
Software Quality Exercise 1
Model Checking

1 Information

1.1 Dates

• Release: 27.02.2012 12.15pm
• Deadline: 07.03.2012 12.15pm
• Discussion: 12.03.2012

1.2 Formalities

While this exercise can be solved and handed in in groups of three, every member of a group
must be able to answer questions about the group’s solution.

Please package the files containing your solution into a zip (or tar.gz) file and submit it via email
to charrada@ifi.uzh.ch. The subject of the email must begin with [FS 12 SWQ]. Answer the
questions in a pdf document and include the source code (java, pml and ltl files) of your solutions.
Do not include binary files such as class files, metadata (such as .svn folders or .project files) nor
derived files like pan.c.

1.3 SPIN

These exercises are based on spin, a model checker. You can find pointers to documentation about
this tool from last year course on http://daiquiri.ifi.uzh.ch/trac/swq11/wiki/SPIN.
The tool has been installed on the computers in the lab (room: BINZ 0.B.04). Here are some help-
ful commands for these exercises:

1

charrada@ifi.uzh.ch
http://daiquiri.ifi.uzh.ch/trac/swq11/wiki/SPIN

• Simulate a model (append -p -g for more verbose output)
spin model.pml

• Verify a property on a model.
spin -a -F property.ltl model.pml
gcc -o pan pan.c
./pan -a

• Replay a trace found by the verifier (append -p -g for more verbose output).
spin -t model.pml

Note: In some MacOSX and Linux distributions SPIN has problems to process LTL files given
with the -F modifier. This issue can be avoided by specifying the LTL formula directly in the
command line within double quotes after the -f modifier. For example:

spin -a -f " [] greenLight" model.pml

The LTL formula can then be saved in an LTL file before submitting the solution.

2 Colony of Chameleons
A friend of yours is the director of a zoo. He has described you the latest acquisition
he was considering for his zoo: a rare colony of chameleons. This colony of chameleons
includes 34 red, 35 blue, and 30 green individuals. Whenever two chameleons of different
colors meet, each changes to the third color. The color mutation is an unique feature and
your friend expects to attract many visitor with this colony. Still, the director has a doubt:
if, by any chance, all 99 chameleons are in the same color, there will not be any color
change any more and the colony would loose its value.

2.1 State Space
a) Give a rough estimation of the number of states in which the colony can be.
b) How many states present the undesired property?

2.2 Promela Model of the Colony

Download the file Colony.pml.txt on the website of the exercises and rename it to Colony.pml. Study
this model with the help of Promela documentation.

a) What are the main components of a Promela model?
b) The behavior of chameleons is not deterministic, in the sense that they meet each other ran-

domly. How is this non-determinism expressed in the Promela model of the colony?
c) Which other aspect of Promela is not deterministic?
d) Explain briefly what are d step blocks and the reason of their presence in the Promela model

of the colony. In which sense is the first instruction of such a block different than the others?
e) Despite their relation with the color change phenomenon, the duration of a color change and

the probability of a change have not been modeled. Explain, in maximum 5 sentences, why
they are not relevant for the problem at hand.

2

2.3 Simulation and Verification

a) Run a few simulations of the model. Have you ended up in a state where all chameleons are
of the same color?

b) Express the property there are always at least two chameleons of different color in an LTL formula
using the variables defined in the Promela model of the colony. Save this formula in a textfile
named ColorChange.ltl. Note that you cannot define predicates in an ltl file; you have to
define them as macros in the Promela model. For example:

#define noRedChameleonLeft (!nRed)

c) Is it a safety or a liveness property? Why?
d) Using spin, investigate whether the colony can reach a state where this property does not

hold. Note that spin looks for executions that satisfy an LTL property, so, you have to negate
the formula in ColorChange.ltl. What will you recommand to your friend?

e) In the report of pan, the number of states stored is the number of reachable states. How many
states were reachable? Compare with your answer in 2.1.1.a).

f) In the report of pan, the number of transitions is the number of transitions that have been
visited during the search. How many transitions were investigated by pan?

g) A few days later, the director of the zoo informs you: a green chameleon escaped during the
delivery. Has he any reason to worry?

h) What is the depth of the trace (that is, the number of steps) found by pan?

2.4 Extending the Model

After a few weeks, you visit the zoo. Looking at this chameleon colony, you feel a strong relief:
there are still chameleons of every color and they change colors happily. Still, by observing them,
you figure out that your friend did not describe the behavior of the chameleons very precisely.
You make the following additional observations:

• When 3 chameleons of different colors meet, they argue violently and kill eachother.
• When 2 chameleons of the same color meet, they give birth to a new chameleon of their color.
• At the day of your visit, there were 20 red, 18 blue, and 16 green individuals.

a) Extend the Promela model of the colony with 2 processes so that it reflects your new observa-
tions.

b) Run a few simulations of this model. What happens? Explain.
c) Let’s make an assumption here: chameleons only give birth if there are less than Nchameleons

of that color in the colony (N = 15). Modify the model accordingly.
d) Express the property soon or later, there will be no chameleon left in an LTL formula. Save this

formula in a textfile named Extinction.ltl.
e) Is it a safety or a liveness property? Why?
f) Using spin, investigate whether the colony can die off. Are chameleons threatened with ex-

tinction?
g) Modify you model again so that chameleons only give birth if there are in total less than

Nchameleons in the colony (initially, set N to 30). Are chameleons still threatened with ex-
tinction?

h) Change the the number N to 350 instead of 30. As you did previously, investigate whether
the colony can die off. What happens? Why?

3

p₁ p₂

cap(p₂) = 5
11

t₁t₂p₃

2 1

Figure 1: Example of Petri net

i) Set the max search depth to 5’000’000 steps when performing the verification. Do you obtain
a different result? What is the depth of the trace? Which depth has been reached during the
search?

j) Change the order of process declarations in the Promela model by swapping the fight process
with the birth process and re-verify the model. What is the depth of the trace and which depth
has been reached during the verification? Explain the difference with your previous results.
Your explanation must account the fact that the behavior of the model remains unchanged by
your modification.

2.5 Scalability

This exercise is based on the extended model of the colony built in the exercise 2.1.4. No LTL
property will be checked on the model. While keeping the max search depth to 5’000’000 steps,
perform an exhaustive search on the model for N = 60, N = 120, N = 180, N = 220 and N = 400.
Note that you have to invoke pan without the option -a, since no LTL property was specified. For
every execution of pan, report the following information in a table:

• the time spent for the verification.
• the number of transitions explored.
• the length of the longest trace explorated.
• the number of reachable states.
• the memory used for the verification.

3 Petri Nets

Petri nets can easily be translated into Promela models. For example, the Petri net in figure 1 can
be translated in the following Promela code:

byte p1, p2, p3; /* assumption: at most 256 tokens on each place */

init
{

p1 = 3; p2 = 0; p3 = 1; /* initial marking */

do
/*t1*/ :: d_step {p1 >= 1 && p2 <= 4; p1 = p1 - 1; p2 = p2 + 1;}

/*t2*/ :: d_step {p1 >= 1; p1 = p1 - 1; p3 = p3 + 2;}

od
}

4

Create a Promela model based on the Petri net depicted in figure 2. Using spin, verify whether (a)
this Petri net is free of deadlock, (b) the transition t4 can be fired at least once, (c) the transition t3
can be fired an infinite number of times and whether (d) as soon as p4 receives a token, it never
gets empty again. If applicable, give an execution trace to justify your answer. In each case,
explain briefly how you did the verification with spin.

t₁

t₂

t₃

t₄

p₁
p₂

p5

p₄
cap(p₁) = 6 cap(p₄) = 2

2

1

5

1

2

3

1
3

1

t5

cap(p5) = 4

13

Figure 2: Petri net to be translated in Promela

5

	Information
	Dates
	Formalities
	SPIN

	Colony of Chameleons
	State Space
	Promela Model of the Colony
	Simulation and Verification
	Extending the Model
	Scalability

	Petri Nets

