
Software Quality Exercise 3
Software Metrics, Code Smells

1 Information

1.1 Dates
• Release: 26.03.2012 12.15pm
• Deadline: 02.04.2012 12.15pm
• Discussion: 23.04.2012

1.2 Formalities

Please submit your solution as a pdf and submit it via email to charrada@ifi.uzh.ch. The
subject of the email must begin with [FS 12 SWQ]. Exercises should be solved and handed in in
groups of three. Every member of a group must be able to answer questions about the group’s
solution. The document must include the names of the group members.

1.3 Tools

In this assignment we will use two static analysis tools: Eclipse-cs and JArchitect.

1.4 Eclipse-cs

Eclipse-cs is an Eclipse plug-in integrating the CheckStyle code analyzer. Eclipse-cs allows the
user to define a set of coding rules that the tool then checks for in the project. All violations to
these rules are displayed via the source code annotator of eclipse. CheckStyle is highly con-
figurable, as the user can choose and edit the rules to be checked for in the code. More in-
formation about eclipse-cs (installation and documentation) can be found on the tool website:
http://eclipse-cs.sourceforge.net/index.html.

1



1.5 JArchitect

JArchitect is an adaptation of the ndepend1 tool for Java code. JArchitect is a commercial tool
that runs on windows and linux. Although it can be used freely for academic purposes, some
features are disabled or limited in the academic version . The tool can be found on this website:
http://www.javadepend.com/

2 Documenting Code Smells

In the wiki2, document two code smells. Explain what the smell is about, why can it be bad
and how to remove it. Include a simple example if possible (Examples might be taken from the
projects used in the next part of this assignment). To make sure that no code smell is documented
twice, before choosing a smell, have a look at the wiki to see which smells have already been
chosen by other groups. As soon as you decide which smell to document, add the name of the
smell to the wiki and put the student number of one member of your group next to it. Include a
copy of the documentation into the solution pdf.

3 Analyzing ImageJ

In this part you should use Eclipse-cs to identify code smells in the ImageJ project.

a) Configure Eclipse-cs to check the following rules:
• A class should not have more than 2000 lines of code
• A method should not have more than 7 parameters
• There should be no duplicate code which is longer than 15 lines of code
• The cyclomatic complexity of a method should not be more than 50.

b) Explain what consequences the breaking of each of these rules has.
c) Run Eclipse-cs to identify the code smells related the defined rules. Report a summary of the

results you obtained.
d) Choose three examples for each type of smell, look closely into it and decide for each case

whether it is a bad smell or not. If yes then propose a refactoring. Document your observa-
tions and propositions.

e) Create a new branch of ImageJ in the repository and implement the refactoring you proposed
for two bad smells (choose two different types of smells). Commit your code to the repository.

1http://www.ndepend.com/
2https://daiquiri.ifi.uzh.ch/trac/swq12/wiki/CodeSmells

2



4 Code Smells / Design Disharmonies

4.1 Selecting a project

There are five projects available for this exercise:

• JHotDraw: http://www.jhotdraw.org/
• JFreeChart: http://www.jfree.org/jfreechart/
• JEdit: http://www.jedit.org/
• ArgoUml: http://argouml.tigris.org/
• FreeMind: http://freemind.sourceforge.net

Each group has to select one project and use it to answer the questions for this exercise. Five
tickets, one for each project, are available in the trac environment. One member of each group
should accept the ticket for the project that the group will work on. The source code should be
checked out from the repository location mentioned in the ticket.

4.2 Exploring the project

a) Run JArchitect on the project you have chosen and explore the different features of JArchitect
b) Choose the Metrics view of JArchitect. What advantages does the graphical representation

have over a value-based representation? Include a screenshot of the Metric view of your
project (at the Method level) and describe the main observations you made.

c) Switch to the package level of the Metric view, then right click on the project and chose View
internal dependency cycles on matrix. Now you are at the Dependency matrix view of the project.
Take a screenshot of the matrix and include it to your solution file. What problems can be
detected using the dependency matrix? Are there concrete issues that you see with your
project?

4.3 Refactoring the project

d) Use JArchitect (and Eclipse-cs if needed) to detect two different design disharmonies in the
code. Similar to the example presented in lecture, specify a detection strategy to detect the
disharmonies / smells using the metrics provided by JArchitect, explain the strategy and
why you think it is reasonable for detecting the particular code smell you chose, and describe
the instance(s) you found for the two different disharmonies.

e) Propose a set of refactorings for each disharmony and apply it to the code. Explain why
the refactoring you chose is appropriate to eliminate the concrete disharmony. Commit the
changes you’ve made to the repository.

3


