

Code Duplication

Harald Gall seal.ifi.uzh.ch/evolution

Code is Copied

Small Example from the Mozilla Distribution (Milestone 9) Extract from /dom/src/base/nsLocation.cpp

[432]	NS_IMETHODIMP	[467]	NS_IMETHODIMP	[497]	NS_IMETHODIMP
[433]	LocationImpl::GetPathname(nsString	[468]	LocationImpl::SetPathname(const nsString	[498]	LocationImpl::GetPort(nsString& aPort)
[434]	{	[469]	{	[499]	{
[435]	nsAutoString href;	[470]	nsAutoString href;	5001	nsAutoString href;
[436]	nsIURI *url;	[471]	nsIURI *url;	[501]	nsIURI *url;
[437]	nsresult result = NS OK;	[472]	nsresult result = NS OK;	5021	nsresult result = NS OK;
[<mark>438]</mark>	_ /	[473]	_ /	[503]	_ /
[439]	result = GetHref(href);	[474]	result = GetHref(href);	[504]	result = GetHref(href);
[<mark>440]</mark>	if (NS OK == result) $\{$	[475]	if (NS OK == result) $\{$	5051	if (NS OK == result) {
i <mark>4411</mark>	#ifndef NECKO	14761	#ifndef NECKO	i506i	#ifndef NECKO
4421	result = NS NewURL(&url, href):	14771	result = NS NewURL(&url, href);	Ì507İ	result = NS NewURL(&url, href);
4431	#else	14781	#else	i 508i	#else
[<mark>444]</mark>	result = NS NewURI(&url, href);	14791	result = NS NewURI(&url, href);	Ì509İ	result = NS NewURI(&url, href);
445	#endif // NECKO	[480]	#endif // NECKO	້ 5101	#endif // NECKO
[446]	if (NS OK == result) {	[481]	if (NS OK == result) {	້ [511]	if (NS OK == result) {
[447]	#ifdef NECKO	[482]	char *buf = aPathname.ToNewCString();	[512]	aPort.SetLength(0);
[448]	char* file;	[483]	#ifdef NECKO	[513]	#ifdef NECKO
[449]	result = url->GetPath(&file);	[484]	url->SetPath(buf);	[514]	PRInt32 port;
[450]	#else	[485]	#else	[515]	(void)url->GetPort(&port);
[451]	const char* file;	[486]	url->SetFile(buf);	[516]	#else
[452]	result = url->GetFile(&file);	[487]	#endif	[517]	PRUint32 port;
[453]	#endif	[488]	SetURL(url);	[518]	(void)url->GetHostPort(&port);
[454]	if (result == NS_OK) {	[489]	delete[] buf;	[519]	#endif
[455]	aPathname.SetString(file);	[490]	NS_RELEASE(url);	[520]	if (-1 != port) {
[456]	#ifdef NECKO	[491]	}	[521]	aPort.Append(port, 10);
[457]	nsCRT::free(file);	[492]	}	[522]	}
[458]	#endif	[493]		[523]	NS_RELEASE(url);
[459]	}	[494]	return result;	[524]	}
[460]	NS_IF_RELEASE(url);	[495]	}	[525]	}
[461]	}	[496]	-	[526]	-
[462]	}			[527]	return result;
[463]	-			[528]	}
[464]	return result;			[529]	-
[465]	}				
[466]					2

What is a Code Clone?

a.k.a. Code Duplication, Software Cloning, Copy&Paste Programming

Code Clone = gratuitous copy of source code in a program

Code Clones increasing source code size and potentially increase defects

Code Duplication

Code Duplication

- What is it?
- Why is it harmful?

Detecting Code Duplication Approaches

A Lightweight Approach Visualization (dotplots) Duploc

How Much Code is Duplicated?

Usual estimates: 8 to 12% in normal industrial code 15 to 25 % is already a lot!

Case Study	LOC	Duplication without comments	with comments
gcc	460'000	8.7%	5.6%
Database Server	245'000	36.4%	23.3%
Payroll	40'000	59.3%	25.4%
Message Board	6'500	29.4%	17.4%

What is copied code?

Duplicated Code = Source code segments that are found in different places of a system

in different files in the same file but in different functions in the same function

The segments must contain some *logic or structure* that can be abstracted, i.e.,

<pre> computeIt(a,b,c,d);</pre>	<pre> computeIt(w,x,y,z);</pre>	is not considered duplicated code.
<pre> getIt(hash(tail(z)));</pre>	<pre> getIt(hash(tail(a)));</pre>	could be abstracted to a new function

Copied artifacts range from expressions, to functions, to data structures, and to entire subsystems.

Definitions

Clone Pair/Group: Set of equivalent Clones

Precision: Percent of reported clones that are genuine

Recall: Percent of genuine clones that are reported

Copied Code Problems

General negative effect:

Code bloat

Negative effects on Software Maintenance

- Copied Defects
- Changes take double, triple, quadruple, ... Work
- Dead code
- Add to the cognitive load of future maintainers

Copying as additional source of defects

Errors in the systematic renaming produce unintended aliasing

Metaphorically speaking:

- Software Aging, "hardening of the arteries",
- "Software Entropy" increases even small design changes become very difficult to effect

Code Duplication Detection

Nontrivial problem:

- No a priori knowledge about which code has been copied
- How to find all clone pairs among all possible pairs of segments?

General Schema of Detection Process

Detection

String Matching – Represents and evaluates code using string comparisons

Token Parsing – Code transformation into tokens for comparison

Graph Matching – Pattern matching on graph representations of code

Detection Strategies

String Matching Techniques

Exact String Matching

Parameterized Matching

Substring Matching

Parameterized Matching

Employs exact string matching for comparison

- 1. Normalization
- 2. Concatenation
- 3. Hashing
- 4. Extract longest matches

Matching Algorithm

No algorithm can avoid worst case running time of $O(n^2)$

Using a suffix tree we can improve running time complexity to O(n+m). Where m is the number of matches

The input size n, is reduced by hashing

Suffix Tree Example

Suffix Tree

Suffix Tree

Images Copyright (c) 1996-1998, Mark Nelson, All Rights Reserved.

Substring Matching

Substring Matching provides a faster search algorithm.

- 1. Normalization
- 2. Substring Generation
- 3. Matching
- 4. Consolidation
- 5. Reporting

Caveat

Exact string matching does not find clones with trivial alterations that don't change the semantics

Normalization has the risk of false positives

x+y=z; != z+x=y; -> p+p=p for(i=0; i<k; i++) -> for(p=p; p<p; p++)

Token Parsing Techniques

Transforms code into tokens by using language specific constructs into a single token string

Find similarities within this token string

Transform token clones back into code clones for presentation

```
int main(){
    int i = 0;
    static int j=5;
    while(i<20){
        i=i+j;
    }
    std::cout<<"Hello World"<<i<<std::endl;
    return 0;
}
    Remove white spaces</pre>
```


int main (){
int i = 0;
int j = 5;
while (i < 20){
i = i + j;
}
cout << "Hello World" << i << endl;
return 0;
}</pre>

Tokenize everything, except language constructs

```
$p $p(){
$p $p = $p;
$p $p = $p;
while($p < $p ){
$p = $p + $p;
}
$p << $p << $p << $p;;
return $p;
}</pre>
```

Clone relations with all the transformation rules are compared to clone relations with a subset of the transformation rules

CCFinder – A Code Clone Finder Tool

			. Pi	10	4	41	е.	⊢	16 at	9 H
		88-8848-	88.8	8.8	B. Sugar	2	888888	888	18	-88-8848-
	88-88-88	* ** * ** *								
	į.									
	58-2245			•••	::			::	:	•
	Ľ.	· · · · · ·	••••		• •	· · · · · ,		•••	Ť	
	88.8	** ** *	٠.	•••	· · ·		• • •	::	•••	·· ·· ·
No. 4.4 N.4 <	20	** ** *	** *	4 d + 4	::	* * * *	* * *	::	:	** ** *
No. N	18.8. A.	•••••	••• [•] • ••••	• •	22		• • • • • •		•••	······.
M* A	Surgar Press	······.	··· ·	•••	· · · · · · · · · · · · · · · · · · ·	×	 	 		······.
Norm Norm	÷.	•• •• ••.		•••	•••	<u></u>		• •	··	•• •• •.
min min <td>できたかがい</td> <td>** ** *</td> <td></td> <td>• •</td> <td>•••</td> <td></td> <td>×.,</td> <td></td> <td></td> <td></td>	できたかがい	** ** *		• •	•••		×.,			
XX <	898989	••• •• • •• •• •	•••••	•••	••••	* * * *	· · · · · ·			··· ·· ·
	******	••••••••••••••••••••••••••••••••••••••	··· ·	•••	•••		· · · · ·	ŝ,		··· ·· ·
	**							· · ·	S.	

Graph Matching Techniques

Form machine representation of code Identify clones as identical subgraphs

this.attribut if(fields == nu fields = new if (methods == r methods = new this.class name this.superclass this.file name this.major this.minor this.access fla this.constant p this.interfaces this fields this methods this.attributes this source // Get source f for(int i=0; i if (attributes

/* According to

Abstract Syntax Subtree Matching

source_file_name = ((SourceFile) attributes[i]).getSourceFileName();

Abstract Syntax Subtree Matching

Hash subgraphs Identify maximal identical or similar subgraphs Identify sequences of subgraphs

Program Dependency Graph Matching

1			
1	<pre>public class FooBar { public void contextInit(Context ctx) { if (!ctx.isTrusted()) { return; } if (debug > 0) { log("contextInit " + ctx + " " + cm.getState()); } File modules = getModuleFile(ctx); if (modules == null) { return; } reInitModules(ctx, modules); } public void reload(Context context) { if (!context.isTrusted()) { return; } File modules = getModuleFile(context); if (modules == null) { return; } File modules = getModuleFile(context); if (modules == null) { return; } if (debug > 0) { log("Reload modules " + context.getPath()); } } } </pre>	16 entry reload(Request req, Context context) 18 19 20 if(!context.isTrusted()) File modules= getModuleFile(context); if(modul	22 es==null) if(debug>0) relnitModules(context , modules);
	<pre>log("Reload modules " + context.getPath()); } reInitModules(context, modules); } </pre>	18b (return) 20b (return	n (log("Reload modules " + context.getPath());

Program Dependence Graph Matching

Vertices are lines of code

Edges are attributed with different types of dependencies (control flow, data flow, etc.)

NP complete in general, k-cutoff in maximal graph size used to limit runtime

Experiments determine k=20 as best

O(|V|²) possible graph starting points, reduced via heuristic

Two Clones Found by fg-PDG

Metrics?

Need to evaluate different clone detection techniques

Hard to know the real number of clones in a non-trivial application

How to compare different types of clones?

Basic Metrics

LOC: Line number count

SLOC: Line number count after the removal of blanks

%LOC: Percent of lines with clones in them

%FILE: Percent of files with clones in them

Interesting Metrics: Radius

Interesting Metrics: Radius

Interesting Metrics: Radius

Comparison of Clone Detectors

	CCFinder	CloneDr	Cavet	Jplag	Moss
	Token	AST	Metric	Token	Unknown
	(1128)	(84)	(278)	(131)	(120)
CCFinder		1090/38	1089/27	989/ <mark>87</mark>	1025/101
CloneDr	43		265/13	120/11	111/ <mark>9</mark>
Cavel	251	70		120/15	109/10
Jplag	44	73	273		<u>67/50</u>
Moss	19	76	268	81	

Comparison of Clone Detectors

Frequency	CCFinder	CloneDr	Cavet	JPlag	Moss
1	569	66	40	95	104
2	98	6	34	10	8
3	33	2	13	4	0
4	14	0	6	1	0
5	16	0	5	0	0
6	19	0	5	0	0
7	2	0	1	0	0

In addition Cavet found clones with frequencies: 8,12, and 13

Comparison of Clone Detectors

	CCFinder	CloneDr	Cavet	JPlag	Moss
Recall	72	9	19	12	10
Precision	72	100	63	82	73

•Different code clone detectors find different clones

- •String based find direct clones
- •Token based find polymorphism issues and may be difficult to fix
- •Graph based find clones that can be automatically refactored

Code Clone Refactoring

Use standard Refactoring methods

- "Extract" Make a procedure
- "Pull Up" Make an superclass

Aspect Oriented Programming

 Advanced technique for clones that are too tough for procedural or OO solutions

Duploc: A Lightweight Approach (1)

- Assumption
 - Code segments are just copied and changed in a few places
- Code Transformation Step
 - remove white space, comments
 - remove lines that contain uninteresting code elements

(e.g., just 'else' or '}')

```
...
//assign same fastid as container
fastid = NULL;
const char* fidptr = get_fastid();
if(fidptr != NULL) {
    int l = strlen(fidptr);
    fastid = newchar[l+1];
```

... fastid=NULL; constchar*fidptr=get_fastid(); if(fidptr!=NULL) intl=strlen(fidptr) fastid = newchar[l+1]

A Lightweight Approach (2)

Code Comparison Step

- Line based comparison (Assumption: Layout did not change during copying)
- Compare each line with each other line.
- Reduce search space by hashing:
 - Preprocessing: Compute the hash value for each line
 - Actual Comparison: Compare all lines in the same hash bucket

Evaluation of the Approach

- Advantages: Simple, language independent
- Disadvantages: Difficult interpretation

Enhanced Simple Detection Approach

Code Comparison Step

- Same as before +
 - Collect consecutive matching lines into match sequences
 - Allow holes in the match sequence

Evaluation of the Approach

- Advantages
 - Identifies more real duplication, language independent
- Disadvantages
 - Less simple
 - Misses copies with (small) changes on every line

Visualization of Duplicated Code

- Visualization provides insights into the duplication situation
- A simple version can be implemented in three days
- Scalability issue
- Dotplots Technique from DNA Analysis
 - Code is put on vertical as well as horizontal axis
 - A match between two elements is a dot in the matrix

Exact Copies

Copies with Variations

axbc xdexfgxh

Visualization of Copied Code Sequences

All examples are made using Duploc from an industrial case study (I Mio LOC C++ System)

Visualization of Repetitive Structures

Detected Problem

4 Object factory clones: a switch statement over a type variable is used to call individual construction code

Possible Solution

Strategy Method

Visualization of Cloned Classes

Visualization of Clone Families

Overview

20 Classes implementing lists for different data types

Detail

Lightweight is sometimes not enough

Duploc is scalable, integrates detection and visualization

It runs really everywhere (Smalltalk inside)

More Clone Detection

Tool	Author Supported		Domain	Domain Approach	
		Languages		Category	
CCFinder	T.Kamiya	C, C++, COBOL, Java, Emacs Lisp, Plain Text	Clone Detection	Transformation followed by token matching	Academic
CloneDr	I. Baxter	C, C++, COBOL, Java, Progress	Clone Detection	Abstract Syntax Tree comparison	Commercial
Covet	J. Bailey J. Mayrand	Java	Clone Detection	Comparison of Function Metrics	Academic
JPlag	G. Malpohl	C, C++, Java, Scheme	Plagiarism Detection	Transformation followed by token matching	Academic
Moss	A. Aiken	Ada, C, C++, Java, Lisp, ML, Pascal, Scheme	Plagiarism Detection	Unpublished	Academic

[Burd02]

Résumé

Duplicated code is a real problem

makes a system progressively harder to change

Detecting duplicated code is a hard problem

- some simple technique can help
- tool support is needed

Visualization of code duplication is useful

- some basic support are easy to build
- one student build a simple visualization tool in three days

Curing duplicated code is an active research area