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Code is Copied 
Small Example from the Mozilla Distribution (Milestone 9)	

Extract from /dom/src/base/nsLocation.cpp 

[432]   NS_IMETHODIMP    
[433]   LocationImpl::GetPathname(nsString
[434]   {
[435]     nsAutoString href;
[436]     nsIURI *url;
[437]     nsresult result = NS_OK;
[438]     
[439]     result = GetHref(href);
[440]     if (NS_OK == result) {
[441]   #ifndef NECKO
[442]       result = NS_NewURL(&url, href);
[443]   #else
[444]       result = NS_NewURI(&url, href);
[445]   #endif // NECKO
[446]       if (NS_OK == result) {
[447]   #ifdef NECKO
[448]         char* file;
[449]         result = url->GetPath(&file);
[450]   #else
[451]         const char* file;
[452]         result = url->GetFile(&file);
[453]   #endif
[454]         if (result == NS_OK) {
[455]           aPathname.SetString(file);
[456]   #ifdef NECKO
[457]           nsCRT::free(file);
[458]   #endif
[459]         }
[460]         NS_IF_RELEASE(url);
[461]       }
[462]     }
[463]   
[464]     return result;
[465]   }
[466] 

[467]   NS_IMETHODIMP    
[468]   LocationImpl::SetPathname(const nsString
[469]   {
[470]     nsAutoString href;
[471]     nsIURI *url;
[472]     nsresult result = NS_OK;
[473]   
[474]     result = GetHref(href);
[475]     if (NS_OK == result) {
[476]   #ifndef NECKO
[477]       result = NS_NewURL(&url, href);
[478]   #else
[479]       result = NS_NewURI(&url, href);
[480]   #endif // NECKO
[481]       if (NS_OK == result) {
[482]         char *buf = aPathname.ToNewCString();
[483]   #ifdef NECKO
[484]         url->SetPath(buf);
[485]   #else
[486]         url->SetFile(buf);
[487]   #endif
[488]         SetURL(url);
[489]         delete[] buf;
[490]         NS_RELEASE(url);      
[491]       }
[492]     }
[493]   
[494]     return result;
[495]   }
[496] 

[497]   NS_IMETHODIMP    
[498]   LocationImpl::GetPort(nsString& aPort)
[499]   {
[500]     nsAutoString href;
[501]     nsIURI *url;
[502]     nsresult result = NS_OK;
[503]     
[504]     result = GetHref(href);
[505]     if (NS_OK == result) {
[506]   #ifndef NECKO
[507]       result = NS_NewURL(&url, href);
[508]   #else
[509]       result = NS_NewURI(&url, href);
[510]   #endif // NECKO
[511]       if (NS_OK == result) {
[512]         aPort.SetLength(0);
[513]   #ifdef NECKO
[514]         PRInt32 port;
[515]         (void)url->GetPort(&port);
[516]   #else
[517]         PRUint32 port;
[518]         (void)url->GetHostPort(&port);
[519]   #endif
[520]         if (-1 != port) {
[521]           aPort.Append(port, 10);
[522]         }
[523]         NS_RELEASE(url);
[524]       }
[525]     }
[526]   
[527]     return result;
[528]   }
[529]
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What is a Code Clone? 

a.k.a. Code Duplication, Software Cloning, Copy&Paste 
Programming 
 
Code Clone = gratuitous copy of source code in a 
program 
 
Code Clones increasing source code size and potentially 
increase defects 
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Code Duplication 

Code Duplication 
n  What is it? 
n  Why is it harmful? 

Detecting Code Duplication 
Approaches 
A Lightweight Approach 
Visualization (dotplots) 
Duploc 
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How Much Code is Duplicated? 
Usual estimates: 8 to 12% in normal industrial code 
15 to 25 % is already a lot!  
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Case Study! LOC!
Duplication 

without 
comments!

with 
comments!

gcc" 460’000" 8.7%" 5.6%"

Database Server" 245’000" 36.4%" 23.3%"

Payroll" 40’000" 59.3%" 25.4%"

Message Board" 6’500" 29.4%" 17.4%"
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What is copied code? 
Duplicated Code = Source code segments that are found in different 
places of a system 

•   in different files 
•   in the same file but in different functions 
•   in the same function    

The segments must contain some logic or structure that can be abstracted, i.e.,  
 
 
 
 
 
 
 
 
 
Copied artifacts range from expressions, to functions, to data structures, and to entire 
subsystems.  
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is not considered 
duplicated code.

could be abstracted 
to a new function

...

getIt(hash(tail(z)));

...

...

getIt(hash(tail(a)));

...

...

computeIt(a,b,c,d);

...

...

computeIt(w,x,y,z);

...
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Definitions 

Clone Pair/Group: Set of equivalent Clones 
 
Precision: Percent of reported clones that are genuine 
 
Recall: Percent of genuine clones that are reported 

7 



8 

Copied Code Problems 

General negative effect: 
n  Code bloat 

Negative effects on Software Maintenance 
n  Copied Defects  
n  Changes take double, triple, quadruple, ... Work 
n  Dead code 
n  Add to the cognitive load of future maintainers 

Copying as additional source of defects  
n  Errors in the systematic renaming produce unintended aliasing 

Metaphorically speaking: 
n  Software Aging, “hardening of the arteries”,  
n  “Software Entropy” increases even small design changes become 

very difficult to effect 
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Code Duplication Detection 
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Nontrivial problem:  
•  No a priori knowledge about which code has been copied	

•  How to find all clone pairs among all possible pairs of segments? 

Lexical Equivalence

Semantic Equivalence

Syntactical Equivalence
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General Schema of Detection Process 
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Source Code Transformed Code Duplication Data

Transformation Comparison

Author! Level! Transformed Code! Comparison Technique!

[John94a]" Lexical" Substrings" String-Matching"

[Duca99a]" Lexical" Normalized Strings" String-Matching"

[Bake95a]" Syntactical" Parameterized Strings" String-Matching"

[Mayr96a] " Syntactical" Metric Tuples" Discrete comparison"

[Kont97a]" Syntactical" Metric Tuples" Euclidean distance"

[Baxt98a]" Syntactical" AST" Tree-Matching"
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Detection 

String Matching – Represents and evaluates code using 
string comparisons 
 
Token Parsing – Code transformation into tokens for 
comparison  
 
Graph Matching – Pattern matching on graph 
representations of code 
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Detection Strategies 
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String Matching Techniques 

Exact String Matching 
 

Parameterized Matching 
 

Substring Matching 
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Parameterized Matching 

Employs exact string matching for comparison 
 
1.  Normalization 
2.  Concatenation 
3.  Hashing 
4.  Extract longest matches 
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Matching Algorithm 

No algorithm can avoid worst case running time of O(n2) 
 
Using a suffix tree we can improve running time 
complexity to O(n+m).  Where m is the number of 
matches 
 
The input size n, is reduced by hashing 



16 

Suffix Tree Example 

Images Copyright (c) 1996-1998, Mark Nelson, All Rights Reserved.  

Suffix Tree 

Suffix Tree 
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Substring Matching 

Substring Matching provides a faster search algorithm. 
 
1.  Normalization 
2.  Substring Generation 
3.  Matching 
4.  Consolidation 
5.  Reporting 
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Caveat 

Exact string matching does not find clones with trivial 
alterations that don’t change the semantics 
 
Normalization has the risk of false positives 
 

 x+y=z;    !=   z+x=y; ->   p+p=p 
 for(i=0; i<k; i++)    ->    for(p=p; p<p; p++) 
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Token Parsing Techniques 

Transforms code into tokens by using language specific 
constructs into a single token string 
 
Find similarities within this token string 
 
Transform token clones back into code clones for 
presentation 
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Token Parsing Example 

int main(){ 
   int i = 0; 
   static int j=5; 
   while(i<20){ 
      i=i+j; 
   } 
   std::cout<<"Hello World"<<i<<std::endl; 
   return 0; 
}  

Remove white spaces 
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Token Parsing Example 

int main(){ 
int i = 0; 
static int j=5; 
while(i<20){ 
i=i+j; 
} 
std::cout<<"Hello World"<<i<<std::endl; 
return 0; 
}  

Shorten Names 
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Token Parsing Example 

int main (){ 
int i = 0; 
int j = 5; 
while (i < 20){ 
i  =  i + j; 
} 
cout << "Hello World” << i << endl; 
return 0; 
}  

Tokenize everything, 
except language 
constructs 
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Token Parsing Example 

$p $p(){ 
$p $p = $p; 
$p $p = $p; 
while($p < $p ){ 
$p = $p + $p; 
} 
$p << $p << $p << $p;; 
return $p; 
}  

Clone relations with all the 
transformation rules are 
compared to clone 
relations with a subset of 
the transformation rules 
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CCFinder – A Code Clone Finder Tool 
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Graph Matching Techniques 

Form machine 
representation of 
code 

Identify clones as 
identical 
subgraphs 
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Abstract Syntax Subtree Matching 

source_file_name = ((SourceFile) attributes[i]).getSourceFileName(); 
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Abstract Syntax Subtree Matching 

Hash subgraphs 
Identify maximal identical or similar subgraphs 
Identify sequences of subgraphs 
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Program Dependency Graph Matching 
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Program Dependence Graph Matching 

Vertices are lines of code 
Edges are attributed with different types of dependencies 
(control flow, data flow, etc.) 
NP complete in general, k-cutoff in maximal graph size 
used to limit runtime 

n  Experiments determine k=20 as best 

O(|V|2) possible graph starting points, reduced via 
heuristic 
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Two Clones Found by fg-PDG 
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Metrics? 

Need to evaluate different clone detection techniques 
 
Hard to know the real number of clones in a non-trivial 
application 
 
How to compare different types of clones? 
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Basic Metrics 

LOC: Line number count 
 
SLOC: Line number count after the removal of blanks 
 
%LOC: Percent of lines with clones in them 
 
%FILE: Percent of files with clones in them 
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Interesting Metrics: Radius 

A 

B C 
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Interesting Metrics: Radius 

RAD(B,C)= 1 

A 

B C 
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Interesting Metrics: Radius 

A 

B C 
RAD(A,C)= 2 
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Comparison of Clone Detectors 

CCFinder 
Token 

(1128) 

CloneDr 
AST 

(84) 

Cavet 
Metric 

(278) 

Jplag 
Token 

(131) 

Moss 
Unknown 

(120) 
CCFinder 1090/38 1089/27 989/87 1025/101 

CloneDr 43 265/13 120/11 111/9 
Cavel 251 70 120/15 109/10 

Jplag 44 73 273 67/50 

Moss 19 76 268 81 
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Comparison of Clone Detectors 

Frequency CCFinder CloneDr Cavet JPlag Moss 
1 569 66 40 95 104 
2 98 6 34 10 8 
3 33 2 13 4 0 

4 14 0 6 1 0 

5 16 0 5 0 0 

6 19 0 5 0 0 

7 2 0 1 0 0 

In addition Cavet found clones with frequencies: 8,12, and 13 
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Comparison of Clone Detectors 

CCFinder CloneDr Cavet JPlag Moss 
Recall 72 9 19 12 10 

Precision 72 100 63 82 73 

• Different code clone detectors find different clones 

• String based find direct clones 
• Token based find polymorphism issues and may be difficult to fix 
• Graph based find clones that can be automatically refactored 
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Code Clone Refactoring 

Use standard Refactoring methods 
n  “Extract” - Make a procedure 
n  “Pull Up” - Make an superclass 

Aspect Oriented Programming 
n  Advanced technique for clones that are too tough for 

procedural or OO solutions 
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Duploc: A Lightweight Approach (1) 
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•  Assumption 	
 	

•  Code segments are just copied and changed in a few places	


•  Code Transformation Step	

•  remove white space, comments	

•  remove lines that contain uninteresting code  elements 	


(e.g.,  just ‘else’ or ‘}’)	


…
//assign same fastid as container
fastid = NULL;
const char* fidptr = get_fastid();
if(fidptr != NULL) {
  int l = strlen(fidptr);
  fastid = newchar[ l + 1 ];

…
fastid=NULL;
constchar*fidptr=get_fastid();
if(fidptr!=NULL)
intl=strlen(fidptr)
fastid = newchar[l+1]
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A Lightweight Approach (2) 

Code Comparison Step 
n  Line based comparison (Assumption: Layout did not change 

during copying) 
n  Compare each line with each other line.  
n  Reduce search space by hashing: 

n   Preprocessing: Compute the hash value for each line 
n   Actual Comparison: Compare all lines in the same hash bucket 

Evaluation of the Approach 
n  Advantages: Simple, language independent  
n  Disadvantages: Difficult interpretation 
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Enhanced Simple Detection Approach 

Code Comparison Step 
n  Same as before +  

n   Collect consecutive matching lines into match sequences 
n  Allow holes in the match sequence 

Evaluation of the Approach 
n  Advantages 

n  Identifies more real duplication, language independent 
n  Disadvantages 

n  Less simple 
n  Misses copies with (small) changes on every line 
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Visualization of Duplicated Code 
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•  Visualization provides insights into the duplication situation	

•  A simple version can be implemented in three days	

•  Scalability issue	


	
	

•  Dotplots — Technique from DNA Analysis 	


•  Code is put on vertical as well as horizontal axis	

•  A match between two elements is a dot in the matrix	


Exact Copies Copies with Inserts/Deletes Repetitive

a b c d e f a b c d e f a b c d e fa b x y e f b c d e a b x y dc ea x b c x d e x f xg ha

Variations Code Elements
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Visualization of Copied Code Sequences 
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All examples are made using Duploc from an industrial case study 	

(1 Mio LOC C++ System) 

Detected Problem	

File A contains two copies of a 
piece of code	

	

File B contains another copy of 
this code	


	

Possible Solution	

Extract Method	


File A

File A

File B

File B
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Visualization of Repetitive Structures 
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Detected Problem	

4 Object factory clones: a switch 
statement over a type variable is 
used to call individual construction 
code	

	

Possible Solution	

Strategy Method	
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Visualization of Cloned Classes 
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Class A!

Class B!

Class B!Class A!

Detected Problem	

Class A is an edited copy 	

of class B. Editing & Insertion	

	

Possible Solution	

Subclassing … 
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Visualization of Clone Families 
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20 Classes implementing lists for different data types	


Detail	

Overview	
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Lightweight is sometimes not enough 
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Cobol

Perl

Phyton

C/C++

Smalltalk

Java

...

Pascal

It  runs really everywhere (Smalltalk inside)  

Duploc is scalable, integrates detection and visualization	
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More Clone Detection 
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Tool" Author" Supported"
Languages"

Domain" Approach"
Category"

Background"

CCFinder" T.Kamiya" C, C++, COBOL, Java, 
Emacs Lisp, Plain Text "

Clone 
Detection"

Transformation 
followed by token 
matching"

Academic"

CloneDr" I. Baxter" C, C++, COBOL, Java, 
Progress"

Clone 
Detection"

Abstract Syntax 
Tree comparison"

Commercial"

Covet" J. Bailey"
J. Mayrand"

Java" Clone 
Detection"

Comparison of 
Function Metrics"

Academic"

JPlag" G. Malpohl" C, C++, Java, Scheme" Plagiarism 
Detection"

Transformation 
followed by token 
matching"

Academic"

Moss" A. Aiken" Ada, C, C++, Java, 
Lisp, ML, Pascal, 
Scheme"

Plagiarism 
Detection"

Unpublished" Academic"

[Burd02] 



50 

Résumé   

Duplicated code is a real problem 
n  makes a system progressively harder to change 

Detecting duplicated code is a hard problem 
n  some simple technique can help 
n  tool support is needed 

Visualization of code duplication is useful 
n  some basic support are easy to build  
n  one student build a simple visualization tool in three days 

Curing duplicated code is an active research area 
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