Software Quality FS 2012

Introduction - Exercise 1

Eya Ben Charrada

Exercises

Formalities

- Necessary conditions to pass the module:
 - Pass 2 of the 3 assignments (Can be solved in groups of 3)
 - 2. Pass the exam

Exercises

Schedule

#	Theme	Release	Due	Discussion
1	Model Checking	Feb 27th	Mar 7th	Mar 12th
2	Testing Debugging	Mar 12th	Mar 19st	Mar 26th
3	Software Metrics	Mar 26th	Apr 2th	Apr 23th

Presentation of SPIN

- 1980 (Bell labs) 1991 (freely available)
- Widely used in industries building critical systems
- Simulator and Exhaustive verifier (Unreachable code, deadlocks, violation of assertions, etc)
- Model to be verified written in Promela
- Properties expressed in LTL

Model Checking Presentation of SPIN

- Command line tool
- Requires C pre-processor / compiler
- Available on the macs in the lab (room 0.B.04)

Introduction

A colony of chameleons includes 99 individuals

- 35 red
- 34 blue
- 30 green

Whenever two chameleons of different colors meet, each changes to the third color.

Could red chameleons (temporarily) disappear?

Promela Model

```
#define NRED (34)
#define NBLUE (35)
#define NGREEN (30)
```

```
short nRed = NRED;
short nBlue = NBLUE;
short nGreen = NGREEN;
```

```
active proctype mutations() { ... } active proctype observer() { ... }
```

"C" Macros:

- Constants
- Predicates

Data Types

Global Variables

Communications Channels

Process

Declarations

Mutations Process

```
active proctype mutations()
  do
  :: d step {nRed && nBlue;
       nRed--; nBlue--; nGreen = nGreen + 2;}
  :: d step {nRed && nGreen;
       nRed--; nGreen--; nBlue = nBlue + 2;}
  :: d step {nBlue && nGreen;
       nBlue--; nGreen--; nRed = nRed + 2;}
  :: else
  od
```

Random / Interactive Simulation

model.pml

spin model.pml spin -i model.pml spin

LTL Formula

Could red chameleons (temporarily) disappear?

LTL Formula:

<> noRedChameleonLeft

Addition to the Promela Model: #define noRedChameleonLeft (!nRed)

Verification

Verification

Guided Simulation

model.pml

spin -t model.pml spin -t -p -g model.pml

model.pml.trail

spin

GOOD LUCK!