
28th International Conference

on Software Engineering

Software Analysis Visualization

Harald Gall and Michele Lanza

Tutorial F7 Software Evolution: Analysis and Visualization © 2006 Harald C. Gall & Michele Lanza 2

!oftware Visualiza"o#!oftware Visualiza"o#

Tutorial F7 Software Evolution: Analysis and Visualization © 2006 Harald C. Gall & Michele Lanza 3

Software Visualization - Outline

! Introduction

! Software Visualization in a Reengineering Context

! Static Code Visualization
" Examples

! Dynamic Code Visualization
" Examples

! Lightweight Approaches
" Combining Metrics and Visualization

" Demonstration

! Conclusion

Tutorial F7 Software Evolution: Analysis and Visualization © 2006 Harald C. Gall & Michele Lanza 4

Prologue

! Reverse engineer 1.2 MLOC C++ system of ca. 2300
classes

! * 2 = 2’400’000 seconds

! / 3600 = 667 hours / 8 = 83 days / 5 = 16 weeks & 3 days

! ~ 4 months to read the system

! Questions:

" What is the size and the overall structure of the system?

" What is the internal structure of the system and its elements?

" How did the software system become like that?

Once upon
a time…

Tutorial F7 Software Evolution: Analysis and Visualization © 2006 Harald C. Gall & Michele Lanza 5

Introduction

! Visualization

" Information Visualization

! Software Visualization

" Algorithm Visualization

" Program Visualization
" Static Code Visualization

" Dynamic Code Visualization

! The overall goal is to reduce complexity

Tutorial F7 Software Evolution: Analysis and Visualization © 2006 Harald C. Gall & Michele Lanza 6

Information Visualization

! The human eye and brain interpret visual information in
order to “react to the world”

! We want to answer questions on what we perceive

! J. Bertin inferred three levels of questions
" Lower perception (one element)

" Medium perception (several elements)

" Upper perception (all elements/the complete picture)

! Information Visualization is about
" how to display information

" how to reduce its complexity

Tutorial F7 Software Evolution: Analysis and Visualization © 2006 Harald C. Gall & Michele Lanza 7

Software Visualization

“Software Visualization is the use of the crafts of typography,

graphic design, animation, and cinematography with

modern human-computer interaction and computer

graphics technology to facilitate both the human

understanding and effective use of computer software.”

Price, Baecker and Small, “Introduction to Software Visualization”

! 2 main fields:

" Algorithm Visualization

" Program Visualization

Tutorial F7 Software Evolution: Analysis and Visualization © 2006 Harald C. Gall & Michele Lanza 8

Conceptual Problem

"Software is intangible, having no physical shape

or size. Software visualization tools use

graphical techniques to make software visible

by displaying programs, program artifacts and

program behavior.”

[Thomas Ball]

Tutorial F7 Software Evolution: Analysis and Visualization © 2006 Harald C. Gall & Michele Lanza 9

Software Visualization in Context

! There are many good-looking visualization techniques,

but..when it comes to software maintenance & evolution,

there are several problems:

" Scalability

" Information Retrieval

" What to visualize

" How to visualize

" Reengineering context constraints

" Limited time

" Limited resources

Tutorial F7 Software Evolution: Analysis and Visualization © 2006 Harald C. Gall & Michele Lanza 10

The Reengineering Life-cycle

Requirements

Designs

Code

(0) requirement

analysis

(1) model

capture

(2) problem

detection
(3) problem

resolution

(4) program transformation

(2) problem detection

issues

• Tool support

• Scalability

• Efficiency

Tutorial F7 Software Evolution: Analysis and Visualization © 2006 Harald C. Gall & Michele Lanza 11

Program Visualization

! Static code visualization

! Dynamic code visualization

! Generate different views of a system and infer
knowledge based on the views

! Complex problem domain (current research area)
" Efficient space use, edge crossing problem, layout problem,

focus, HCI issues, GUI issues, …

" Lack of conventions (colors, symbols, interpretation, …)

“Program visualization is the visualization of the actual program

code or data structures in either static or dynamic form”

[Price, Baecker and Small]

Tutorial F7 Software Evolution: Analysis and Visualization © 2006 Harald C. Gall & Michele Lanza 12

Program Visualization II

! Level of granularity?
" Complete systems, subsystems, modules, classes, hierarchies,...

! When to apply?
" First contact with an unknown system

" Known/unknown parts?

" Forward engineering?

! Methodology?

Tutorial F7 Software Evolution: Analysis and Visualization © 2006 Harald C. Gall & Michele Lanza 13

Static Code Visualization

! The Visualization of information that can be extracted from

the static structure of a software system

! Depends on the programming language and paradigm:

" Object-Oriented PL:

" classes, methods, attributes, inheritance, …

" Procedural PL:

" procedures, invocations, …

" Functional PL:

" functions, function calls, …

Tutorial F7 Software Evolution: Analysis and Visualization © 2006 Harald C. Gall & Michele Lanza 14

Example 1: Class Hierarchies

! Jun/OpenGL

! The Smalltalk Class

Hierarchy

! Problems:

" Colors are

meaningless

" Visual Overload

" Navigation

Tutorial F7 Software Evolution: Analysis and Visualization © 2006 Harald C. Gall & Michele Lanza 15

Example 2: Tree Maps

! Pros
" 100% screen

" Large data

" Scales well

! Cons
" Boundaries

" Cluttered display

" Interpretation

" Leaves only

! Useful for the display
of Hard Disks

Tutorial F7 Software Evolution: Analysis and Visualization © 2006 Harald C. Gall & Michele Lanza 16

Examples 3 & 4

! Euclidean cones
" Pros:

" More info than 2D

" Cons:

" Lack of depth

" Navigation

! Hyperbolic trees
" Pros:

" Good focus

" Dynamic

" Cons:

" Copyright

Tutorial F7 Software Evolution: Analysis and Visualization © 2006 Harald C. Gall & Michele Lanza 17

Class Diagram Approaches

! For example UML diagrams…

! Pros:

" OO Concepts

" Good for small parts

! Cons:

" Lack of scalability

" Require tool support

" Requires mapping rules to reduce noise

" Preconceived views

Tutorial F7 Software Evolution: Analysis and Visualization © 2006 Harald C. Gall & Michele Lanza 18

Class Diagram Examples

Tutorial F7 Software Evolution: Analysis and Visualization © 2006 Harald C. Gall & Michele Lanza 19

Example 5: MetricView

! UML & 3D

Tutorial F7 Software Evolution: Analysis and Visualization © 2006 Harald C. Gall & Michele Lanza 20

Example 6a: Rigi

! Scalability problem

! Entity-Relationship
visualization

! Problems:
" Filtering

" Navigation

Tutorial F7 Software Evolution: Analysis and Visualization © 2006 Harald C. Gall & Michele Lanza 21

Example 6b: Rigi

! Entities can be

grouped

! Pros:

" Scales well

" Applicable in other

domains

! Cons:

" Not enough code

semantics

Tutorial F7 Software Evolution: Analysis and Visualization © 2006 Harald C. Gall & Michele Lanza 22

Evaluation

! Pros

" Intuitive approaches

" Aesthetically pleasing results

! Cons

" Several approaches are orthogonal to each other

" Too easy to produce meaningless results

" Scaling up is sometimes possible, but at the expense of semantics

Tutorial F7 Software Evolution: Analysis and Visualization © 2006 Harald C. Gall & Michele Lanza 23

Dynamic Code Visualization

! Visualization of dynamic behavior of a software system
" Code instrumentation

" Trace collection

" Trace evaluation

" What to visualize

" Execution trace

" Memory consumption

" Object interaction

" …

Tutorial F7 Software Evolution: Analysis and Visualization © 2006 Harald C. Gall & Michele Lanza 24

Example 1: JInsight

! Visualization of execution trace

Tutorial F7 Software Evolution: Analysis and Visualization © 2006 Harald C. Gall & Michele Lanza 25

Example 2: Inter-class call matrix

! Simple

! Scales quite well

! Reproducible

Tutorial F7 Software Evolution: Analysis and Visualization © 2006 Harald C. Gall & Michele Lanza 26

Example 3: TraceCrawler

Tutorial F7 Software Evolution: Analysis and Visualization © 2006 Harald C. Gall & Michele Lanza 27

Dynamic SV: Evaluation

! Code instrumentation problem
" Logging, Extended VMs, Method Wrapping

! Scalability problem
" Traces quickly become very big

! Completeness problem
" Scenario driven

! Pros:
" Good for fine-tuning, problem detection

! Cons:
" Tool support crucial

" Lack of abstraction without tool support

Tutorial F7 Software Evolution: Analysis and Visualization © 2006 Harald C. Gall & Michele Lanza 28

Taking a step back…

! Why is visualization important at all?

! Is it actually useful?

" No, visualization is only a means, not the end…

" Yes, visualization is only a means, not the end!!!

! The question is: “What is the end?”

" We want to understand systems…

Tutorial F7 Software Evolution: Analysis and Visualization © 2006 Harald C. Gall & Michele Lanza 29

Lightweight Approaches

! Already existing approaches and tools exist:
" hyperbolic views, fish-eye views, spring layouts, …
" Rigi, ShrimpView, Creole, Gsee, …
" Some of them are even copyrighted and/or commercial tools!

! Why are they not widely used?

! The reengineering context does not permit heavy-weight approaches

" Let’s do it lightweight then…

Tutorial F7 Software Evolution: Analysis and Visualization © 2006 Harald C. Gall & Michele Lanza 30

Object-Oriented Reverse Engineering

! Goal: take a (large legacy) software system and “understand” it, i.e.,
construct a mental model of the system

! Problem: the software system in question is

" Unknown, very large, and complex

" Domain- and language-specific

" Seldom documented or commented

" “In bad shape”

?

Tutorial F7 Software Evolution: Analysis and Visualization © 2006 Harald C. Gall & Michele Lanza 31

Object-Oriented Reverse Engineering (II)

! Constructing a mental model requires information about the system:

" Top-down approaches

" Bottom-up approaches

" Mixed Approaches

! There is no “silver bullet” methodology

! Every reverse engineering situation is unique

! Need for flexibility, customizability, scalability, and simplicity

Tutorial F7 Software Evolution: Analysis and Visualization © 2006 Harald C. Gall & Michele Lanza 32

Reverse Engineering Approaches

! Reading (source code,

documentation, UML diagrams,

comments)

! Running the SW and analyze its

execution trace

! Interview users and developers

(if available)

! Clustering

! Concept Analysis

! Software Visualization

! Software Metrics

! Slicing and Dicing

! Querying (Database)

! Data Mining

! Logic Reasoning

! …

Tutorial F7 Software Evolution: Analysis and Visualization © 2006 Harald C. Gall & Michele Lanza 33

The “Information Crystallization” Problem

! Many approaches generate too much or not enough

information

! The reverse engineer must make sense of this information

by himself

! We need the right information at the right time

Tutorial F7 Software Evolution: Analysis and Visualization © 2006 Harald C. Gall & Michele Lanza 34

What is the actual problem?

! The information needed to reverse engineer a legacy software system

resides at various levels

! We need to obtain and combine

" Coarse-grained information about the whole system

" Fine-grained information about specific parts

" Evolutionary information about the past of the system

Tutorial F7 Software Evolution: Analysis and Visualization © 2006 Harald C. Gall & Michele Lanza 35

A simple Solution - The Polymetric View

! A lightweight combination of two approaches:

" Software visualization (reduction of complexity, intuitive)

" Software metrics (scalability, assessment)

! Interactivity (iterative process, silver bullet impossible)

! Does not replace other techniques, it complements them:

" “Opportunistic code reading”

Tutorial F7 Software Evolution: Analysis and Visualization © 2006 Harald C. Gall & Michele Lanza 36

The Polymetric View - Principles

! Visualize software:

" entities as rectangles

" relationships as edges

! Enrich these visualizations:

" Map up to 5 software
metrics on a 2D figure

" Map other kinds of
semantic information on
nominal colors

width metric

height

metric

2 position metrics

Entities

Relationships

color metric

Tutorial F7 Software Evolution: Analysis and Visualization © 2006 Harald C. Gall & Michele Lanza 37

The Polymetric View - Example

Nodes = Classes

Edges = Inheritance Relationships

Width = Number of Attributes

Height = Number of Methods

Color = Number of Lines of Code

System Complexity View

Tutorial F7 Software Evolution: Analysis and Visualization © 2006 Harald C. Gall & Michele Lanza 38

The Polymetric View - Example (II)

• Get an impression (build a first raw mental
model) of the system, know the size, structure,
and complexity of the system in terms of classes
and inheritance hierarchies

• Locate important (domain model) hierarchies,
see if there are any deep, nested hierarchies

• Locate large classes (standalone, within
inheritance hierarchy), locate stateful classes and
classes with behaviour

• Count the classes, look at the displayed nodes,
count the hierarchies

• Search for node hierarchies, look at the size and
shape of hierarchies, examine the structure of
hierarchies

• Search big nodes, note their position, look for
tall nodes, look for wide nodes, look for dark
nodes, compare their size and shape, “read” their
name => opportunistic code reading

System Complexity View

Reverse engineering goals View-supported tasks

Nodes = Classes

Edges = Inheritance

 Relationships

Width = # attributes

Height = # methods

Color = # lines of code

Tutorial F7 Software Evolution: Analysis and Visualization © 2006 Harald C. Gall & Michele Lanza 39

Structural Specification

Target

Scope

Metrics

.......

Layout

Description ..

.........................

Goals ………………………………………..

……………………………

Symptoms ……………………..

……………………………

Scenario

Case Study ………………………………………..

………………………..

The Polymetric View - Description

! Every polymetric view is
described according to a
common pattern

! Every view targets specific
reverse engineering goals

! The polymetric views are
implemented in CodeCrawler

 System Complexity View

Tutorial F7 Software Evolution: Analysis and Visualization © 2006 Harald C. Gall & Michele Lanza 40

Coarse-grained Software Visualization

! Reverse engineering question:

" What is the size and the overall structure of the system?

! Coarse-grained reverse engineering goals:

" Gain an overview in terms of size, complexity, and structure

" Asses the overall quality of the system

" Locate and understand important (domain model) hierarchies

" Identify large classes, exceptional methods, dead code, etc.

" …

Tutorial F7 Software Evolution: Analysis and Visualization © 2006 Harald C. Gall & Michele Lanza 41

Coarse-grained Polymetric Views - Example

Method Efficiency Correlation View

Nodes: Methods

Edges: -

Size: Number of method parameters

Position X: Number of lines of code

Position Y: Number of statements

LOC

NOS

Goals:

• Detect overly long methods

• Detect “dead” code

• Detect badly formatted methods

• Get an impression of the system in terms of

coding style

• Know the size of the system in # methods

Tutorial F7 Software Evolution: Analysis and Visualization © 2006 Harald C. Gall & Michele Lanza 42

Inheritance Classification View

Boxes: Classes

Edges: Inheritance

Width: Number of Methods Added

Height: Number of Methods Overridden

Color: Number of Method Extended

Tutorial F7 Software Evolution: Analysis and Visualization © 2006 Harald C. Gall & Michele Lanza 43

Data Storage Class Detection View

Boxes: Classes

Width: Number of Methods

Height: Lines of Code

Color: Lines of Code

Tutorial F7 Software Evolution: Analysis and Visualization © 2006 Harald C. Gall & Michele Lanza 44

Nodes: Classes

Edges: Inheritance Relationships

Width: Number of attributes

Height: Number of methods

Color: Number of lines of code

Quiz: Where would you start looking?

Tutorial F7 Software Evolution: Analysis and Visualization © 2006 Harald C. Gall & Michele Lanza 45

CodeCrawler Demo

Tutorial F7 Software Evolution: Analysis and Visualization © 2006 Harald C. Gall & Michele Lanza 46

Clustering the Polymetric Views

First Contact

System Hotspots

System Complexity

Root Class Detection

Implementation Weight Distribution

Candidate Detection

Data Storage Class Detection

Method Efficiency Correlation

Direct Attribute Access View

Method Length Distribution

Inheritance Assessment

Inheritance Classification

Inheritance Carrier

Intermediate Abstract

Class Internal

The Class Blueprint

Tutorial F7 Software Evolution: Analysis and Visualization © 2006 Harald C. Gall & Michele Lanza 47

Coarse-grained SV - Conclusions

! Benefits

" Views are customizable (context…) and easily

modifiable

" Simple approach, yet powerful

" Scalability

! Limits

" Visual language must be learned

Tutorial F7 Software Evolution: Analysis and Visualization © 2006 Harald C. Gall & Michele Lanza 48

Granularity level problem:

It looks nice, but...what’s inside?

Tutorial F7 Software Evolution: Analysis and Visualization © 2006 Harald C. Gall & Michele Lanza 49

Fine-grained Software Visualization

! Reverse engineering question:

" What is the internal structure of the system and its elements?

! Fine-grained reverse engineering goals:

" Understand the internal implementation of classes and class

hierarchies

" Detect coding patterns and inconsistencies

" Understand class/subclass roles

" Identify key methods in a class

" …

Tutorial F7 Software Evolution: Analysis and Visualization © 2006 Harald C. Gall & Michele Lanza 50

The Class Blueprint - Principles

Invocation Sequence

Initialization External Interface Internal Implementation Accessor Attribute

• The class is divided into 5 layers
• Nodes

• Methods, Attributes, Classes

• Edges
• Invocation, Access, Inheritance

• The method nodes are positioned
according to

• Layer
• Invocation sequence

Tutorial F7 Software Evolution: Analysis and Visualization © 2006 Harald C. Gall & Michele Lanza 51

The Class Blueprint - Principles (II)

Attribute

Read Accessor

Delegating Method

Constant MethodAbstract Method

Overriding Method

Extending Method

Write Accessor

Method

invocations

lines

Attribute

external accesses

internal accesses

Direct Attribute AccessMethod Invocation

Tutorial F7 Software Evolution: Analysis and Visualization © 2006 Harald C. Gall & Michele Lanza 52

The Class Blueprint - Example

! Delegate:

" Delegates functionality to other classes

" May act as a “Façade” (DP)

! Large Implementation:

" Deep invocation structure

" Several methods

" High decomposition

! Wide Interface

! Direct Access

! Sharing Entries

Tutorial F7 Software Evolution: Analysis and Visualization © 2006 Harald C. Gall & Michele Lanza 53

The Class Blueprint - Example (II)

! Call-flow

" Double Single Entry

" (=> split class?)

! Inheritance

" Adder

" Interface overriders

! Semantics

" Direct Access

! State Usage

" Sharing Entries

Tutorial F7 Software Evolution: Analysis and Visualization © 2006 Harald C. Gall & Michele Lanza 54

Class Blueprint: Data Storage

! Has many attributes

! May have many accessor

methods

! No complex behavior

" No internal implementation!

Tutorial F7 Software Evolution: Analysis and Visualization © 2006 Harald C. Gall & Michele Lanza 55

Class Blueprint:

Inheritance Policy Breach

Tutorial F7 Software Evolution: Analysis and Visualization © 2006 Harald C. Gall & Michele Lanza 56

The Class Blueprint - A Pattern Language?

! The patterns reveal information

about

" Coding style

" Coding policies

" Particularities

! We grouped them according to

" Size

" Layer distribution

" Semantics

" Call-flow

" State usage

! Moreover…

" Inheritance Context

" Frequent pattern

combinations

" Rare pattern combinations

! They are all part of a pattern

language

Tutorial F7 Software Evolution: Analysis and Visualization © 2006 Harald C. Gall & Michele Lanza 57

The Class Blueprint - What do we see?

Tutorial F7 Software Evolution: Analysis and Visualization © 2006 Harald C. Gall & Michele Lanza 58

CodeCrawler Demo

Tutorial F7 Software Evolution: Analysis and Visualization © 2006 Harald C. Gall & Michele Lanza 59

Fine-grained SV - Conclusions

! Benefits
" Complexity reduction

" Visual code inspection technique

" Complements the coarse-grained views

! Limits
" Visual language must be learned

" Good object-oriented knowledge required

" No information about actual functionality =>
opportunistic code reading necessary

Tutorial F7 Software Evolution: Analysis and Visualization © 2006 Harald C. Gall & Michele Lanza 60

Epilogue

! Did we succeed after all?

! Not completely, but…

" System Hotspots View on

1.200’000 LOC of C++

" System Complexity View on

ca. 200 classes of C++

…happily everafter.

Tutorial F7 Software Evolution: Analysis and Visualization © 2006 Harald C. Gall & Michele Lanza 61

Industrial Validation - The Acid Test

! Several large, industrial case studies (NDA)

! Different implementation languages

! Severe time constraints

~700135’000SmalltalkJun

~7028’000C/C++Sortie

~23032’000SmalltalkDuploc

-40’000COBOLW

~2500600’000SmalltalkX

~400120’000C++/JavaY

~23001’200’000C++Z

ClassesLines of CodeLanguageSystem

Tutorial F7 Software Evolution: Analysis and Visualization © 2006 Harald C. Gall & Michele Lanza 62

Software Visualization: Conclusions

! SV is very useful when used correctly

! An integrated approach is needed, just having nice pictures is not
enough

! Most tools still at prototype level

! In general: only people that know what they see can react on that: SV
is for expert/advanced developers

! The future of software development is coming…and SV is part of it

