-
ways assume that the control to the main
program is transferred from some imagi-
nary location 0.

The lexical-interval [0 (4 43 44 45)] says
that the module that lexically encloses the
simple-swap event is numbered 4 (its
block number), which is globally de-
clared. The main program module has
block number 0.

The local attributes, vari, var2, and
temp-var, are variables in the swap opera-
tion. Because the value of temp-var should
not affect the external behavior of simple-
swap, it does not appear in the external-
form attribute. Each data object has a sub-

January 1990

varT : integer;
assign Xto T;
assign Yto X;
assign Tto Y;
end-procedure;

120 pr(.)c-ca.llswap (A, B);

procedure swap (var X, Y : integer);

event-class: SIMPLE-SWAP

interval: ([0 (120 43 44 45)]
external-form: ((43 44 45) SIMPLE-SWAP A B)
varl: A,y

var2: B,

temp-var: T,

[0 (4 43 44 45)])

Figure 4. Event representation of the simple-swap concept.

plan event

path event-path-expression

test binding-constraints

text documentation-information
miss near-miss-expression

where the event-path-expression is defined as:

event-path-expression ::= event-specifier | interval-operator{event-path-expression} *

event-specifier u={key} event
interval-operator = c-operator| l-operator
c-operator ::= cprecede | cenclose | c-interleave | c-overlap
c-contain | c-meet | c-sequential | c-parallel | ...
loperator ::=1-precede | l-enclose | linterleave | l-overlap |
I-contain | I-meet | I-sequential | -parallel | ...
Figure 5. Plan-definition syntax.

script that indicates its declaring block.
For example, B, says that the data object B
is declared globally. We subscript data ob-
jects to distinguish multiply declared
identifiers in different lexical environ-
ments. A language parser and a simple
controlflow analyzer determine the attri-
butes of source-level events; the attributes
of higher level events are computed from
their composing events.

Analysis knowledge. In PAT, knowledge
about program understanding, docu-
mentation, and debugging is represented
asa program plan.

Figure 5 shows the syntax of a plan defi-
nition. Understanding knowledge is en-
coded in the plan’s path and test sections.
An event-path expression in the path part
specifies the lexical and control sequence
requirements of a subset of the plan’s
event patterns. A pattern might match a
source-level event, such as an assignment,
or it might match a high-level concept,

such as an enumerate. An event set is an
instance of a plan if it meets the path ex-
pression of the plan and any constraints
expressed in the test part.

Knowledge to generate documentation
is stored in the text part and knowledge to
perform near-miss debugging is stored in
the miss part.

To understand event-path expressions
and interval operators (logical operators
we use to define lexical and control se-
quencing requirements), examine the
event-path-expression part of an accumu-
lator plan:

plan (accumulator :update-var Pvar
:init-value ?init :update-value ?val
:update-cond ?cond
:accumulator-op ?op)
path (c-precede (assign :var-defined ?var
:value-used ?init)
(c-enclose (enumerator :loopcond
?cond)
(key (assign :var-defined ?var
wvalue-used (Pop Pvar ?val)))))

In this plan, : denotes an attribute and ?

77

203 const N

250 end-procedure;

400 .['>roc-ca.ll unknown();

: integer = 100;
205 var A : array(l..N, Elem);
225 procedure unknown ();
228 var S integer;
230 forloop K from N-1 to 1 do
232 fordoop] from 1 to K do
233 if A(J-1)> A(J) then
234 assign A(]) to S
235 assign S to A(J-1);
236 assign A(J-1) to A(])
238 end-if
240 end-for-loop
245 end-for-loop

Figure 6. Bubble-sort program.

45

0
array(1..N j,Elem ()

([0 (400 232 240)] [0 (45 232 240)])

([0 (400 233 238)] [0(45 233 238)])

([0 (400 235)] [0(45 235)])

E s eventclass: VAR
interval: ([0 205] [0 205])
name: A
var-type:
E,j: eventclass: FOR-LOOP
interval:
updatevar:],
init-value: 1
finalvalue: K,
direction: UP
step: 1
E,y eventclass: IF
interval:
if-cond: AJo 1) >A(Jy
E,;s: event-class: ASSIGN
interval:
var-defined: A (J,-1)
value-used: S

Figure 7. Source-level events generated from the program in Figure 6.

denotes a pattern variable. The path ex-
pression specifies two assignment events,
one enumerator event (a loop construct),
and their variable bindings — a possible
component set for an accumulator event.

The path part also requires that ?var be
initialized to some value ?init before the
loop and the loop-carried assignment
events are reached. So an accumulator
event is identified only if the initial assign-
ment event precedes the loop event on
the control path (c-precede) which, in
turn, encloses the second assignment
event (c-enclose).

Key events identify important plan com-
ponents. In this example, the second as-
signment event is a key; it must be identi-
fied first to recognize the accumulator

78

event. Identifying key events first helps re-
duce the search space.

Event-path expressions heuristically cat-
egorize classes of equivalent event se-
quences, which may not be lexically adja-
cent. As long as their relative positions
meet the lexical and control require-
ments expressed by the path, they are rec-
ognized as components of a higher level
event.

Program analysis

PAT’s understanding power comes
from a pattern-directed inference engine
that uses a plan library. Plans are repre-
sented as inference rules that are stored in
the plan base.

Plan rules are triggered by events de-

fined in the plan’s event-path expression.
The control and lexical requirements, ex-
tracted from the event-path expression,
combined with a plan’s binding con-
straints, govern the firing of a rule. The
rule body is always an assertion that de-
clares a new event when the trigger pat-
terns and test conditions are satisfied.

Program understanding is automated
as an inference by which new events are
inferred from existing ones using the plan
rules. Event £ matches a trigger pattern P
of plan rule Rif

e cither E and P are in the same event
class or Pisin a superclass of £;and

e for any attribute A with value V1 speci-
fied in P, there is an attribute A in Ewith
value V2 such that V1 and V2 are unifi-
able, given pattern-unification bindings.

The first condition says that a trigger
pattern can match with events that are
more specific than it is. For example, an
array-search pattern could match notonly
an array-search event but also a linear-
array-search event or a binary-array-
search event.

The second condition says that P
matches E as long as the information in P
is subsumed by (not necessarily equal to)
the information in E. In defining the plan
pattern array-search, for example, you
need specify only the attributes contain-
ing the array name and the value of the
search target. A binary-array-search event
will match this pattern, although it may
have extra attributes such as the array
index pointers.

These conditions guarantee that whena
new event is asserted into the event base
the inference engine must rerun only
those plan rules that are in the same class
or in superclasses of the new event. Simi-
larly, when a new rule is added to the plan
base, the inference engine will apply the
new rule only to events in the same class or
subclasses of the rule’s class. The JTMS re-
cords the results of the inference process.

The reasoning procedure in PAT is less
formal than that used in other deduction,
transformation, parsing, or graph-match-
ing approaches. A PAT analysis cannot rig-
orously prove anything because it is a se-
lective inspection, not a total reduction of
a program. Our intention is to capture
human experts’ behavior in program un-
derstanding so we can handle programs

IEEE Software

with missing, extra, or buggy parts, and
avoid the combinatorial barriers in the
analysis of large programs.

Maintenance support

Based on the final structure of the JTMS
net, PAT’s Explanation Generator can in-
formally show how the high-level events
are derived from the low-level ones. The
explanation it provides helps verify the
correctness of the conclusions and reveal
the functional and logical relations
among the program components repre-
sented by the recognized events.

Each plan has a text slot that identifies
the intended function of the event it is
supposed to recognize. This text can be
natural-tanguage statements or a formal
specification. By tracing the JTMS’s net
from the top, the PAT Paraphraser gen-
erates program documentation using
the information in each event’s text slot
and explanations of how each event is
composed of subevents. This documen-
tation helps maintainers find discrepan-
cies between intended and imple-
mented functions.

The miss part of a plan definition con-
tains heuristic knowledge for diagnosing
common coding errors in the plan’s tar-
getevent. Typically, a plan’s event-path ex-
pression is intentionally relaxed so it will
recognize correct and buggy patterns as
plan instances. The buggy part will be ex-
amined only following a successful recog-
niton pass. Allowing near-miss recogni-
tion of events may help find very deep
bugs that are otherwise very difficult to
detect.

The JTMS maintains a network struc-
ture that connects the current set of be-
lieved events about the program. When a
user modifies the program, those changes
will be automatically reflected in the
JTMS, which relates a modification’s ef-
fect on the implemented functions di-
rectly, making the modification easier to
follow.

Example

Figure 6 is a segment of a much larger
program written in a Pascal-like language.
The maintainer wants to understand only
this segment; he does not want to analyze
the entire program, so the information
provided to PAT is incomplete. The defi-

January 1990

If there exists a decremental FOR-LOOP event

then there exists a DEC-COUNTER event.

If there exists an incremental FOR-LOOP event

then there exists an INC-COUNTER event.

If there exists an ASSIGN event from ?Var1 to ?’Temp which precedes

through ?A

MAP-SWAP event

an ASSIGN ?Temp to ?Var2 event and another ASSIGN ?Var2 to
?Varl event on a control path (c-precede)
then there exists a SIMPLE-SWAP(?Varl, ?Var2) event.
Py If there exists a VAR event ?A of type array(?L..2U,?Type)
then there exists a MAP(?A,?L..?U,?Type) event.
Py, If there exists a MAP (?A,?L...2U,?Type) and the definition of which
lexically precedes (l-precede) an INC-COUNTER event indexing

then there exists a FORWARD-MAP-ENUMERATOR event on ?A.
55t If there exists a SIMPLE-SWAP ?Varl and ?Var2 event in which ?Varl
and ?Var2 accessa MAP (?A,?L...2U,?Type) event
then there exists a MAP-SWAP event.
Py If an IF event lexically encloses c-enclose an MAP-SWAP event
then there exists a GUARDED-MAP-EVENT event.
P, If a FORWARD-MAP-ENUMERATOR event c-encloses an
GUARDED-MAP-SWAP event
then there exists a FILTERED-SEQUENTIAL-MAP-SWAP event.
Pg: If a DEC-COUNTER event c-encloses an FILTERED-SEQUENTIAL-

then there exists a BUBBLE-SORT-MAP event.

Figure 8. Plans used in understanding the program in Figure 6.

nitions of variables Kand Jare invisible, we
have no idea what the initial value of array
A is, and we know nothing about its
component’s type.

Furthermore, this portion is buggy: To
exchange the contents of A(J) and A(J
—1) correctly, the assignment at line 236
should occur before the assignment at
line 235. Also, the range of looping vari-
able Jin the second For loop at line 232
should have been from 2 to K+1, not from
1 to K Finally, the two indices of A could
be substituted by [J, J+1]. This segment
also includes noise in the lines indicated
by ellipses.

The information we have about this seg-
ment is not sufficient to prove formally
that the program does a bubble sort, but
we can reach such an understanding
based on our knowledge of typical bubble-
sort implementation patterns. A human
expert would assume that array A has
been initialized somewhere else before
the program control reaches this seg-
ment, unless he sees an explicit contradic-
tion.

PAT first parses the segment, recogniz-
ing a set of events that represent the
program’s source-level concepts: events
representing each variable and constant
definition, an event representing the pro-
cedure, six events corresponding to state-
mentsin the procedure, and an event rep-
resenting the call at line 400.

Figure 7 shows four of these events. The
interval definitions in Figure 7 indicate
that the procedure unknown and the vari-
ables J, K, and Elem are declared at block
0 (the global environment) and that the
procedure’s block number is 45.

After the events are loaded into the
event base, the Understander calls the
plans from the plan base and tests if their
trigger events match the input events. Fig-
ure 8 shows the plans used in this exam-
ple, which are expressed in English to aid
comprehension.

Plan P50 is triggered by event E230
(the For loop at line 230) and generates
anew event E1001 (dec-counter). Event
E232 triggers plan P51, generating
E1002. The combination of events E234,
E235, and E236 trigger P52 to generate
E1003 (simple-swap). Next, E205
triggers P53 to generate event E1004.
The combination of E1004 and E1002
triggers P54 to generate E1005. E1003
triggers P55 to generate E1006. P56 is
triggered by E233 and E1006 to gener-
ate E1007. E1005 and E1007 trigger P57
to generate E1008. Finally, E1001 and
E1008 trigger P58 to generate E1009,
which is the bubble-sort algorithm.

The JTMS keeps track of the derivation
of new events; Figure 9 shows its final
structure, annotated with the names of
recognized events. Using the text infor-
mation contained in the recognized

79

P s Pss

FOR-LOOP DEC-COUNTER BUBBLE-SORT-
Pss MAP

E 1008

FILTERED-SEQUENTIAL-
MAP-SWAP

P g,

GUARDED-
MAP-SWAP

SIMPLE-SWAP MAP-SWAP

Figure 9. JTMS model of the program in Figure 6.

This program implements a BUBBLE-SORT-MAP event at lines
(205 230 232 233 234 235 236 238 240 245)
which sorts the map A using a bubble sort algorithm.
It consists of
1. A DEC-COUNTER event at lines (230 245)
which decrementally changes the value in Kfrom N-1to 1.
It consists of
1.1 AFOR-LOOP event at lines (230 245).
2. A FILTERED-SEQUENTIAL-MAP-SWAP event at lines
(205 232 233 234 235 236 238 240)
which sequentially switches the adjacent elementsin amap A
ifA(J-1) > A(]), indexed by J from 1 to K.
It consists of
2.1. AFORWARD-MAP-ENUMERATOR event at lines (232 240)
which incrementally enumerates the elements in map A indexed by J
from 1 to K. It consists of
2.1.1. A MAP event named A at line (205)
which is a mapping from 1..N to Elem.
It consists of
2.1.1.1. A VAR event named A at line (205).
2.12. An INC-COUNTER event at (232 240)
which incrementally changes the value in J from 1 to K.
It consists of
2.12.1. AnFOR-LOOP event at lines (232 240).
22. A GUARDED-MAP-SWAP event at lines (233 234 235236 238)
which switches the values in A(J-1) and A(]) ifA(J-1) > A(]).
It consists of
22.1. AnIF eventatlines (233 238).
222. AMAP-SWAP event at lines (234 235 236).
It consists of
222.1. A SIMPLE-SWAP event at lines (234 235 236)
which switches the values in A(J-1) and A(]).
It consists of
222.1.1. AnASSIGN eventatline (234).
222.12. AnASSIGN eventatline (235).
22213. AnASSIGN event at line (236).

Figure 10. Paraphrase of the example program.

80

events, PAT can explain its un-
derstanding, as the paraphrase in Figure
10 shows.

As for the two bugs in this segment,
without a function-level understanding of
the program, we can only point out that
the initial value of A(/-1) is not used in
each iteration in the inner loop and that /
—1isless than the lower bound of Awhen J
equais 1.

In our paradigm, event-specific de-
bugging information is encoded in the
miss part of a plan. For example, in the
plan for recognizing the simple-swap
event, we intentionally relax the se-
quencing requirement in its event-path
expression, encoding it instead in its
miss part. When the Understander rec-
ognizes the three assignment events as
components of a simple-swap event, it
reexamines their control sequence. PAT
then determines that

¢ the three events are intended to ac-
complish a simple-swap event (they meet
the event-path expression) and

* the positions of the last two should be
switched (they meet the near-miss expres-
sion).

Similarly, when PAT recognizes the bub-
ble-sort-map event, it unifies the 1, N, /-1,
and Jexpressions with the plan’s variables,
producing the bindings [LowBound 1},
[UpBound N], [Index j], [OffSet]l ~1],
and [OffSet2 0]. If the miss part includes
the rules

If Index runs increasingly
then The first round of Index values must
range
from LowBound - OffSetl to
UpBound - OffSet2;
The last Index value must be
LowBound - OffSetl.
else The first round of Index values must
range
from UpBound — OffSet2 to
LowBound — OffSetl;
The last Index value must be
UpBound — OffSet2.

PAT can determine that A is indexed in-
correctly by J because the first round of J
values (when KX takes its first value N-1)
ranges from 1 to N-1, not from 2
(LowBound — OffSetl) to N (UpBound -
OffSet2). Besides, because Jruns increas-
ingly, the last / value (when Ktakesits final
value 1) should be 2 (LowBound — Off-
Setl), not 1.

IEEE Software

xperiments with PAT have affirmed
our initial expectations. PAT now in-
cludesabout 100 program-event class-
es that represent language constructs, cod-
ing heuristics, data-structure definitions and
operations, and functional coding patterns.
PAT’s plan base contains a few dozen
plan rules covering value accumulation,
structure enumeration, simple mathe-
matical computations, counting, sequen-
tial search of ordered and unordered
structures, different types of searching,
tree traversals, and sorting. For practical
applications, we believe PAT will need at
least several hundred event classes and
plans.

Acknowledgment
This work was supported in part by IBM.

References

1. M.T. Harandi and J.Q. Ning, “PAT: A
Knowledge-Based Program-Analysis Tool,”
Proc. Conf. Software Maintenance, CS Press,
Los Alamitos, Calif., 1988, pp. 312-318.

2.].Q.Ning, A Knowledge-Based Approach to Au-
tomatic Program Analysis, doctoral disserta-
tion, University of Illinois at Urbana-Cham-
paign, Urbana, I11., 1989.

3. J.Q Ning and M.T. Harandi, “An Experi-
ment in Automating Code Analysis,” Proc.
AAAI Symp. Artificial Intelligence and Software
Engineering, AAAI Press, Stanford, Calif.,
1989, pp. 51-53.

4. W. Kozaczynski and J.Q. Ning, “SRE: A
Knowledge-Based Environment for Large-

%
ol

Mehdi T. Harandi is an associate professor of
computer science at the University of Illinois at
Urbana-Champaign and is director of the
university’s knowledge-based progamming as-
sistant project. His research interests include
knowledge-based systems, software specifica-
tion and design, and Al applications to soft-
ware development.

Harandi received a PhD in computer science
from the University of Manchester, England.
He is editor-inchief of International Journal of
Expert Systems: Research and Applications and a
member of ACM and the IEEE Computer Soci-

ety.

January 1990

PAT could be improved in several ways.
It should be able to incrementally acquire
program knowledge by asking an expert
for help when it cannot understand a pro-
gram and by saving the generalized solu-
tion for future use. Also, when PAT comes
up with a conclusion that an expert re-
jects, it should know how to modify its
knowledge to account for the failure.

PAT is not intended to replace mainte-
nance done by people. Instead, itis a high-
level assistant that provides plausible pre-
dictions, suggestions, and explanations
about a program’s function — informa-
tion that is not easily derived with tradi-
tional maintenance tools. >

Scale Software Reengineering Activities,”
Proc. Int’l Conf. Software Eng., CS Press, Los
Alamitos, Calif, 1989, pp. 113-122.

5. J.M. Bieman and N.C. Debnath, “An Anal-
ysis of Software Structure Using a General-
ized Program Graph,” Proc. Compsac, CS
Press, Los Alamitos, Calif., 1985, pp. 254-
259.

6. N. Wilde, R. Ogando, and E. Edge, “Speci-
fication for Prototype Dependency Analy-
sis Tools,” Tech. Report SERC-TR-13-F,
Software Engineering Research Center,
University of Florida, Tallahassee, Fla.,
1987.

7. S. Yau and P.C. Grabow, “A Model for Rep-
resenting Programs Using Hierarchical
Graphs,” IEEE Trans. Software Eng., Nov.
1981, pp. 556-574.

8. J. Doyle, “A Truth Maintenance System,”
Artificial Intelligence, Vol. 12, 1979, pp. 231-
272.

Jim Q. Ning is an associate scientist at Arthur
Andersen and Company’s Strategic Technol-
ogy Research Center. His research interests are
forward and reverse engineering, object-ori-
ented methods, knowledge-based systems, and
programming knowledge representation.

Ning received a BS in electronics from
Beijing Normal University and an MS and PhD
in computer science from the University of Hli-
nois, where he did the work reported here.

Address questions about this article to
Harandi at Computer Science Dept., Univer-
sity of Illinois, 1304 W. Springfield Ave., Ur-
bana, IL 61801.

Books You Can’t Put
Down

The technical literature is ever
expanding. Which books should
you read? Which should you
avoid?

IEEE Software reviews books
with your needs in mind, whether
you are a practitioneror educator.
Each issue, Mike Lutz selects re-
cent books spanning software’s
diverse theories, practices, and
philosophies and has experts in
thefield evaluate them. Our Book
Reviews department has an
eclectic mix to keep you abreast.
We're what a technical magazine
should be: Practical. Authorita-
tive. Lucid. Direct.

For subscription information, write IEEE
Software, 10662 Los Vaqueros Cir., PO Box
3014, Los Alamitos, CA 90720-1264; call
(714) 821-8380; or use the reader-service
card.

IEEE

oftware

The state of the art
about the state of the practice.

Critical Examination

You depend heavily on your soft-
ware tools. But how do you choose
the right ones?

IEEE Software removes the hype
with in-depth reviews of widely
used, industrial-strength soft-
ware. Each issue, Paul Oman se-
lects knowledgeable reviewers to
examine a class of product and
evaluate them inan at-work envi-
ronment. Our Software Test Lab
department gives you the techni-
cal evaluation you need to make a
choice.

We're what a technical magazine
should be: Practical. Authorita-
tive. Lucid. Direct.

For subscription information, write IEEE
Software, 10662 Los Vaqueros Cir., POBox
3014, Los Alamitos, CA 90720-1264; call
(714) 821-8380; or use the reader-service
card.

Software

The state of the art
about the state of the practice.

