
Code Duplication

Harald Gall
seal.ifi.uzh.ch/evolution

2

Code is Copied
Small Example from the Mozilla Distribution (Milestone 9)	

Extract from /dom/src/base/nsLocation.cpp

[432] NS_IMETHODIMP
[433] LocationImpl::GetPathname(nsString
[434] {
[435] nsAutoString href;
[436] nsIURI *url;
[437] nsresult result = NS_OK;
[438]
[439] result = GetHref(href);
[440] if (NS_OK == result) {
[441] #ifndef NECKO
[442] result = NS_NewURL(&url, href);
[443] #else
[444] result = NS_NewURI(&url, href);
[445] #endif // NECKO
[446] if (NS_OK == result) {
[447] #ifdef NECKO
[448] char* file;
[449] result = url->GetPath(&file);
[450] #else
[451] const char* file;
[452] result = url->GetFile(&file);
[453] #endif
[454] if (result == NS_OK) {
[455] aPathname.SetString(file);
[456] #ifdef NECKO
[457] nsCRT::free(file);
[458] #endif
[459] }
[460] NS_IF_RELEASE(url);
[461] }
[462] }
[463]
[464] return result;
[465] }
[466]

[467] NS_IMETHODIMP
[468] LocationImpl::SetPathname(const nsString
[469] {
[470] nsAutoString href;
[471] nsIURI *url;
[472] nsresult result = NS_OK;
[473]
[474] result = GetHref(href);
[475] if (NS_OK == result) {
[476] #ifndef NECKO
[477] result = NS_NewURL(&url, href);
[478] #else
[479] result = NS_NewURI(&url, href);
[480] #endif // NECKO
[481] if (NS_OK == result) {
[482] char *buf = aPathname.ToNewCString();
[483] #ifdef NECKO
[484] url->SetPath(buf);
[485] #else
[486] url->SetFile(buf);
[487] #endif
[488] SetURL(url);
[489] delete[] buf;
[490] NS_RELEASE(url);
[491] }
[492] }
[493]
[494] return result;
[495] }
[496]

[497] NS_IMETHODIMP
[498] LocationImpl::GetPort(nsString& aPort)
[499] {
[500] nsAutoString href;
[501] nsIURI *url;
[502] nsresult result = NS_OK;
[503]
[504] result = GetHref(href);
[505] if (NS_OK == result) {
[506] #ifndef NECKO
[507] result = NS_NewURL(&url, href);
[508] #else
[509] result = NS_NewURI(&url, href);
[510] #endif // NECKO
[511] if (NS_OK == result) {
[512] aPort.SetLength(0);
[513] #ifdef NECKO
[514] PRInt32 port;
[515] (void)url->GetPort(&port);
[516] #else
[517] PRUint32 port;
[518] (void)url->GetHostPort(&port);
[519] #endif
[520] if (-1 != port) {
[521] aPort.Append(port, 10);
[522] }
[523] NS_RELEASE(url);
[524] }
[525] }
[526]
[527] return result;
[528] }
[529]

3

What is a Code Clone?

a.k.a. Code Duplication, Software Cloning, Copy&Paste
Programming

Code Clone = gratuitous copy of source code in a
program

Code Clones increasing source code size and potentially
increase defects

4

Code Duplication

Code Duplication
n  What is it?
n  Why is it harmful?

Detecting Code Duplication
Approaches
A Lightweight Approach
Visualization (dotplots)
Duploc

4

5

How Much Code is Duplicated?
Usual estimates: 8 to 12% in normal industrial code
15 to 25 % is already a lot!

5

Case Study! LOC!
Duplication

without
comments!

with
comments!

gcc" 460’000" 8.7%" 5.6%"

Database Server" 245’000" 36.4%" 23.3%"

Payroll" 40’000" 59.3%" 25.4%"

Message Board" 6’500" 29.4%" 17.4%"

6

What is copied code?
Duplicated Code = Source code segments that are found in different
places of a system

•  in different files
•  in the same file but in different functions
•  in the same function

The segments must contain some logic or structure that can be abstracted, i.e.,

Copied artifacts range from expressions, to functions, to data structures, and to entire
subsystems.

6

is not considered
duplicated code.

could be abstracted
to a new function

...

getIt(hash(tail(z)));

...

...

getIt(hash(tail(a)));

...

...

computeIt(a,b,c,d);

...

...

computeIt(w,x,y,z);

...

7

Definitions

Clone Pair/Group: Set of equivalent Clones

Precision: Percent of reported clones that are genuine

Recall: Percent of genuine clones that are reported

7

8

Copied Code Problems

General negative effect:
n  Code bloat

Negative effects on Software Maintenance
n  Copied Defects
n  Changes take double, triple, quadruple, ... Work
n  Dead code
n  Add to the cognitive load of future maintainers

Copying as additional source of defects
n  Errors in the systematic renaming produce unintended aliasing

Metaphorically speaking:
n  Software Aging, “hardening of the arteries”,
n  “Software Entropy” increases even small design changes become

very difficult to effect

8

9

Code Duplication Detection

9

Nontrivial problem:
•  No a priori knowledge about which code has been copied	

•  How to find all clone pairs among all possible pairs of segments?

Lexical Equivalence

Semantic Equivalence

Syntactical Equivalence

10

General Schema of Detection Process

10

Source Code Transformed Code Duplication Data

Transformation Comparison

Author! Level! Transformed Code! Comparison Technique!

[John94a]" Lexical" Substrings" String-Matching"

[Duca99a]" Lexical" Normalized Strings" String-Matching"

[Bake95a]" Syntactical" Parameterized Strings" String-Matching"

[Mayr96a] " Syntactical" Metric Tuples" Discrete comparison"

[Kont97a]" Syntactical" Metric Tuples" Euclidean distance"

[Baxt98a]" Syntactical" AST" Tree-Matching"

11

Detection

String Matching – Represents and evaluates code using
string comparisons

Token Parsing – Code transformation into tokens for
comparison

Graph Matching – Pattern matching on graph
representations of code

12

Detection Strategies

13

String Matching Techniques

Exact String Matching

Parameterized Matching

Substring Matching

14

Parameterized Matching

Employs exact string matching for comparison

1.  Normalization
2.  Concatenation
3.  Hashing
4.  Extract longest matches

15

Matching Algorithm

No algorithm can avoid worst case running time of O(n2)

Using a suffix tree we can improve running time
complexity to O(n+m). Where m is the number of
matches

The input size n, is reduced by hashing

16

Suffix Tree Example

Images Copyright (c) 1996-1998, Mark Nelson, All Rights Reserved.

Suffix Tree

Suffix Tree

17

Substring Matching

Substring Matching provides a faster search algorithm.

1.  Normalization
2.  Substring Generation
3.  Matching
4.  Consolidation
5.  Reporting

18

Caveat

Exact string matching does not find clones with trivial
alterations that don’t change the semantics

Normalization has the risk of false positives

 x+y=z; != z+x=y; -> p+p=p
 for(i=0; i<k; i++) -> for(p=p; p<p; p++)

19

Token Parsing Techniques

Transforms code into tokens by using language specific
constructs into a single token string

Find similarities within this token string

Transform token clones back into code clones for
presentation

20

Token Parsing Example

int main(){
 int i = 0;
 static int j=5;
 while(i<20){
 i=i+j;
 }
 std::cout<<"Hello World"<<i<<std::endl;
 return 0;
}

Remove white spaces

21

Token Parsing Example

int main(){
int i = 0;
static int j=5;
while(i<20){
i=i+j;
}
std::cout<<"Hello World"<<i<<std::endl;
return 0;
}

Shorten Names

22

Token Parsing Example

int main (){
int i = 0;
int j = 5;
while (i < 20){
i = i + j;
}
cout << "Hello World” << i << endl;
return 0;
}

Tokenize everything,
except language
constructs

23

Token Parsing Example

$p $p(){
$p $p = $p;
$p $p = $p;
while($p < $p){
$p = $p + $p;
}
$p << $p << $p << $p;;
return $p;
}

Clone relations with all the
transformation rules are
compared to clone
relations with a subset of
the transformation rules

24

CCFinder – A Code Clone Finder Tool

25

Graph Matching Techniques

Form machine
representation of
code

Identify clones as
identical
subgraphs

26

Abstract Syntax Subtree Matching

source_file_name = ((SourceFile) attributes[i]).getSourceFileName();

27

Abstract Syntax Subtree Matching

Hash subgraphs
Identify maximal identical or similar subgraphs
Identify sequences of subgraphs

28

Program Dependency Graph Matching

29

Program Dependence Graph Matching

Vertices are lines of code
Edges are attributed with different types of dependencies
(control flow, data flow, etc.)
NP complete in general, k-cutoff in maximal graph size
used to limit runtime

n  Experiments determine k=20 as best

O(|V|2) possible graph starting points, reduced via
heuristic

30

Two Clones Found by fg-PDG

31

Metrics?

Need to evaluate different clone detection techniques

Hard to know the real number of clones in a non-trivial
application

How to compare different types of clones?

32

Basic Metrics

LOC: Line number count

SLOC: Line number count after the removal of blanks

%LOC: Percent of lines with clones in them

%FILE: Percent of files with clones in them

33

Interesting Metrics: Radius

A

B C

34

Interesting Metrics: Radius

RAD(B,C)= 1

A

B C

35

Interesting Metrics: Radius

A

B C
RAD(A,C)= 2

36

Comparison of Clone Detectors

CCFinder
Token

(1128)

CloneDr
AST

(84)

Cavet
Metric

(278)

Jplag
Token

(131)

Moss
Unknown

(120)
CCFinder 1090/38 1089/27 989/87 1025/101

CloneDr 43 265/13 120/11 111/9
Cavel 251 70 120/15 109/10

Jplag 44 73 273 67/50

Moss 19 76 268 81

37

Comparison of Clone Detectors

Frequency CCFinder CloneDr Cavet JPlag Moss
1 569 66 40 95 104
2 98 6 34 10 8
3 33 2 13 4 0

4 14 0 6 1 0

5 16 0 5 0 0

6 19 0 5 0 0

7 2 0 1 0 0

In addition Cavet found clones with frequencies: 8,12, and 13

38

Comparison of Clone Detectors

CCFinder CloneDr Cavet JPlag Moss
Recall 72 9 19 12 10

Precision 72 100 63 82 73

• Different code clone detectors find different clones

• String based find direct clones
• Token based find polymorphism issues and may be difficult to fix
• Graph based find clones that can be automatically refactored

39

Code Clone Refactoring

Use standard Refactoring methods
n  “Extract” - Make a procedure
n  “Pull Up” - Make an superclass

Aspect Oriented Programming
n  Advanced technique for clones that are too tough for

procedural or OO solutions

40

Duploc: A Lightweight Approach (1)

40

•  Assumption 	
 	

•  Code segments are just copied and changed in a few places	

•  Code Transformation Step	

•  remove white space, comments	

•  remove lines that contain uninteresting code elements 	

(e.g., just ‘else’ or ‘}’)	

…
//assign same fastid as container
fastid = NULL;
const char* fidptr = get_fastid();
if(fidptr != NULL) {
 int l = strlen(fidptr);
 fastid = newchar[l + 1];

…
fastid=NULL;
constchar*fidptr=get_fastid();
if(fidptr!=NULL)
intl=strlen(fidptr)
fastid = newchar[l+1]

41

A Lightweight Approach (2)

Code Comparison Step
n  Line based comparison (Assumption: Layout did not change

during copying)
n  Compare each line with each other line.
n  Reduce search space by hashing:

n  Preprocessing: Compute the hash value for each line
n  Actual Comparison: Compare all lines in the same hash bucket

Evaluation of the Approach
n  Advantages: Simple, language independent
n  Disadvantages: Difficult interpretation

41

42

Enhanced Simple Detection Approach

Code Comparison Step
n  Same as before +

n  Collect consecutive matching lines into match sequences
n  Allow holes in the match sequence

Evaluation of the Approach
n  Advantages

n  Identifies more real duplication, language independent
n  Disadvantages

n  Less simple
n  Misses copies with (small) changes on every line

42

43

Visualization of Duplicated Code

43

•  Visualization provides insights into the duplication situation	

•  A simple version can be implemented in three days	

•  Scalability issue	

	
	

•  Dotplots — Technique from DNA Analysis 	

•  Code is put on vertical as well as horizontal axis	

•  A match between two elements is a dot in the matrix	

Exact Copies Copies with Inserts/Deletes Repetitive

a b c d e f a b c d e f a b c d e fa b x y e f b c d e a b x y dc ea x b c x d e x f xg ha

Variations Code Elements

44

Visualization of Copied Code Sequences

44

All examples are made using Duploc from an industrial case study 	

(1 Mio LOC C++ System)

Detected Problem	

File A contains two copies of a
piece of code	

	

File B contains another copy of
this code	

	

Possible Solution	

Extract Method	

File A

File A

File B

File B

45

Visualization of Repetitive Structures

45

Detected Problem	

4 Object factory clones: a switch
statement over a type variable is
used to call individual construction
code	

	

Possible Solution	

Strategy Method	

46

Visualization of Cloned Classes

46

Class A!

Class B!

Class B!Class A!

Detected Problem	

Class A is an edited copy 	

of class B. Editing & Insertion	

	

Possible Solution	

Subclassing …

47

Visualization of Clone Families

47

20 Classes implementing lists for different data types	

Detail	

Overview	

48

Lightweight is sometimes not enough

48

Cobol

Perl

Phyton

C/C++

Smalltalk

Java

...

Pascal

It runs really everywhere (Smalltalk inside)

Duploc is scalable, integrates detection and visualization	

49

More Clone Detection

49

Tool" Author" Supported"
Languages"

Domain" Approach"
Category"

Background"

CCFinder" T.Kamiya" C, C++, COBOL, Java,
Emacs Lisp, Plain Text "

Clone
Detection"

Transformation
followed by token
matching"

Academic"

CloneDr" I. Baxter" C, C++, COBOL, Java,
Progress"

Clone
Detection"

Abstract Syntax
Tree comparison"

Commercial"

Covet" J. Bailey"
J. Mayrand"

Java" Clone
Detection"

Comparison of
Function Metrics"

Academic"

JPlag" G. Malpohl" C, C++, Java, Scheme" Plagiarism
Detection"

Transformation
followed by token
matching"

Academic"

Moss" A. Aiken" Ada, C, C++, Java,
Lisp, ML, Pascal,
Scheme"

Plagiarism
Detection"

Unpublished" Academic"

[Burd02]

50

Résumé

Duplicated code is a real problem
n  makes a system progressively harder to change

Detecting duplicated code is a hard problem
n  some simple technique can help
n  tool support is needed

Visualization of code duplication is useful
n  some basic support are easy to build
n  one student build a simple visualization tool in three days

Curing duplicated code is an active research area

50

