
Diplomarbeit
October 2, 2006

KiviatNavigator
Navigation of Source Code Data

using Kiviat-Graphs

Roman Flückiger
of Olten, Switzerland (01-703-578)

supervised by

Prof. Dr. Harald Gall
Dr. Martin Pinzger

Department of Informatics software evolution & architecture lab

Diplomarbeit

KiviatNavigator
Navigation of Source Code Data

using Kiviat-Graphs

Roman Flückiger

Department of Informatics software evolution & architecture lab

Diplomarbeit
Author: Roman Flückiger, r.fluckiger@access.unizh.ch
Project period: 3. April 2006 - 3. Oktober 2006

Software Evolution & Architecture Lab
Department of Informatics, University of Zurich

Acknowledgements

First and foremost, I would like to thank Martin Pinzger for his imperturbable calm and his reas-
surances during the dark hours of scientific research.

Next, where would I be without the tenacious companionship of Michael Würsch and Andreas
Jetter through all these days. Your good spirits and helpfulness is unheard of. Thanks, you two.

Special thanks to Beat Fluri for his both gracious and generous support in my hour of need.

Further thanks to Patrick Knab for postgreSQL support and constantly taking away the Eclipse
book — I have my own copy now.

Additional thanks to my parents who, to my constant surprise, never seem to loose faith in me...

And finally, thanks to my sister, Simone, for proof-reading my work.

Abstract

Source code data of large software systems tend to be very complex. To visualize and navigate
these data pools, in a manner to reveal specific software traits, remains a challenge to date.

In this thesis we present an exploration strategy for navigating such source code data. We
generate graphical views that expose specific design aspects, such as bad smells, and hotspots in
general. The approach uses sequences of such views to incrementally gather knowledge about
the code in scope. This finally allows us to identify entities of questionable design.

Our approach uses the measurement mapping principle combined with kiviat diagrams to visu-
alize system entities. We further present a prototype implementation as an Eclipse plug-in and
evaluate it in a case study, analyzing parts of the Mozilla source code.

Zusammenfassung

Programmcode von grossen Software Systemen tendiert dazu sehr komplex zu werden. Diese
Daten zu visualisieren und navigieren, so dass spezifische Charakterzüge des Programmcodes
hervorgehoben werden, ist nach wie vor eine Herausforderung.

In dieser Arbeit werden wir eine Strategie zur Erforschung von Programmcodedaten prä-
sentieren. Wir werden graphische Ansichten generieren, die spezifische Designschwächen, wie
zum Beispiel ”Bad Smells”, sowie allgemein verdächtige Strukturen entlarven sollen. Unser
Ansatz verwendet Sequenzen solcher Ansichten um inkrementell Wissen über den Programm-
code zu sammeln. Dies erlaubt uns schliesslich Entitäten mit fraglicher Struktur zu identifizieren.

Unser Ansatz verwendet das Measurement Mapping-Prinzip, kombiniert mit Kiviat-Diagram-
men als Visualisierung von Software-Entitäten. Des weiteren werden wir einen Prototypen als
Eclipse-Plugin implementieren und evaluieren. Letzteres mit Hilfe einer Fallstudie, in der wir
einen Teil des Mozilla Programmcodes analysieren werden.

Contents

1 Introduction 1
1.1 Contribution . 1
1.2 Structure of the Thesis . 1

2 Related Work 3
2.1 Polymetric Views . 3

2.1.1 CodeCrawler . 4
2.1.2 ArchView . 4

2.2 Simple Hierarchical Multi-Perspective (SHriMP) . 5

3 Approach 7
3.1 Exploring Large Graphs . 7
3.2 Incremental Exploration and Navigation . 8
3.3 Polymetric Views . 9
3.4 Preset Views Concept . 10
3.5 Preset View Catalog . 11

3.5.1 Provider/Consumer View . 11
3.5.2 Roots/Leaves View . 13

3.6 Concluding Thoughts . 14

4 Implementation 17
4.1 Integration . 17
4.2 Requirements . 18
4.3 System Setup . 18
4.4 Kiviat Navigator Overview . 19
4.5 Kiviat Navigator Architecture . 20

4.5.1 KiviatContainer and KiviatContainerGenerator 21
4.5.2 IKiviatContainerNormalizer and KiviatMaxNormalizer 21
4.5.3 KiviatNodeRealizer . 22

5 Mozilla Case Study 23
5.1 Approach . 23
5.2 Investigation . 23
5.3 Summary . 27

6 Conclusions 29
6.1 Contribution . 30
6.2 Outlook . 30

viii CONTENTS

A Contents of CD-ROM 31

CONTENTS ix

List of Figures
2.1 Up to five metric values can be mapped on a CodeCrawler node. 4
2.2 A polymetric view in CodeCrawler (source: [LD03]). 4
2.3 A view from the ArchView approach (source: [Pin05]) 5
2.4 On the left, a SHriMP visualization using the fisheye distortion algorithm (source:

[SWFM97]). In the center a newer implementation of SHriMP and on the right as
view from Creole, as well using SHriMP (source: [Chi06]) 6

3.1 Exploration paths as sequences of single viewpoints 8
3.2 A sample kiviat diagram, and how the three dimensions are mapped onto it 9
3.3 The left diagram shows a typical data consumer, the right one a data storage object. 12
3.4 The left diagram shows a typical consumer of functionality. The right graphic de-

picts a provider. 12
3.5 The left graphic shows a consumer of data and functionality, the right one a provider. 13
3.6 The left graphic shows most probably dead code, the right diagram an entity that

is both provider and consumer at the same time. 13
3.7 Leaves of the inheritance tree . 14
3.8 Roots of the inheritance tree . 14
3.9 Extreme members of the view. 15

4.1 This chart shows how the Kiviat Navigator is embedded into the Eclipse environ-
ment and where data comes from. Components in faded grey are not currently
used by our implementation, but show the envisioned goal. 17

4.2 The HierarchyView shows all entitites available for visualization 19
4.3 The MetricView allows selection of metrics . 19
4.4 This is a simplified graph of the components involved in the Kiviat Navigator.

The modules with thicker black borders contain multiple classes, which mostly
are members of model-view-control patterns. 20

5.1 A simplified System Hotspot View [Pin05][LD03]. The metrics are the following:
(0) imagix ClMemVar, (1) imagix ClMemTyp, (2) imagix ClMemFnc, (3), imagix Cl-
MemCl, (4) length. 24

5.2 Provider/Consumer View. The metrics are the following: (0) in invokesnrRelsDirect,
(1) in accessesnrRelsDirect, (2) out invokesnrRelsDirect, (3), out accessesnrRelsDirect. 25

5.3 Roots/Leaves View. The metrics are the following: (0) in overridesnrRelsDirect, (1)
in inheritsnrRelsDirect, (2) out overridesnrRelsDirect, (3), out inheritsnrRelsDirect. 27

List of Tables
3.1 Table of Metrics . 11

5.1 Table of Findings . 28

List of Listings
4.1 IKiviatContainerGenerator . 21
5.1 NameSpaceDecl . 25

x CONTENTS

5.2 Two method examples from nsXMLProcessingInstruction 26

Chapter 1

Introduction

Software systems tend to get large and complex during their lifetime. They are subject to constant
change and extensions in numerous ways. In addition, people leave projects, new developers join
the team, documentation gets sloppy, or is never done at all. Sooner or later, there comes a time
when the people working on a software system cease to know anything about the tricks and traps
hidden within this behemoth, being their work.

This is where reverse engineering comes into play. How can we recover from the raw source
code data what we have lost along the way? While there exist concepts how to systematically
recover the architecture and structure of a software, our set of mind is a bit more optimistic,
since we assume that unknown software systems are not entirely bad. We will focus on how to
specifically expose unfortunate structures or bad smells [FBB+99].

We are going to do this using the concept of measurement mapping as the base of our approach.
This will lead to a graphical representation of source code data with so-called kiviat diagrams.
How we will navigate the complexity of software systems with the help of the mentioned visual-
ization is the core subject of this thesis.

1.1 Contribution
Our goal is to propose a simple and useful way of navigating source code data using kiviat graphs
as presented in the ArchView approach [Pin05]. Thus simplifying the analysis of large and un-
known source code data and maybe even make a first step to standardization of such analyses.
We will use kiviat graphs to devise views that highlight specific source code aspects, such as bad
smells. We will further present a strategy called incremental exploration that uses sequences of such
views to gather knowledge about a target system. During the thesis a prototype Eclipse plug-in
implementing these concepts will be developed. Finally, we evaluate our tool in a case study,
analyzing parts of the Mozilla source code, and discuss the results.

1.2 Structure of the Thesis
Chapter 2 presents different concepts of investigating and navigating source code data, consid-
ered as related work. In chapter 3 our approach to the problem is presented. Starting with our
own thoughts of inspecting large graphs, leading to the principles of incremental exploration and
finally examples of useful view configurations and their analysis. The subsequent chapter will
describe the implementation of our approach, the Kiviat Navigator. Our tool will finally be put to
the test in the case study, in chapter 5, where we will apply our methods to a subset of the Mozilla

2 Chapter 1. Introduction

web browser source code. In the final chapter we will conclude the thesis and give an outlook for
future work.

Chapter 2

Related Work

In this chapter we review concepts and tools that focus on layout techniques and navigation of
source code data, which is a part of information visualization. Before we focus on a few closely
related approaches, we will do a fast sweep of to vast field of other interesting work.

First of all, there are visualization techniques that make use of the third dimension. One way
of using 3D would be to add the dimension of time to 2D views, a concept presented by [SDB98].
Another approach is given by the source viewer 3D (sv3D) [MMF03], that uses an extension of
SeeSoft [ESS92] to represent software systems.

Then there are concept that focus on visualizing runtime information of programs, such as the
program explorer [LN95].

Finally, coming back to the frame where our thesis best fits in, there are static visualizations. A
taxonomy of software visualization of this kind is given by Price et al. [PBS93]. In this class belong
approaches like Rigi [MK88], SeeSoft [ESS92], SHriMP [SWFM97] and CodeCrawler [LD03]. We
will describe two of these concepts in more detail in the next sections.

We start with an introduction to polymetric views, the visualization method that is our primary
focus. Next, two software tools, that use polymetric views to inspect source code data will be briefly
presented, CodeCrawler [LD03] and ArchView [Pin05]. Finally, the SHriMP approach [SWFM97]
is presented, and along with it a number of graph navigation techniques, that are being used by
this approach.

2.1 Polymetric Views

Polymetric views are the starting point of this thesis. The basic concept our visualization techniques
will use to layout source code data and enrich it with information. It is solely intended for object-
oriented source code data. A polymetric view is a two dimensional visualization in which nodes
represent software entities and edges represent relationships between entities. Furthermore a
number of metric measurements are mapped onto nodes (and edges). This methodology is called
measurement mapping. It should fulfill the representation condition: ”if a number a is bigger than
a number b, the graphical representation of a and b must preserve this fact” [LD03].

This approach essentially uses metric visualizations to show symptoms of the underlying
source code data. The following two tools are both based on this concept.

4 Chapter 2. Related Work

2.1.1 CodeCrawler
The CodeCrawler is presented by Lanza et al. in [LD03]. It uses rectangles as nodes and maps up
to five metrics onto a single node. Figure 2.1 shows how this is done. Both width and height rep-
resent a measurement, as well as the color of the node body. In some configurations the location
of the node in the view is used to map two additional metric values.

Figure 2.1: Up to five metric values can be mapped on a CodeCrawler node.

The CodeCrawler needs three basic ingredients to generate a polymetric view. A choice of
entities and metrics and a third one: a layout. The layout determines how nodes are arranged
in a view, for instance if they should be sorted in a specific manner. The list of layout strategies
used by the CodeCrawler contains layouts such as tree structures and scatterplots. Figure 2.2
shows a so-called checker distribution of nodes. The entities are sorted according to a specific
metric. In this particular case the target entities are attributes. The width and height of the nodes
render the number of local accesses and the number of nonlocal accesses, respectively. The color
indicates the total number of accesses. In this way, attributes that are never accessed at all, and
can therefore be removed, line up in the top row. Attributes, which are heavily accessed are found
at the bottom. In addition, attributes that get predominantly nonlocal accesses stand out as very
tall nodes — candidates for accessor methods.

Figure 2.2: A polymetric view in CodeCrawler (source: [LD03]).

2.1.2 ArchView
The ArchView approach by Pinzger [Pin05] is also based on the concept of polymetric views. The
crucial difference to CodeCrawler is the graphical representation of nodes. Instead of rectangles
ArchView uses kiviat diagrams (refer to Figure 2.3 for examples of kiviat diagrams). The advan-
tage of such a representation is the possibility to map considerably more than five metrics onto a
single node simultaneously. A benefit, that is actually seldom used. There are cases where metrics

2.2 Simple Hierarchical Multi-Perspective (SHriMP) 5

are all of the same ”kind” and kiviat diagrams prove their worth. But we will see, that most of
the time around four metrics produce views that have stronger interpretations.

Figure 2.3: A view from the ArchView approach (source: [Pin05])

Figure 2.3 shows a detailed modification hotspots view generated by ArchView. Nodes repre-
sent files in this view. The rendered metrics are concerned with problem reports, their priority and
severity. This reveals how many problems a file was affected by and how severe these problems
were.

ArchView introduces a number of strong changes to polymetric views as CodeCrawler uses
them. Firstly, there is just one layout in ArchView. The location of the nodes are subject to the
user’s wishes and not bound to any metric. Moreover the representation condition of measurement

mapping is no longer fulfilled by the complete visualization, since metrics are no longer normal-
ized within a node. This means values can no longer be related within a single node, but still
between all the diagrams. We will later on see what consequences this fact has for our visualiza-
tion.

On the other hand, ArchView adds code releases as a new dimension to the concept.

2.2 Simple Hierarchical Multi-Perspective (SHriMP)
An entirely different approach to reverse engineer large source code data is the SHriMP approach
[SWFM97]. When graphs reach a certain size and complexity, navigation techniques become
necessary to find your way around. Software systems usually are large and complex and therefore

6 Chapter 2. Related Work

also yield complex graphs. SHriMP has its focus not on symptoms but on traversing hierarchies
and relationships of source code. It uses different navigation strategies to accomplish this goal.

To prevent information overflow by displaying a whole system at once, SHriMP uses semantic

zooming [HMM00] to hide and reveal information of nodes. This zoom is not applied to the whole
view at the same time. You can chose which node to enlarge and show details, with the context
of the entity is still visible. This is called fisheye distortion. SHriMP even allows you to focus on
different parts of the graph at the same time, to inspect disjoint source code entities.

Figure 2.4 shows different implementations of the SHriMP approach.

Figure 2.4: On the left, a SHriMP visualization using the fisheye distortion algorithm (source: [SWFM97]). In the
center a newer implementation of SHriMP and on the right as view from Creole, as well using SHriMP (source: [Chi06])

Chapter 3

Approach

The previous chapter gave a brief insight into some already existing source code visualization
techniques. From the beginning our goal was to take the ArchView [Pin05] approach as our start-
ing point and enhance it while integrating it into the Eclipse platform. The ArchView approach
has its focus on visualizing source code metrics, as opposed to SHriMP [SWFM97], that basically
visualizes whole tree structures and uses zooming, panning and disjoint context focussing to nav-
igate. The ArchView stand-alone implementation is more of a static visualizer. What is left is our
contribution, to find out where navigation fits into this concept.

The question we asked ourselves was, how to navigate such large graphs, like software sys-
tems usually are? We found most of the answers in the work of Lanza et al. [LD03] and Herman
et al. [HMM00].

3.1 Exploring Large Graphs
Software systems are usually very large and a single mind has most of the time difficulties to un-
derstand it entirely. That is certainly the case, when you look at the whole system at once. Even
other researchers, who committed quite some time in solving this problem have not come up with
a satisfactory solution. Storey et al.. for instance have presented the SHriMP approach [SWFM97]
with the incentive to let the user see the whole system all the time, since this increases the un-
derstanding of the whole system. They use fisheye distortion methods to let the user zoom in on
specific parts of the system without loosing the connections to the rest. But their approach is not
safe from information overflow in the visualization. Some intelligent filtering will be necessary
to make this concept useful.

So here is a thought about the exploration of large spaces. Since their vastness is the biggest
obstacle in understanding, why let the user see everything and burden him with the difficult
task to mentally (or graphically supported) fade out irrelevant information? Being able to see the
whole picture all the time certainly helps building a mental map, but since the entire space is not
understood at this time, most mental associations will be useless.

There are other strategies to explore such large networks, by continuously fading relevant
information in, instead of fading irrelevant facts out. Let us take the World Wide Web for example
[HMM00]. It is impossible to behold the whole network at once, but day by day by searching for
specific information a user may explore this vast network and start to build a mental map from it,
which is solely built from pieces of relevant information. There is no use to know the entire system
if all you want to know can be found by a couple of mouse-clicks, just two or three hyperlinks
away.

8 Chapter 3. Approach

So let us imagine our target software system like a large three dimensional cloud (refer to
Figure 3.1). It is impossible to get a grasp of it all from just one viewpoint. Something will always
be hidden from view or covered by some other information. A layout alone can not overcome the
challenge of revealing the structure of large spaces [HMM00]. We need some kind of navigation
to travel around.

The key is to look at the target system from multiple perspectives or viewpoints and hereby
gain information step by step. This approach is called incremental exploration and navigation and is
also presented in the survey by Herman et al. [HMM00].

3.2 Incremental Exploration and Navigation
By gaging a system through a sequence of different viewpoints (look at Figure 3.1 to get a general
idea), which is essentially the process of incremental exploration, the main question is who chooses
the next step in the path and how?

There are two possibilities for the who. It is either the user itself, who has all the time complete
control over the next step in line, or the computer, that suggests the next view configuration based
upon some heuristics, for example. Of course the idea, that there exist specific scenarios of view
sequences that lead to the detection of certain code issues is very appealing. It has to be shown if
such scenarios emerge during the case study.

Figure 3.1: Exploration paths as sequences of single viewpoints

This leads us directly to the how. The sequence of views is based on constant decisions. From
every viewpoint on the system the user gains a bit of information about the graph. At this point
the user must make a decision, where to go next. This decision is at the moment solely based upon
the scientific knowledge of the user. He must ponder the information at hand and decide what
viewpoint on the system would probably add to his pool of current information. The choices are
obviously quite numerous and the decisions all but trivial.

What we learn from this is, that although the exploration paths through the graph are to some
degree unforeseeable up front, we can help the user by delivering him viewpoints with a purpose.
Views, that are designed with the thought in mind, to shed light on specific aspects of software
systems. These views can then be chosen from a catalog whenever needed.

Fortunately, albeit not that much of a surprise, the concept of polymetric views [LD03] plays
nicely with this approach.

3.3 Polymetric Views 9

3.3 Polymetric Views
In accordance with the approach of incremental exploration we need a layout strategy for the re-
alization of our views. We already gained some insight into the concept of polymetric views in
the respective related works section. Our approach will make use of a polymetric visualization
similar to the one presented in ArchView [Pin05]. The space we are exploring has basically three
dimensions: entities, metrics, and releases. On top of that is a fourth one, which are relationships.
How all these four characteristics are mapped onto a kiviat diagram is shown in the following.

Figure 3.2: A sample kiviat diagram, and how the three dimensions are mapped onto it

Figure 3.2 shows how a kiviat dagram might look. One diagram represents an entity, e.g. a
class. The spokes — there can be more than four — all show a metric value. Values from different
releases are drawn in different colors. Relations between entities are visualized as arcs between
diagrams.

Entities. Entities, such as classes are the actual subject of interest of our visualization. All
metrics are bound to an entity or relate them in a way. Every view must focus on one or more
entities. Of course a view may even show all available entities at the same time.

Metrics. Metrics describe entities. They are used to gain information about their subject
through visual filtering. In other words: highlight interesting entities. All kiviat diagrams shown
at the same time are drawn with identical metric configuration. Moreover values are normalized
for each metric over all entities. So keep in mind that a maximum value on two different views
must not necessarily be the same absolute value. Deductions must be made primarily from visual
features and are restricted to one view at a time. Additionally, a minimum value prevents the
diagram from cluttering in the center. Values on the smaller circle in the center are therefore to be
interpreted as zero values.

Releases. For every metric and entity there might be one or more releases present. Multiple
release values can be drawn on the same metric axis in different colors. This enables users to get

10 Chapter 3. Approach

a grasp at the change over time an entity has made.

Relationships. A further, in a way different kind of dimension are relations. Exploration can
also be achieved by navigating entities through their associations to other subjects. By displaying
neighbor entities, small compounds of closely related or tightly coupled entities can be shown
and further investigated.

Depending on the data at hand there can be a huge number of metrics available. It is the selec-
tion of specific configurations that yield interesting results. It is all about adjusting the parameters
of a view in a way to visually highlight entities with interesting qualities. The parameters are, like
listed above, the choice of entities, the selection and order of metrics and releases. With this in
mind, there is a strong incentive to create or rather design view configurations that have a specific
purpose, e.g. revealing especially large entities or unusually strong coupled ones. Such prede-
fined views or presets can then be used to ease navigation of an unknown system.

This can be done in one of two different ways. A user may start with a preset view, a hotspot
for instance, search for extremely large classes and then adjust the view settings, adding other
metrics or removing some — in thereby generating new views — to find out more about this
class and its neighborhood. On the other hand, preset views can be used as part of a utility belt,
purposeful instruments that can perform specific tasks when needed. Tasks such as revealing
provider or consumer entities.

The upcoming sections goal is just that. Presenting a set of preset views, maybe the first few
in a larger catalog to come.

3.4 Preset Views Concept
Preset views help to gain insight into an known or unknown software project in a short time. It
is a way of navigation through the code by applying specific preset views to the project to find
hotspots. These can then be investigated from another angle (using other views, or by manipu-
lating metrics) or analyzed on source code level.

Part of this thesis is to compose a set of such views, describe their intended usage, and later
test them during the case study. It was our intention to reuse some of the views already discussed
by Pinzger [Pin05] and Lanza et al. [LD03]. However, the pool of metrics available to us is not
the same as the one used in those references. Obviously standardized views can only exist with
standardized metrics at hand. Therefore the preset views described here are adaptations or new
views from scratch.

You will notice that most of the preset views use only four metrics at a time. You might wonder
why that is, since kiviat diagrams were primarily chosen due to their ability to show more than
three or five metrics (the maximum number of metrics used by Lanza’s approach). There are
specific tasks, where a number greater than five metrics is very useful. But we gathered, that four
metrics at a time yield more concise views that enable stronger interpretations.

3.5 Preset View Catalog 11

3.5 Preset View Catalog
The following catalog of preset views follows a specific layout. Every preset starts with a descrip-
tion of its purpose, the source code aspects it tries to reveal. This is followed by the configuration
of the view, namely the chosen metrics and their ordering. Note, that the number in brackets rep-
resents the index of the metric in the diagram pictures. Finally, characteristic diagram patterns,
that help the user identify interesting entities, are described and interpreted.

Note: Keep in mind, when you try to deduce information from a view, that you cannot com-
pare two metrics within a single kiviat diagram. You can only compare the same metric over all
displayed diagrams. Within one kiviat a relative value of 0.5 on a metric axis can be any kind
of absolute value, depending on other values of the same metric in other kiviat diagrams. It is a
common mistake to look at a kiviat diagram and make a judgement like: ”There are significantly
more attributes than methods in this class”. Just because, there is a peak in this diagram in the
attributes metric, this must not be true. It can even be the other way round, so beware.

This list provides descriptions to all class metrics used in the following preset views.

Table 3.1: Table of Metrics

Metric Description

in invokesnrRelsDirect Number of method invocations to this entity from all other entities
in accessesnrRelsDirect Number of field accesses to this entity from all other entities
in overridesnrRelsDirect Number of methods of this entity that are overridden by any children
in inheritsnrRelsDirect Number of children of this entity
out invokesnrRelsDirect Number of methods this entity invokes in any other entity
out accessesnrRelsDirect Number of fields this entity accesses in any other entity
out overridesnrRelsDirect Number of methods overridden by this entity from any parent
out inheritsnrRelsDirect Number of parents of this entity
imagix ClMemCl Number of class members (inner classes) of this entity
imagix ClMemFnc Number of functions of this entity
imagix ClMemTyp Number of type definitions of this entity
imagix ClMemVar Number of variables of this entity
length Total lines of code of this entity

3.5.1 Provider/Consumer View
Aspect. This view distinguishes between entities that predominantly provide functionality or
consume it. Thus, library classes or typical data storage objects can be revealed.

Configuration.
(0) in invokesnrRelsDirect
(1) in accessesnrRelsDirect
(2) out invokesnrRelsDirect
(3) out accessesnrRelsDirect

Interpretation. In general, classes with neither incoming accesses nor invocations are typical
library classes or any kind of class that is close to the top of the system and is called from outside,

12 Chapter 3. Approach

meaning a higher situated framework that is not inside the scope of the data.

Figure 3.3: The left diagram shows a typical data consumer, the right one a data storage object.

Figure 3.3 reveals direct field accesses. A practice that is not exactly a bad smell, but rises
at least considerable suspicion [FBB+99]. The graph on the left shows an entity that accesses
variables directly, a data consumer. The diagram on the right shows a typical data storage object.
An object with non-encapsulated fields that are accesses directly. An object that is definitely worth
a closer look.

Figure 3.4: The left diagram shows a typical consumer of functionality. The right graphic depicts a provider.

The left diagram in Figure 3.4 shows a consumer of functionality. At this point we do not
know what kind of services it consumes or from which other objects. Functions, procedures or
data via a getter method. On the right is the equivalent provider. We do not know what kind
of methods are invoked from this entity. Showing the neighborhood of invocations could yield
additional information at this point.

In Figure 3.5 we see heavy consumers and providers, that peak in both aspects, accesses and
invocations. The left diagram is once again a consumer, the right one a provider. Again both enti-
ties have peaks in the access-metric, what makes them somewhat smelly, due to non-encapsulated
fields.

Finally, Figure 3.6 shows some extreme members of this preset view. The entity on the left
is probably dead code, since there are neither incoming nor outgoing accesses or invocations.
Although, there is a slight chance, that it is a class implementing an interface (and solely has im-
plemented methods). Such invocations can only be determined at runtime, therefore only mea-
surements of static relationships make it into the database. The pure opposite can be seen in the
center. Probably a rare member in good designed software, once again due to the flaws com-
ing from the access peaks. Without those, as shown by the diagram on the very right, an entity

3.5 Preset View Catalog 13

Figure 3.5: The left graphic shows a consumer of data and functionality, the right one a provider.

Figure 3.6: The left graphic shows most probably dead code, the right diagram an entity that is both provider and
consumer at the same time.

with heavy incoming and outgoing invocations is probably a controller. A clear sign of method
delegation.

3.5.2 Roots/Leaves View
Aspect. This view has its focus on inheritance. You can identify entities that are part of paren-
t/child relationships and on which side of this relation they stand.

Configuration.
(0) in overridesnrRelsDirect
(1) in inheritsnrRelsDirect
(2) out overridesnrRelsDirect
(3) out inheritsnrRelsDirect

Interpretation. Since not every programming language supports multiple inheritance, that is
inheritance from more than one parent, it can be quite natural to have many entities having full
peaks in out inheritsRelsDirect. For programming languages, like Java, that know only single
inheritance, this metric is binary.

Figure 3.7 shows entities that are leaves in the inheritance hierarchy of the system in scope,
since they have one or more parents but no children. The entity on the left has an additional
peak in overridden methods from its parents. Entities that show an especially massive amount of
overriding might be indicators for bad designs.

14 Chapter 3. Approach

Figure 3.7: Leaves of the inheritance tree

Figure 3.8: Roots of the inheritance tree

Figure 3.8 on the other hand shows roots in the hierarchy. They have no parents but inherit to
children. Once again the left graph has an additional peak. It indicates how many methods are be-
ing overridden by children of this entity. Peaks in overriding can again be signs for inappropriate
design structures.

Figure 3.9 shows two very different members of this view. The first on the left is definitely
an entity that simply has inheritance relationships of any kind. The entity on the right however
seems to be right in the middle of inheritance. It has parents as well as children. Entities like that
are always worth a closer look, since such massive inheritance and overriding makes for a very
complex subject and complex goes most of the time hand in hand with vulnerability to errors.

3.6 Concluding Thoughts
While playing around with the metrics at hand and fathom possible useful preset views, we felt
the urge to relate metrics within single kiviat diagrams. The relation between two metrics, for
instance how long is the average method in this entity, cannot be displayed, when you only got
metric values for the number of methods and the length of the file. Basically it is a lack of metrics.
Although these metric values could be calculated and added to the pool without much difficulties,
there might be an easier solution. One that may also open up lots of new possibilities.

The current normalizing algorithm compares every single metric over all displayed kiviat
diagram. For further implementations we should consider the addition of a second normalizer,
that just compares values within single kiviat diagrams. This would allow the direct comparison
of metrics within a single entity and allow for additional aspects to be visualized. For instance,

3.6 Concluding Thoughts 15

Figure 3.9: Extreme members of the view.

show the relation between the number of attributes and methods. Entities with twice as much
methods as attributes might be data storage objects, that have a getter and a setter method for
every attribute. Such object could easily be identified by visualizing this relation. Until now,
peaks are pretty much everything you can look for. But given these changes, rifts between metrics
would be able to be interpreted.

In fact, we are back to the representation condition, that we already mentioned earlier in the
related work section. This simple rule does not apply in its entirety to our approach, only to the
same metric values from each kiviat diagram. Within a single node, relations between metrics
cannot be interpreted. Changing this principle by normalizing every metric and diagram gives
new possibilities, as stated above, but also creates room for a new kind of misinterpretation. Not
every two or more metrics can be sensibly related. There could arise a strong temptation for users
to compare apples and oranges.

Since the ”playing around” with metric configurations logically happened after the implemen-
tation was done, this proposition did not make it into the final release. But might be considered
as future addition.

Chapter 4

Implementation

An integral part of this thesis is the implementation of our approach as an Eclipse plug-in. We
call it the Kiviat Navigator.

4.1 Integration
It is part of the thesis description to integrate our tool into the Eclipse environment1 as a plug-in.
And this with good reason. The Eclipse environment has an extensive plug-in infrastructure and
is widely used as a integrated development environment for software projects. It makes sense,
that users have their tools right where they are working everyday.

Figure 4.1: This chart shows how the Kiviat Navigator is embedded into the Eclipse environment and where data
comes from. Components in faded grey are not currently used by our implementation, but show the envisioned goal.

The Kiviat Navigator relies on data, that differs according to the project to be analyzed and
changes constantly while the project is under development. Before metrical values find their

1http://www.eclipse.org

18 Chapter 4. Implementation

way to the final database they are parsed from the project repository and converted into FAMIX
[SDT99], a meta model for representation of object-oriented source code data. Figure 4.1 gives
you an overview how the neighborhood of the Kiviat Navigator looks like.

This task was intended to be accomplished by the Metric Exporter by Hanimann [Han06]. An-
other Eclipse plug-in, that would have enabled us to create the necessary model data dynamically.
Unfortunately the Metric Exporter did not reach the final state of implementation until the end of
our project time. Hence, the current version of the Kiviat Navigator can only visualize specifically
prepared data pools.

4.2 Requirements
The description of the incremental exploration strategy in the previous chapter leads us to the fol-
lowing requirements of our plug-in.

We basically need two things. A layout strategy, that allows the generation of flexible views
and a navigation strategy. For the layout we will make use of the ArchView approach. This means
basically a migration of the KiviatVisualizer [Pin05] to the Eclipse platform. In accordance with
our thoughts in the last chapter, the choice of exploration paths will reside with the user for now.
Although there is a strong potential for the tool to support specific exploration scenarios to assist
the user, the plug-in will not suggest such paths at the moment. However, there must be the
possibility to choose from a pool of preset views.

Additionally, we need a way of choosing one or more entities as our subjects in focus. And we
need facilities for selection and configuration of metrics and releases.

4.3 System Setup
The following tools and libraries have been used to develop the Kiviat Navigator.

Eclipse Platform for Plug-in Development. Eclipse SDK comes with integrated plug-in de-
velopment support and uses the Standard Widget Toolkit (SWT). The usage of yFiles (see descrip-
tion below), which uses the Java Swing Framework forces us to use the SWT AWT bridge class.
Since this feature is currently not supported on macintosh platforms, keep in mind that you are
restricted to development on linux or windows.

PostgreSQL Database. An open source relational database system2.

Hibernate. In accordance with other projects in our research team, hibernate3 is used as data
access layer and query engine.

FAMIX. Data is mapped from the database to FAMIX entities. A meta model for source code
data [SDT99].

yFiles. yFiles4 is a Java graphics library, with extensive features in graph visualizations.

2http://www.postgresql.org
3http://www.hibernate.org
4http://www.yworks.com/en/products yfiles about.htm

4.4 Kiviat Navigator Overview 19

4.4 Kiviat Navigator Overview
The Kiviat Navigator adds a new perspective to the Eclipse environment, consisting of two new
views and an editor. The editor handles the visualization of kiviat diagrams. While the two views,
the HierarchyView and MetricsView, allow configuration of said visualization.

Figure 4.2: The HierarchyView shows all entitites available for visualization

The HierarchyView, as shown in Figure 4.2, presents the user with all available entities. Cur-
rently a TreeViewer handles the layout and entities, such as packages and classes are distin-
guished. This view is obviously still very raw, it just gives basic functionality to use the tool.
For future enhancement of the tool, this view should be switched with a project explorer native
to the project language.

Figure 4.3: The MetricView allows selection of metrics

The MetricView, presented in Figure 4.3, allows the configuration of metrics. Select or deselect
any metric to add or remove it from the active kiviat visualization. To change the order of dis-
played metrics use the arrow buttons (refer to Figure 3.2 as to how metrics are drawn in a kiviat
diagram).

The afore mentioned preset views can also be chosen here. Open the drop down menu to ac-
cess all available presets.

20 Chapter 4. Implementation

Note: In similar design, the ReleaseView would be found here, as a second view frame in the
folder. Most modules already implement functionality for the visualization of multiple release
data. Unfortunately, during the final implementation no data pools with multiple release data
was available to us, so this functionality was never tested and therefore did not make it into the
final release.

Finally, the kiviat diagrams are visualized inside the editor space. The editor is dynamically
updated whenever the user changes something. Adding or removing entities, adding or remov-
ing metrics or changing their order will cause the editor to be updated.

Performance Issues: During the whole implementation we worked with a relatively small
amount of data. So performance was never really an issue. All hibernate queries and data han-
dling was implemented straight forward without giving a second thought to performance, which
is of course in perfect agreement with the credo of first do it right and tune it later. However,
when we migrated to the considerably larger Mozilla database (refer to the case study for more
information) performance hit us like a hammer. We have not yet determined where exactly most
speed is lost. It remains future work to be done.

4.5 Kiviat Navigator Architecture
Let us take a brief look beneath the surface of the Kiviat Navigator. The whole implementation
stays relatively close to the Eclipse framework. There are no extraordinary design patterns in-
volved that might let the software engineers heart beat faster. Nevertheless we will pick a few
aspects from the design and describe them in more detail. At least the guy, who will continue the
implementation of the Kiviat Navigator might be happy to get some insight on how things work
inside, before he writes, hopefully, a better version of it.

Figure 4.4: This is a simplified graph of the components involved in the Kiviat Navigator. The modules with thicker
black borders contain multiple classes, which mostly are members of model-view-control patterns.

Figure 4.4 shows the basic relations between the components of the Kiviat Navigator. The com-

4.5 Kiviat Navigator Architecture 21

ponents with the thick borders are conglomerates of multiple classes, but all direct extensions or
implementations of Eclipse framework classes. MetricView and HierarchyView are both Eclipse
views and KiviatEditor is a MultiPageEditor. All three are strongly coupled with the framework.
If you need closer information about their inner workings we recommend [CR06].

4.5.1 KiviatContainer and KiviatContainerGenerator
KiviatContainers are the most central data objects in this implementation. They contain every
information necessary for a single kiviat diagram to be drawn. This is basically a hashtable with
metric names as keys and an array of doubles for values (an array, since there might be more than
one release). Additionally a name is remembered as label.

Depending on the programming language we inspect, these KiviatContainers must be created
from different kinds of entities. To preempt this problem we delegate the creation of our object
to a factory. Whenever the creation of KiviatContainers is necessary the call will be routed via an
implementation of IKiviatContainerGenerator. The implementation depends on the source code
language of our data.

This interface contains only one simple method:

public interface IKiviatContainerGenerator {
public KiviatContainer createKiviatContainer(

Object kiviatObject,
String[] attributes, //list of attributes to be loaded
String[] releases); //list of releases to be loaded

}

Listing 4.1: IKiviatContainerGenerator

You will notice that this method asks for a java.lang.Object instance as input. In a perfect world
we would have used customized subclasses of hibernate objects. In this way, we could have
stored every bit of information needed for our visualization inside our data object at the time
of its creation, during the hibernate query. Unfortunately a procedure like this, would involve
changing the famix model entities. We decided to leave these classes with their pristine existence
and chose the way generating a fresh object for every database entity. The performance issue
here is no singularity. The same wrapping mechanism is also used in other parts of the system.
The MetricListing classes, for instance, are generated to suit the needs of the MetricView and
are created for all the metrics available. Concluding one might say, there is definitely room for
performance improvement in this part.

4.5.2 IKiviatContainerNormalizer and KiviatMaxNormalizer
Before KiviatContainers can be drawn on screen, they need to be normalized. We want them all to
have equal size and furthermore the metric values for each and every metric must be normalized
in a way, to allow comparison.

The KiviatMaxNormalizer computes the maxima for each metric from all KiviatContainers
and normalizes the respective values accordingly. This computation generates a set of kiviat
diagrams that can be compared by their metrics.

A striking performance issue cannot be overseen at this point. Whenever we change the small-
est part of the visualization; add or remove a metric or an entity. We will be forced to compute a
large part of the visualization anew, if not everything from scratch. For instance, adding a metric
to the existing configuration will just cause the computation of that single metric for all Kiviat-
Containers, but nontheless every container must be refreshed, since adding an axis to the diagram

22 Chapter 4. Implementation

will change the angles. Now this was the happy case. Should the user decide to add an entity
to the visualization, every metric value of every KiviatContainer will need to be computed and
drawn again.

4.5.3 KiviatNodeRealizer
This is were we actually touch the yFiles libraries. The KiviatFrame harbors a instance of Graph2D-
View, which is the core of our yFiles visualization. The Graph2DView needs a NodeRealizer that
knows how nodes should be displayed. This is were we extend the framework. The KiviatN-
odeRealizer extends the yFiles NodeRealizer and implements drawing of the kiviat graphs. On a
closer look, the KiviatNodeRealizer only provides drawing routines for the kiviat diagram grid.
No actual drawing happens there. There are further distinguished child classes that handle the
actual drawing. The only working subclass of KiviatNodeRealizer at this point of time is the
SolidKiviatNodeRealizer.

Chapter 5

Mozilla Case Study

In the Mozilla case study we focus on analyzing the classes that implement the content and layout
handling of the Mozilla1 web browser 1.7. In total, we get 2786 classes. It is an unfortunate fact,
that the current version of the Kiviat Navigator is unable to process such a massive amount of
entities at once in a reasonable timeframe. And since we cannot visualize the whole lot of classes
in smaller groups — this would distort our results, as metric measurements will be normalized
with different maxima — we decided to apply our approach to a subset of all entities.

5.1 Approach
Given the subset of entities, we apply preset views as tools to reveal bad smells or characteristic
classes. Whenever we find such interesting entities, that resemble a pattern from our catalog or
otherwise show interesting features, we mark them. After analyzing one view, we make a decision
what view to apply next, based on the findings of the last one. We also have the possibility
to extend views to gain additional information and hereby get a grasp at the true identity of
the entities in scope. We remove markings when we think we identified a class’ true face and
consider it ”harmless”. All classes that show disturbing qualities will be added to a list for closer
inspection. Along the way we make statements concerning the usability of our approach and the
views we used.

5.2 Investigation
We focus on a small set of entities, chosen by the mere similarity of having the string ”nsXML”
in their class name. This selection yields a pool of fourteen classes, that implement parts of the
browsers XML functionality. All of them unknown to us at this point, only their name might give
us an indication of their role in the system.

Hotspot View.
For starters we decide to generate a view that has its focus on pure size metrics. Lines of code
(length), number of methods (imagix ClMemFnc), number of attributes (imagix ClMemVar), num-
ber of type definitions (imagix ClMemTyp), and number of internal classes (imagix ClMemCl)
will do for now. This first view is actually a very simple hotspot view, adapted from [Pin05] and
[LD03].

1Mozilla source code is written in C++.

24 Chapter 5. Mozilla Case Study

Figure 5.1: A simplified System Hotspot View [Pin05][LD03]. The metrics are the following: (0) imagix ClMemVar, (1)
imagix ClMemTyp, (2) imagix ClMemFnc, (3), imagix ClMemCl, (4) length.

Figure 5.1 shows the results of this configuration in the Kiviat Navigator. There are the obvi-
ous eye-catchers, highlighted with faded grey circles, nsXMLHttpRequest at the bottom of the
second column and nsXMLContentSink at the top of the same column. Both classes have the
highest peaks in one or more metric values. The class nsXMLHttpRequest actually peaks in ev-
ery metric shown. We have to keep in mind, that we just look at part of the whole system. Hence,
we do not know how large the other existing classes are. There is even the chance that all other
entities of our selection are extraordinary small, thus letting our god class suspect appear bigger
than it actually is. In this case nsXMLHttpRequest has a total of 71 members, of which 53 are
functions and 16 are attributes. Nonetheless, an entity like that is definitely worth a closer look.
The class nsXMLContentSink shines in similar ways as nsXMLHttpRequest: Extraordinary
large number of lines of code and variables.

Additionally we highlighted three classes that show large numbers of methods, but otherwise
not extreme values at all. These are marked with faded grey square overlays.

At this point we gained some information about the entities in our pool, but we cannot make

5.2 Investigation 25

any strong deductions yet. And there is definitely more to be known, so we decided to look at
our selection from another perspective.

Provider/Consumer View.
We change to the Provider/Consumer View, a preset view, whose features we already discussed
in the preset view catalog (refer to section 3.5 for more information).

Figure 5.2: Provider/Consumer View. The metrics are the following: (0) in invokesnrRelsDirect, (1)
in accessesnrRelsDirect, (2) out invokesnrRelsDirect, (3), out accessesnrRelsDirect.

The Provider/Consumer View might shed some light on our marked classes and what their
purpose in the system is. Figure 5.2 shows all entities from this viewpoint. The first class that
gets our attention here is NameSpaceDecl, marked with the faded grey circle. According to our
catalog of patterns it is a typical data storage object and therefore a bad smell. A short look at the
source code proves us right.

typedef struct {
nsString mPrefix;
nsString mURI;

26 Chapter 5. Mozilla Case Study

nsIDOMElement* mOwner;
} NameSpaceDecl;

Listing 5.1: NameSpaceDecl

The class has three non-encaplusated fields, that are heavily accessed from other classes. At
least we know, it is a small member of the system, since it did not get our attention in the hotspot
analysis, and it might be accessed solely within a single class. At this point analyzing the rela-
tionships’ accesses is necessary to get further information.

There are two other classes that shine through direct field accesses; both marked with the
square overlay. The class nsXMLContentSink reveals a consumer existence. The high amount
of outgoing access relationships can also be considered a bad smell. This is also the second time
this class shows up on top of the pile. So far we know: nsXMLContentSink is huge and accesses
a high amount of non-encapsulated variables. An entity we should consider putting on the list
for closer inspection, along with nsXMLDocument, another class with a peak in outgoing access
relationships.

From the last view we remembered the three classes with an extraordinary number of meth-
ods. In this view we see, that two of them are typical consumers of functionality, and since none
of them are accessed in any kind of way, they are most likely library classes. There is probably
nothing wrong with them. Many methods go along with high flexibility, which is usually the way
people want libraries.

The third of the former three classes shows incoming relationships. This seems to be a con-
troller class with a high amount of method delegation. Listing 5.2 shows two example methods
from nsXMLProcessingInstruction. We see that most methods in this class are delegators
to nsGenericDOMDataNode, which confirms our assumption.

GetData(nsAString& aData)
{
return nsGenericDOMDataNode::GetData(aData);

}

SetNodeValue(const nsAString& aNodeValue)
{
return nsGenericDOMDataNode::SetNodeValue(aNodeValue);

}

Listing 5.2: Two method examples from nsXMLProcessingInstruction

Another striking revelation is the fact, that our supposed god class nsXMLHttpRequest
shrank into non-existence from this perspective. There are no invocations or accesses in or out
from this entity. A small amount of outgoing accesses are made, which does not make us any
happier about this class. This seems to be a giant class using no one and used by no one. Since
we need definitely more information a third view is applied.

Roots/Leaves View.
The Roots/Leaves view reveals certain inheritance features of our entities.

Figure 5.3 shows our pool of entities once again from another viewpoint. This time inheritance
and overriding. We see, that there are multiple entities that participate in a parent-child relation-
ship and two that are no subject to inheritance whatsoever. There are two classes that show a high
amount of overriding. The one with most, nsXMLElement, counts 53 overrides. Furthermore,
the two classes marked with grey squares are heavily integrated into inheritance structure. Both
are worth a closer look.

5.3 Summary 27

Figure 5.3: Roots/Leaves View. The metrics are the following: (0) in overridesnrRelsDirect, (1) in inheritsnrRelsDirect,
(2) out overridesnrRelsDirect, (3), out inheritsnrRelsDirect.

Finally, new information is available for our two biggest classes from the hotspot analysis.
The nsXMLContentSink class is subject to multiple inheritance. But even stranger is the fact
that nsXMLHttpRequest seems to override one or more methods but is neither parent nor child!
Obviously a paradoxical situation that arises questions about the validity of what we see. We
chose to dig deeper and discovered that indeed something went wrong with the computation of
the metric values of this particular class. In fact nsXMLHttpRequest has eight parent classes.

5.3 Summary
Table 5.1 lists all the classes we deemed worth a closer look.

What have we learned from this short investigation? First, we were able to identify at least
three classes that can be considered bad smell. Moreover, we have another two classes on the
list that are worth to be inspected in more detail. We think it is safe to assume that the preset
views were able to reveal specific aspects of the software, although we were limited in many

28 Chapter 5. Mozilla Case Study

Table 5.1: Table of Findings

Class Symptoms

nsXMLHttpRequest Exceptionally large — probably doing to much itself.
nsXMLContentSink Exceptionally large, with a high amount of outgoing

accesses (bad smell). Additionally subject to multiple
inheritance.

NameSpaceDecl Its non-encapsulated fields are frequently accessed,
which is a bad smell.

nsXMLDocument Outgoing direct field accesses (bad smell). Strongly
knitted into inheritance structure.

nsXMLProcessingInstruction Strongly knitted into inheritance structure.
nsXMLElement High amount of overriding.

dimensions. These shortcomings are in fact possibilities and benefits that may yet be reaped by
enhancing the Kiviat Navigator.

The explorations paths are clearly ambiguous and the decision what view to apply after a first
or a second perspective is all but trivial. The choices have to be made by software engineers and
specific scenarios, that might be of general use, have not yet been found.

Chapter 6

Conclusions

We started our thesis by taking a look at different concepts of information visualization. We
learned that, although, the geometric aspects of source code data simplifies graph representation,
the visualization of such large and complex structures is all but easy. Even a fine programmed
algorithm will reach its limits. Inevitably, the time will come, when the information pool gets
so large, that static layout techniques cannot cope with the challenge anymore. Navigation and
Exploration concepts are necessary to give control of the data back to the user.

During the analysis of related work, we see how other tools, such as SHriMP, approaches these
problems. They combined several different navigation strategies to give the user a maximum of
flexibility, while still letting him see the whole system all the time. An approach that has its
benefits, but proved to be not very applicable to our ground work, since our focus lies on metric
comparison and not primarily on the visualization of hierarchic structures.

The concept of incremental exploration appealed to us. It is a navigation technique suited for
especially vast systems, that cannot be beheld in just one glimpse. A fitting strategy at a point in
the analysis of a software system, where the focus lies on the revelation of specific problems and
not the visualization of everything, including completely ”healthy” source code. There are plenty
of good tools out there that help in understanding the hierarchical aspects of program structure.
SHriMP for example, as well as the Eclipse development environment already provide a nice set
of reverse engineering functionalities.

Having found our way of navigating, our focus shifted to the covering of view configurations.
A task, that proved to be more difficult than anticipated. Even though basic views were already
presented in the works of Lanza et al. [LD03] and Pinzger [Pin05]. The set of metrics available
to us diverged from the others. We lacked the existence of composite metrics and were therefore
limited to simple views, that focus mainly on visualizing maxima and not relations. We further
discovered that our visualization implemented the representation condition only to a certain limit.
This made it impossible to create preset views, that have their focus on metric relations within
entities. Although, we must say, that this shortfall of flexibility is actually a future possibility
that should be evaluated in detail. The changes necessary to open up our implementation to this
concept are probably small ones.

The configuration of views leads directly to the configuration of view transitions. Obviously
the idea of standardized exploration paths, using these views, is very tempting. We are sure
such scenarios must exist, but the means to produce and evaluate them were not given during
this thesis. We suggest a study, where different users analyze software systems, using the Kiviat
Navigator and write down the decisions they have made and paths they have taken to reveal
specific code symptoms. Such an effort could yield common ways of analyzing software, such as
standardized exploration paths, that could ease the process of reverse engineering further.

Concluding, we think our approach describes a suitable way of exploring source code data,

30 Chapter 6. Conclusions

with the use of kiviat graphs. The implementation of our approach is definitely not the end of the
line, but leaves open every possibility.

6.1 Contribution
It this thesis, we described an approach to investigate and navigate source code data. We eval-
uated the implementation of this approach and were able to show, that beneficial results can be
found by it. This was done by starting a catalog of standardized measurement mapping configura-
tions and analyzing the characteristic emergent patterns of these views. The sequential appliance
of these views to a target software system leads to a increasing knowledge about entities. Having
information of an entity from more than one perspective can rule ”harmless” members out and
also strengthen the evidence of potentially bad designed classes.

Additionally, we developed a basic framework for kiviat graph visualization for the Eclipse
platform, which we evaluated with a sample code investigation. The tool can be further enhanced
in the future.

6.2 Outlook
On-going and future work is concerned with the following items:

- Our catalog of preset views is far from complete. New metrics and relations will open up
new possibilities for revealing additional code symptoms. A systematical approach to the
topic, that creates a library of views and pattern interpretations could be a way of further
enhance our knowledge in this field and at the same time gain useful tools, that can directly
be evaluated in the field.

- Like mentioned in the last section, sequences that identify more complex structures within
source code data are of considerable interest. The identification of such common exploration
paths might also lead to useful material.

Appendix A

Contents of CD-ROM

This thesis is distributed with a CD-ROM, that contains the following data:

Thesis.pdf This document in Portable Document Format
Abstract.pdf Abstract of the thesis in English
Zusfsg.pdf Abstract of the thesis in German
KiviatNavigator.zip The complete source code of the KiviatNavigator Eclipse plug-in

32 Chapter A. Contents of CD-ROM

References

[Chi06] Chisel group. http://www.thechiselgroup.org, September 2006.

[CR06] Eric Clayberg and Dan Rubel. Eclipse. Building Commercial-Quality Plug-Ins. Addison
Wesley, April 2006.

[ESS92] S. C. Eick, J. L. Steffen, and Jr. Sumner, E. E. Seesoft-a tool for visualizing line oriented
software statistics. Software Engineering, IEEE Transactions on, 18(11):957–968, 1992.

[FBB+99] Martin Fowler, Kent Beck, John Brant, William Opdyke, and Don Roberts. Refactoring:

Improving the Design of Existing Code. Addison-Wesley Professional, June 1999.

[Han06] Christian Hanimann. Seal platform - towards an intergrated tool platform for soft-
ware architecture and evolution analysis. Master’s thesis, Software Evolution and
Architecture Lab, University of Zurich, 2006.

[HMM00] Ivan Herman, Guy Melançon, and M. Scott Marshall. Graph visualization and nav-
igation in information visualization: A survey. IEEE Transactions on Visualization and

Computer Graphics, 6(1):24–43, /2000.

[LD03] Michele Lanza and Stéphane Ducasse. Polymetric views-a lightweight visual ap-
proach to reverse engineering. IEEE Trans. Softw. Eng., 29(9):782–795, 2003.

[LN95] Danny B. Lange and Yuichi Nakamura. Interactive visualization of design patterns
can help in framework understanding. In OOPSLA ’95: Proceedings of the tenth an-

nual conference on Object-oriented programming systems, languages, and applications, pages
342–357, New York, NY, USA, 1995. ACM Press.

[MK88] H. A. Muller and K. Klashinsky. Rigi: a system for programming-in-the-large. pages
80–86, 1988.

[MMF03] J. I. Maletic, A. Marcus, and L. Feng. Source viewer 3d (sv3d) - a framework for
software visualization. pages 812–813, 2003.

[PBS93] B.A. Price, R.M. Baecker, and I.S. Small. A principled taxonomy of software visual-
ization. Visual Languages and Computing, 4(3):211–266, 1993.

[Pin05] Martin Pinzger. ArchView - Analyzing Evolutionary Aspects of Complex Software Systems.
PhD thesis, Vienna University of Technology, 2005.

[SDB98] J.T. Stasko, J. Domingue, and M.H. Brown. Software Visualization - Programming as a

Multimedia Experience. MIT Press, 1998.

34 REFERENCES

[SDT99] Patrick Stezaert, Serge Demeyer, and Sander Tichelaar. Famix 2.0 - the famoos infor-
mation exchange model. Technical report, Software Composition Group, University
of Berne, Neubrückstrasse 10, CH-3012 BERNE, September 7, 1999.

[SWFM97] M. A. D. Storey, K. Wong, F. D. Fracchia, and H. A. Muller. On integrating visualiza-
tion techniques for effective software exploration. pages 38–45, 119, 1997.

