28th International Conference
on Software Engineering

Shanghal 2005

Software Analysis Visualization

Harald Gall and Michele Lanza

LN (&
Sojtware Visi

Software Visualization - Outline

o Introduction
o Software Visualization in a Reengineering Context

o Static Code Visualization
e Examples

o Dynamic Code Visualization
e Examples

o Lightweight Approaches
e Combining Metrics and Visualization
e Demonstration

o Conclusion

Software Evolution: Analysis and Visualization © 2006 Harald C. Gall & Michele Lanza

gﬂCC UPOﬂ
Prologue atime....

o Reverse engineer 1.2 MLOC C++ system of ca. 2300
classes

o *2=2400000 seconds
o /3600 =667 hours /8 =83 days/ 5 = 16 weeks & 3 days
O ~ 4 months to read the system

o Questions:
e What is the size and the overall structure of the system?
e What is the internal structure of the system and its elements?
e How did the software system become like that?

Software Evolution: Analysis and Visualization © 2006 Harald C. Gall & Michele Lanza

Introduction

o Visualization
e Information Visualization

o Software Visualization

e Algorithm Visualization

e Program Visualization
e Static Code Visualization
@ Dynamic Code Visualization

o The overall goal is to reduce complexity

Lo,

B

o/ ﬂv@ Tutorial F7 Software Evolution: Analysis and Visualization

Shanghal 2006 =

© 2006 Harald C. Gall & Michele Lanza

Information Visualization

o The human eye and brain interpret visual information in
order to “react to the world”

o We want to answer questions on what we perceive

o J. Bertin inferred three levels of questions

e Lower perception (one element)
e Medium perception (several elements)
e Upper perception (all elements/the complete picture)

o Information Visualization is about

e how to display information
e how to reduce its complexity

Software Evolution: Analysis and Visualization © 2006 Harald C. Gall & Michele Lanza

Software Visualization

“Software Visualization is the use of the crafts of typography,
graphic design, animation, and cinematography with
modern human-computer interaction and computer
graphics technology to facilitate both the human
understanding and effective use of computer software.”

Price, Baecker and Small, “Introduction to Software Visualization”

O 2 main fields:
e Algorithm Visualization
e Program Visualization

N@®) Software Evolution: Analysis and Visualization © 2006 Harald C. Gall & Michele Lanza
Snallllﬂl 2006 -

Conceptual Problem

"Software is intangible, having no physical shape
or size. Software visualization tools use
graphical techniques to make software visible
by displaying programs, program artifacts and
program behavior.”

[Thomas Ball]

Software Evolution: Analysis and Visualization © 2006 Harald C. Gall & Michele Lanza

> N
Shanghal 2006 \=2=

Software Visualization in Context

o There are many good-looking visualization techniques,
but..when it comes to software maintenance & evolution,
there are several problems:

e Scalability

Information Retrieval

What to visualize

How to visualize

Reengineering context constraints
e Limited time
e Limited resources

53 O]

‘ Y Tutorial F7 Software Evolution: Analysis and Visualization © 2006 Harald C. Gall & Michele Lanza
Shanghal 2006 &)

The Reengineering Life-cycle

Requirements &

,

(2) problem detection

Designs & <L

issues

 Tool support
« Scalability

- Efficiency

e
i

>

Software Evolution: Analysis and Visualization © 2006 Harald C. Gall & Michele Lanza

10

Program Visualization

“Program visualization is the visualization of the actual program
code or data structures in either static or dynamic form”
[Price, Baecker and Small]

o Static code visualization
o Dynamic code visualization

o Generate different views of a system and infer
knowledge based on the views

o Complex problem domain (current research area)

e Efficient space use, edge crossing problem, layout problem,
focus, HCI issues, GUI issues, ...

e Lack of conventions (colors, symbols, interpretation, ...)

Y

= /) %«@ Tutorial F7 Software Evolution: Analysis and Visualization © 2006 Harald C. Gall & Michele Lanza 11

Shanghal 2006 =

Program Visualization ||

o Level of granularity?
e Complete systems, subsystems, modules, classes, hierarchies,...

o When to apply?
e First contact with an unknown system
e Known/unknown parts?
e Forward engineering?

o Methodology?

ol

b /) Fﬁ‘*@ Tutorial F7 Software Evolution: Analysis and Visualization © 2006 Harald C. Gall & Michele Lanza

Shanghal 2006 \=

12

Static Code Visualization

o The Visualization of information that can be extracted from
the static structure of a software system

o Depends on the programming language and paradigm:
e Object-Oriented PL.:

e classes, methods, attributes, inheritance, ...

e Procedural PL.:
e procedures, invocations, ...

e Functional PL:
e functions, function calls, ...

e .

Shanghal 2006 &N

Software Evolution: Analysis and Visualization © 2006 Harald C. Gall & Michele Lanza

13

Example 1: Class Hierarchies

T OpenGL 3D Grapher

File Edit Yiew Light Graph Misc

o Jun/OpenGL

o The Smalltalk Class
Hierarchy

-l

e

o Problems:

@ Colors are
meaningless

e Visual Overload
e Navigation

@m |[Ej||||||||tﬂ]]]l
. — /3 h’@ Tutorial F7 Software Evolution: Analysis and Visualization © 2006 Harald C. Gall & Michele Lanza 14
SN

Shanghal 2006 =

Example 2: Tree Maps

o Pros
e 100% screen
e Large data
e Scales well

o Cons

nnnnnnn

mmmmm

=World Calor Art c . Woensart

e Boundaries SEE— = .
oI : o

e Cluttered display TE [I = A=

e Interpretation

e Leaves only L L Al
o Useful for the display i
" 2 e c [Rererer g ? ::
of Hard Disks lIE=T 8= il

: e Nl
T e —— o e R o e
% Tutorial F7 Software Evolution: Analysis and Visualization © 2006 Harald C. Gall & Michele Lanza 15
al 2006 \=a"

Examples 3 & 4

o Euclidean cones
e Pros:
e More info than 2D
e Cons:
e Lack of depth
e Navigation

o Hyperbolic trees :

Rero
Xero
Xer
Xerox
Xerox
Jobs -

P . Jobs :re

. rOS L] Recherche

e Good focus = Eow e |

. \:eaﬂ:h XRCE
e Dynamic §

e Cons:
e Copyright

P
Owal
tasko
lats

° _- T bbim(ight —}(‘

VAN,

S 'y Tutorial F7 Software Evolution: Analysis and Visualization © 2006 Harald C. Gall & Michele Lanza
Shianghal 2006 \“=2"=

16

Class Diagram Approaches

o For example UML diagrams...

o Pros:
e OO Concepts
e Good for small parts

o Cons:
e Lack of scalability
e Require tool support
e Requires mapping rules to reduce noise
e Preconceived views

o/ %«@' Tutorial F7 Software Evolution: Analysis and Visualization © 2006 Harald C. Gall & Michele Lanza

Shanghal 2006

17

Class Diagram Examples

Shanghal 2006 "A

4 Rational Rose - (#58) - [/7Z2K : Morphic-Kernel / Main]
=] 7ME) WEE) FTW) TIRE) WE-MR) TTREEQ) Y-MID) TRR) eoRW) ALTH)

[P

D\ s s 2E zwalol 8o 2leEE)

N\

ain
orphlc—KerneI
BorderedMaorph
CachingiMorph
HandMorph
HandMorphForRe play
Morph

% bounds

% color
% extension
% fullBounds
% owner
% submarphs
% EmptyArray

9 akandon

@ aboutToBeGrabhed
ﬂ Q absorkState FromRe

FS s

<] |]

0] |

==

- [et
(I (T8 1B (T8 B

N

Morph

AN

%hounds : Rectangle = 0@0 corner: 50840
%ocolor : Color = Color blue

Fextension : UndefinedOhject
FfullBounds : Rectangle = 0@0 corner: 50@40
Fowner : UndefinedObject
Rsubmorphs : Array = #0
%% EmptyArray : Array = #0

|

=

=
=
&

®abandon(
QaboutToBeGrahbedBy:()
®ahsorbStateFromRenderer()
QacceptDroppinghorphevent:()
QactiveHand(

QactorStatel)

SactorState)

‘a ctorStateQrNil)

2|38 o) o]z =]

I’-t»l'—c»l\s

A rnorph”(from the Greek “shape” o
or “form”) is an interactive

graphical object.

All morphs owned by a morph are

held in submorphs.

QadaptTolWorld:0
QaddAddHandMenultemsForHalohand 0
‘addAIlMorphs 0

addAIIMorphs afterO

¥2ddCostumeSpecificCategories To:0)

o304 o]

®3ddCustomHaloMenultems:hand
¥addCustomMenultems:hand:(
®addDebuggingltems To-hand O
®2ddDropShadow()

AIEZSBIZCE FF-ZIPLT TS0

&S,

Tutorial F7

Software Evolution: Analysis and Visualization

[ANE

r

dedF

e

_f

Lol |

X

O add

CHTHASE|SmorRhLIMbar (oefiorb, ahLIMbSr

© 2006 Harald C. Gall & Michele Lanza

18

Example 5: MetricView

M MetricView
File Help

B8 BEE X

View control Visualizer Window Management Tranparency
Model ———— —
Meties ——— F———

TLCS_Architecture

o UML & 3D | L alalalql g @ e e g m

Regulate Traffic Rules

oy Main
i TLCS
+ Eﬁj Package Hierarchy
o Legend
iy Top View
1, AmiveACrossing
-}, DepantFromCrossing
-], WaitAt TrafficLight

§ AmveAtCrossing
Wait At Traffic Light
5% DepartFromCrossing
H}4 ChangeTrafficControl Strategy
ChangeTrafficControl Strategy
g TrafficLight
0@ Lane
o@ Detector
0@ Crossing

¥

[

Layout preview

Number of rows j V¥ Automatic

Available metrics

[IEBY Class has StateMachine ~
[]I Classes nat occuring in Scena
[VIEH Classes with high dynamicity
[Classes without Methods

[1B constructor Methods

[vIIl Coupling

[1El pepth of Scenarios

[1 GETter Methods)
< | >

Visualization options
3D Bar = ﬂ
transparency _ J

upper threshold

lower threshold)7
Advanced options

Tutorial F7 Software Evolution: Analysis and Visualization © 2006 Harald C. Gall & Michele Lanza 19

Example 6a: Rigi

1 Root <<ACTIVE>>

o Scalability problem

o Entity-Relationship
visualization

o Problems:
e Filtering
e Navigation

25854 nodes selected

Tutorial F7 Software Evolution: Analysis and Visualization © 2006 Harald C. Gall & Michele Lanza 20

Example 6b: Rigi

m (0]

o Entities can be
grouped

O Pros:
e Scales well

e Applicable in other
domains

o Cons:

e Not enough code
semantics

?&3;% ESER

5“\'«.} Tutorial F7 Software Evolution: Analysis and Visualization © 2006 Harald C. Gall & Michele Lanza)
Shanghal 2006 \=+=

Evaluation

o Pros
e Intuitive approaches
e Aesthetically pleasing results

o Cons
e Several approaches are orthogonal to each other
e Too0 easy to produce meaningless results
e Scaling up is sometimes possible, but at the expense of semantics

ol

o/ %«@ Tutorial F7 Software Evolution: Analysis and Visualization © 2006 Harald C. Gall & Michele Lanza

Shanghal 2006 =

22

Dynamic Code Visualization

o Visualization of dynamic behavior of a software system

Code instrumentation
Trace collection
Trace evaluation
What to visualize

%S,)

Shanghal 2006 =

Execution trace
Memory consumption
Object interaction

ﬂv@ Tutorial F7 Software Evolution: Analysis and Visualization

© 2006 Harald C. Gall & Michele Lanza

23

Example 1: JInsight

o Visualization of execution trace
variant button bright blue stripe

Ez Execution Pattern: java/fio/PrintStream printin{Ljava/lang/String;)V : 4 occurrences !Em

(lime)

cedinit>Ow

—
getPremitiv

undate | + | - | favataiveter wrtettimvadeng/String v , cum tine: 1678, 1

Tutorial F7 Software Evolution: Analysis and Visualization © 2006 Harald C. Gall & Michele Lanza

24

Example 2: Inter-class call matrix

o Simple
o Scales quite well

o Reproducible

Shanghal 2006

Tutorial F7

TebCons sl ferctor
constalntRaps
AndeH
TebLarsemicr
Azdanmant:

ECA Rap

I b e
Armaunftabllars
TabCons iaints

Toblesu
Fqualifymetsmpep
ConshaintSweskn
Solufion
ConshalintSaluer
ObjcliveFep
Fachors turator
Termsterutor
i H

Fauchor

Pechors

Term

Objcliva
conshaint
CompourddEHDRAD
CompouredC ESprisAon
ClarRep
Clasahle
ConstntExp Rap
EHp Rup
RetCounhedObject
CConsband
CEHpraision

meln

||
] EW EERW L] MEREERME

s
LLF
|
n
[
|

3
E
F
=
]
=
=
=
2
i

a
]
a
X
]

Compomnd= Fprellon
Compound S Rip

g
[
3
M.
i3
E2
o

Tt Herador
EH Fahorstaeior

CEHpRsAOn
CCormfant
Coreirmint
Objeclix

= ObjscivRp
TahConatmint

maln
] CusRsp
Tam
o
Farkor
Tams
EH ComvinintSoke B
= PaT:hle:m
TabVar

| Refhiode

Software Evolution: Analysis and Visualization

Figure 6: Inter-class call matrix

© 2006 Harald C. Gall & Michele Lanza

25

- TraceCrawler

Example 3

YTypeFactory

re" el
!,!.“-,' =

e

g

/AN,
%
&

e
N

\eh

5%

)

PropertyOperator subhierarchy

AbstractFactory subhierarchy

26

© 2006 Harald C. Gall & Michele Lanza

Software Evolution: Analysis and Visualization

Tutorial F7

A=

L

Dynamic SV: Evaluation

o Code instrumentation problem
e Logging, Extended VMs, Method Wrapping

o Scalability problem
e Traces quickly become very big

o Completeness problem
e® Scenario driven

o Pros:
e Good for fine-tuning, problem detection

o Cons:
e Tool support crucial
e Lack of abstraction without tool support

e .

ﬂ' Software Evolution: Analysis and Visualization © 2006 Harald C. Gall & Michele Lanza
Shanghal 2006 \=+="

27

Taking a step back...

o Why is visualization important at all?

o lIs it actually useful?
e No, visualization is only a means, not the end...
® Yes, visualization is only a means, not the end!!!

o The question is: “What is the end?”
e We want to understand systems...

5O

_ ’"‘{@ Tutorial F7 Software Evolution: Analysis and Visualization © 2006 Harald C. Gall & Michele Lanza
Shanghal 2006 \=+="

28

Lightweight Approaches

o Already existing approaches and tools exist:
e hyperbolic views, fish-eye views, spring layouts, ...
e Rigi, ShrimpView, Creole, Gsee, ...
e Some of them are even copyrighted and/or commercial tools!

o Why are they not widely used?

o The reengineering context does not permit heavy-weight approaches
e Let's do it lightweight then...

¥ CI b | Tutorial F7 Software Evolution: Analysis and Visualization © 2006 Harald C. Gall & Michele Lanza
-

Shanghal 2006 &N

29

Object-Oriented Reverse Engineering

o Goal: take a (/arge legacy) software system and “understand” it, i.e.,
construct a mental model of the system

o Problem: the software system in question is
e Unknown, very large, and complex
e Domain- and language-specific
e Seldom documented or commented
e “In bad shape”
)

s%, C’g o) ﬂ{@ Tutorial F7 Software Evolution: Analysis and Visualization © 2006 Harald C. Gall & Michele Lanza 30
hanghal 2006 ===

Object-Oriented Reverse Engineering (lI)

o Constructing a mental model requires information about the system:
e Top-down approaches
e Bottom-up approaches

e Mixed Approaches
o There is no “silver bullet” methodology

O Every reverse engineering situation is unique

o Need for flexibility, customizability, scalability, and simplicity

Software Evolution: Analysis and Visualization © 2006 Harald C. Gall & Michele Lanza

31

Reverse Engineering Approaches

o Reading (source code,
documentation, UML diagrams,
comments)

Concept Analysis
Software Visualization

o Running the SW and analyze its Software Metrics

execution trace Slicing and Dicing

O Interview users and developers
(if available)

Querying (Database)
Data Mining

o Clustering

Logic Reasoning

o 0 0 o0 O U O ©

Software Evolution: Analysis and Visualization © 2006 Harald C. Gall & Michele Lanza 32

The “Information Crystallization™ Problem

o Many approaches generate too much or not enough
information

o The reverse engineer must make sense of this information
by himself

o We need the right information at the right time

&S,

ﬂ{@ Tutorial F7 Software Evolution: Analysis and Visualization © 2006 Harald C. Gall & Michele Lanza 33
Shanghal 2006 \=2="

What is the actual problem?

o The information needed to reverse engineer a legacy software system
resides at various levels

o We need to obtain and combine
e Coarse-grained information about the whole system
e Fine-grained information about specific parts
e Evolutionary information about the past of the system

e .

Shanghal 2006 &N

Software Evolution: Analysis and Visualization © 2006 Harald C. Gall & Michele Lanza

34

A simple Solution - The Polymetric View

o A lightweight combination of two approaches:
e Software visualization (reduction of complexity, intuitive)
e Software metrics (scalability, assessment)

o Interactivity (iterative process, silver bullet impossible)

o Does not replace other techniques, it complements them:
® "Opportunistic code reading”

&S,

ﬂ(@ Tutorial F7 Software Evolution: Analysis and Visualization © 2006 Harald C. Gall & Michele Lanza 35
Shanghal 2006 ==

The Polymetric View -

Principles

o Visualize software:
e entities as rectangles
e relationships as edges

o Enrich these visualizations:

e Map up to 5 software
metrics on a 2D figure

Entites ——

L) N

Relationships

<—— width metric ——>

e Map other kinds of > A
semantic information on 2 position metrics | i
nominal colors color metric o

Shiagtal 2006 ’:"@ Tutorial F7 Software Evolution: Analysis and Visualization © 2006 Harald C. Gall & Michele Lanza 36

The Polymetric View - Example

00 O0IE T TEIRe e
oy TP
0 I|
Td860 | bn

System Complexity View

Nodes = Classes
Edges = Inheritance Relationships

Width = Number of Attributes
Height = Number of Methods
Color = Number of Lines of Code
o

TS

m® Tutorial F7 Software Evolution: Analysis and Visualization
N®
Shanghal 2006 ==

© 2006 Harald C. Gall & Michele Lanza

37

The Polymetric View - Example (lI)

o E éﬂ“ﬂmﬂﬂm 0 HD \D

System Complexity View
Nodes = Classes Width = # attributes
Edges = Inheritance Height = # methods

Relationships Color = # lines of code
Reverse engineering goals View-supported tasks
* Get an impression (build a first raw mental * Count the classes, look at the displayed nodes,
model) of the system, know the size, structure, count the hierarchies
and complexity of the system in terms of classes » Search for node hierarchies, look at the size and
and inheritance hierarchies shape of hierarchies, examine the structure of
» Locate important (domain model) hierarchies, hierarchies
see if there are any deep, nested hierarchies » Search big nodes, note their position, look for
* Locate large classes (standalone, within tall nodes, look for wide nodes, look for dark
inheritance hierarchy), locate stateful classes and nodes, compare their size and shape, “read” their
classes with behaviour name => opportunistic code reading

Tutorial F7 Software Evolution: Analysis and Visualization © 2006 Harald C. Gall & Michele Lanza

B

Shanghal 2006 \“=="/

The Polymetric View - Description

O Every polymetric view is

_ | ity Vi
described according to a System Complexity View

Structural Specification

common pattern Target ...
Scope ...
Metrics L
o Every view targets specific Layout
reverse engineering goals Description .o
Goals
o Sympt et
O The polymetric views are PRIE
implemented in CodeCrawler Scenaric S—
oy IWW
Case Study oo,

53O

ﬂ*@ Tutorial F7 Software Evolution: Analysis and Visualization © 2006 Harald C. Gall & Michele Lanza
Shanghal 2006 \=+="

Coarse-grained Software Visualization

O Reverse engineering question:
e What is the size and the overall structure of the system?

o Coarse-grained reverse engineering goals:
e Gain an overview in terms of size, complexity, and structure
e Asses the overall quality of the system
e Locate and understand important (domain model) hierarchies
e ldentify large classes, exceptional methods, dead code, etc.
O

e .

Shanghal 2006 &N

Software Evolution: Analysis and Visualization © 2006 Harald C. Gall & Michele Lanza

40

Coarse-grained Polymetric Views - Example

[° o > LOC Method Efficiency Correlation View
o Nodes: Methods
o Edges:
1 Size: Number of method parameters
o Position X: Number of lines of code

o
]

Position Y: Number of statements

o
%l. O, i Goals:

= % , a * Detect overly long methods
O D * Detect “dead” code
N g * Detect badly formatted methods
- . & + Get an impression of the system in terms of
\ .
O O coding style
v = AN « Know the size of the system in # methods
\
NOS - . .
O
O

E ' o ! /4 %‘@' Tutorial F7 Software Evolution: Analysis and Visualization © 2006 Harald C. Gall & Michele Lanza 41

Shanghal 2006

Inheritance Classification View

Boxes: Classes
Edges: Inheritance
Width: Number of Methods Added
Height: Number of Methods Overridden
Color: Number of Method Extended
%& L Tutorial F7 Software Evolution: Analysis and Visualization © 2006 Harald C. Gall & Michele Lanza 42

Data Storage Class Detection View

Classes

Number of Methods
Lines of Code
Lines of Code

Tutorial F7

Software Evolution: Analysis and Visualization

© 2006 Harald C. Gall & Michele Lanza

43

Quiz: Where would you start looking?

T

| %““DDD

|

Nodes: Classes

Edges: Inheritance Relationships
Width: Number of attributes
Height: Number of methods
Color: Number of lines of code

Software Evolution: Analysis and Visualization © 2006 Harald C. Gall & Michele Lanza 44

CodeCrawler Demo

&S

Shanghal 2006

0006 CodeCrawler - System Complexity View

CodeCrawler Moose Apply View Spawn View Selection Transformation Colors Layout

HoEEs m B ¢ Qe B o E -6 N 22

=

|:|:||] LIFE C‘I:I[IE1|:|[1

|

~J L~

77 Nodes, 61 Edges - 0 selected Nodes

1

ﬁv

LA

Tutorial F7 Software Evolution: Analysis and Visualization © 2006 Harald C. Gall & Michele Lanza

45

Clustering the Polymetric Views

\4

@ Tutorial F7 Software Evolution: Analysis and Visualizatio © 2006 Harald C. Gall & Michele Lan 46
8 al 2006 =5

Coarse-grained SV - Conclusions

0O Benefits

e Views are customizable (context...) and easily
modifiable

e Simple approach, yet powerful
e Scalability
o Limits
e Visual language must be learned

5O

: ﬂ*@ Tutorial F7 Software Evolution: Analysis and Visualization © 2006 Harald C. Gall & Michele Lanza
Shanghal 2006 \=+="

47

Granularity level problem:
It looks nice, but...what's inside?

Shanghal 2006 “=2="

O: - CodeCrawler Il - System Complexity :

File Yiews Selection Transformation Colors Extras Tools Hel

Item: Class CCGraphSubcanyas [<(NOA: 14)(NOM: 27)> <(WLOC: 251)> <(-: 0){(-: 0)>]

Eii

< |
I 78 Nodes, 69 Edges | 0 Selected Nodes

Tutorial F7 Software Evolution: Analysis and Visualization © 2006 Harald C. Gall & Michele Lanza

48

Fine-grained Software Visualization

O Reverse engineering question:
e What is the internal structure of the system and its elements?

o Fine-grained reverse engineering goals:

e Understand the internal implementation of classes and class
hierarchies

Detect coding patterns and inconsistencies
Understand class/subclass roles

o
o
e Identify key methods in a class
o

e .

Shanghal 2006 &N

Software Evolution: Analysis and Visualization © 2006 Harald C. Gall & Michele Lanza

49

The Class Blueprint - Principles

Initialization External Interface Internal Implementation Accessor Attribute
- | | Pam
e = m
SH
O R
P Invocation Sequence >
* The class is divided into 5 layers * The method nodes are positioned
* Nodes according to
 Methods, Attributes, Classes * Layer
* Edges * Invocation sequence
* Invocation, Access, Inheritance
m§; % Tutorial F7 Software Evolution: Analysis and Visualization © 2006 Harald C. Gall & Michele Lanza

Shanghal 2006

The Class Blueprint - Principles (lI)

<— #invocations —>

)
Method # lines
v

<— {#external accesses —>

t

internal accesses

v

Initialization External Interface Internal Implementation Accessor Attribute

/= l:_l___»_g E
o @/— SO0 =

1o

P Invocation Sequence

i

Shanghal 2006 ==

Tutorial F7 Software Evolution: Analysis and Visualization

Abstract Method .
Overriding Method .
Delegating Method

Extending Method .

/

pr

Constant Method
Read Accessor
Write Accessor

Attribute

Method Invocation Direct Attribute Access

© 2006 Harald C. Gall & Michele Lanza

51

The Class Blueprint - Example

O Delegate:
e Delegates functionality to other classes
e May act as a “Facade” (DP)

O Large Implementation:
e Deep invocation structure
e Several methods
e High decomposition

o Wide Interface
o Direct Access

O Sharing Entries

S/ }’A“,@l Tutorial F7 Software Evolution: Analysis and Visualization
Shanghal 2006 ==

PR T
cC == /
i N BH-

oo,

o o o o o o O 1001000 1000000000
L, e oy

© 2006 Harald C. Gall & Michele Lanza

52

The Class Blueprint - Example (lI)

o Call-flow
e Double Single Entry
e (=> split class?)

O Inheritance
e Adder
@ Interface overriders

O Semantics
@ Direct Access

o State Usage
e Sharing Entries

75&3?;!@1@ | N
ﬂ‘f ® Tutorial F7 Software Evolution: Analysis and Visualization

Shanghal 2006 \“=="/

‘{J."

Dcé\;
.

."-P-
Nty

\

© 2006 Harald C. Gall & Michele Lanza

53

Class Blueprint: Data Storage

o Has many attributes

o May have many accessor
methods

o No complex behavior
e No internal implementation!

&>

Tutorial F7 Software Evolution: Analysis and Visualization
N@
Shanghal 2006 \=+="

© 2006 Harald C. Gall & Michele Lanza

54

Class Blueprint:

Inheritance Policy Breach

Fle Views

S i

Shdbghal 2006 = S

Selection Highlighting Transformation Colors Extras Help

View | Class Structure (Multiple Class View) Nodes 151 | Edges | 3p4
Y
n\ u]
G-
1]
u]
|] =
B
=
=
/
I~ 1 =
Current Item ! initialize accesses globalVarsReceivinghMessages
B ———
Tutorial F7 Software Evolution: Analysis and Visualization © 2006 Harald C. Gall & Michele Lanza

55

The Class Blueprint - A Pattern Language?

o The patterns reveal information o Moreover...
about

e Coding style
e Coding policies
e Particularities

e Inheritance Context

e Frequent pattern
combinations

e Rare pattern combinations
o We grouped them according to

Size
Layer distribution

®

° o They are all part of a pattern
e Semantics

®

®

language

Call-flow
State usage

Lo,

L o/ %«@ Tutorial F7 Software Evolution: Analysis and Visualization © 2006 Harald C. Gall & Michele Lanza 56

Shanghal 2006 =

The Class Blueprint - What do we see?

Software Evolution: Analysis and Visualization

57

CodeCrawler Demo

&S

Shanghal 2006

0006 CodeCrawler - System Complexity View

CodeCrawler Moose Apply View Spawn View Selection Transformation Colors Layout

HoEEs m B ¢ Qe B o E -6 N 22

=

|:|:||] LIFE C‘I:I[IE1|:|[1

|

~J L~

77 Nodes, 61 Edges - 0 selected Nodes

1

ﬁv

LA

Tutorial F7 Software Evolution: Analysis and Visualization © 2006 Harald C. Gall & Michele Lanza

58

Fine-grained SV - Conclusions

O Benefits
e Complexity reduction
e Visual code inspection technique
e Complements the coarse-grained views

O Limits
e Visual language must be learned
e Good object-oriented knowledge required

e No information about actual functionality =>
opportunistic code reading necessary

&S,

ﬂ{@ Tutorial F7 Software Evolution: Analysis and Visualization © 2006 Harald C. Gall & Michele Lanza
Shanghal 2006 \=+="

59

E p' |Og ue ...happilg everafter.

o Did we succeed after all?

Graph Name: temporary | Metrics: | NOM NOM HNL --| == |l Shrink:2/ 2|

o Not completely, but...

0 5 O O O O O [IHIIHIIUIIHII\III\
10101000 V JCICICIC 10000000000 [1 []
ICECLICL CIC JCJEL \.!‘U’\F\F\I‘l || | || JOLIO UL
0 O O] [LTI LICLICT JCOCOCrrin
" T TLLICL BU0O0OB0O000L] [o]| H |[|| || JOCIOIC [[}

H\|||||HH|f||||\|HH_"““H"""“—"I“I“ 0 T1IT]

. yS e”l 0 Spo S IeW OI' SEEEESESEEE HE@ CiSsssusssessEssEsEEEEE
T

LICIC CICICICICT
BT ICCCLT T 8 O A
[H I"II—I—IF—II—IITW—II—II[I(II I I Ir]ml:l]lj:ll:l:j:l[]]

me mmnmn
1.200’000 LOC of C++ %\%%%&L EECEEE EmEml WE HWWFWT

J_IUDI || B [II—I—I\ 1111
OO e L R LT [T] [1

L]
e System Complexity View on i " "" |||| |n H] . B AR EEEEE
ca. 200 classes of C++ _SEEEN

. st
| C: MessageBox (308,3082.0.0) | <Mex 308.308.9.0.05 | <Nodes/Edges: 2309.0>

#¢ CodeCrawler =[o]x]
File ‘Window Graph Model Nodes Edges

Graph Name: temporary | Metrics: | NIV NOM NOC -- | ----- | NAANCM NAA -~ | || Shrink: 1/ 1|

II||III Il|||I;\II\IIIIII|II|IIIIIIIIIIlIIIII|IIIIIII||IIIIIIIIIlIIIIIIIlIIIIIII|IIIIIIIIlII||lIIII|

00
1| | Jﬂ
l C: AED_EventType (2.14,1,0,0) I <Max: 33,83,96.0,0> <Nodes/Edges: 459,434>
EEEE ig E;:; Tutorial F7 Software Evolution: Analysis and Visualization © 2006 Harald C. Gall & Michele Lanza

Y 60
Shanghal 2006

Industrial Validation - The Acid Test

O Several large, industrial case studies (NDA)

o Different implementation languages

O Severe time constraints

System Language Lines of Code Classes

Z C++ 1'200°000 ~2300
Y C++/Java 120’000 ~400
X Smalltalk 600°000 ~2500
W COBOL 40’000 -
Sortie C/C++ 28’000 ~70
Duploc Smalltalk 32’000 ~230
Jun Smalltalk 135’000 ~700

Tutorial F7

Software Evolution: Analysis and Visualization

© 2006 Harald C. Gall & Michele Lanza

61

Software Visualization: Conclusions

o SV is very useful when used correctly

o An integrated approach is needed, just having nice pictures is not
enough

o Most tools still at prototype level

o In general: only people that know what they see can react on that: SV
is for expert/advanced developers

o The future of software development is coming...and SV is part of it

Software Evolution: Analysis and Visualization © 2006 Harald C. Gall & Michele Lanza 62

