Formal Methods Il: Brief intro to Python

K. Dermitzakis
11.10.2013

Heavily based on presentation given by Nico Schmidt (Al
Lab) and slides from Harvard'’s telescope data center (TDC)

Python, current version 3.3.2

open source
general purpose, high-level programming language
philosophy: easy, intuitive coding, readability
comes with large standard library

object oriented, procedural, functional

scripting or executables

dynamic type system

Interactive shell

useful for:

 |earning python

« playing around with python and the libs
 testing your own modules

other python-shells:

 Ipython (http://ipython.org)

* IDLE (written in python with GUI-toolkit Tkinter)
« Pythonxy (Qt and Spyder based)

Eclipse - PyDev

PyDeV%

Eclipse IDE integration

highlighting, tab-completion, shows errors/warnings
while typing

useful for larger projects/ programs with multiple
source files

easy to debug your code

Modules
nl;-tf & matplotlib

NumPy: I\/Iatplotllb

* scientific computing with - plotting library
python e olot

- sophisticated array facility generate plots,
(matrix algebra) histograms, power

* numeric linear algebra spectra, bar charts, error
algorithms (QR- charts, scatter plots, etc
decomposition, Eigen . i .
value-decomposition,...) similar to Matlab plotting

functions

* random number
capabilities

@, python”

IPLyl: 00

appcelerator’

PyDev¥
i

& matplotlib

Installation

Python: http://python.org/download/

IPython: http://ipython.org/download.html

PyDev: http://pydev.org/download.html

NumPy: http://new.scipy.org/download.html

Matplotlib: http://matplotlib.sourceforge.net/

http://python.org/download/
http://ipython.org/download.html
http://pydev.org/download.html
http://new.scipy.org/download.html
http://matplotlib.sourceforge.net/

Documentation

http://python.org/doc/:

— Standard library reference:
http://docs.python.org/library/

— Language Reference
http://docs.python.org/reference/

— Grammar
http://docs.python.org/reference/grammar.html

http://python.org/doc/
http://docs.python.org/library/
http://docs.python.org/reference/
http://docs.python.org/reference/grammar.html

N K

A

X
y

A code example

34 - 23

“Hello”

3.45

== 3.45 y ==
x + 1

y + V World”
(x)

(v)

“Hello”:

A comment.
Another one.

String concat.

The basics

Assignment uses = and comparison uses ==.

For numbers + - */ % are as expected.

— Special use of + for string concatenation.

— g)pecial use of % for string formatting (as with printf in
Logical operators are words (and, or, not)
not symbols

The basic printing command IS print.

The first assignment to a variable creates it.

— Variable types don’t need to be declared, variable
types are automatically chosen by Python on
assignment.

Basic datatypes

* Integers (default for numbers)
z=5/2# Answer Is 2, integer division.
* Floats

X = 3.456
e Strings
— Can use “’ or “ to specify.

‘abc” ‘abc’ (Same thing.)
— Unmatched can occur within the string.

J 7

“‘matt’'s

— Use triple double-quotes for multi-line strings or strings than
contain both ‘and “ inside of them:

66 1190

“““aﬂb C

Whitespace and indentation

Whitespace is meaningful in Python: especially for
Indentation and placement of newlines.

« Use anewlineto end aline of code.
— Use \ when must go to next line prematurely.

 No braces { } to mark blocks of code in Python... Use
consistent indentation instead.
— The first line with less indentation is outside of the block.
— The first line with more indentation starts a nested block

« Often a colon appears at the start of a new block.
(E.g. for function and class definitions.)

Comments

Start comments with # —the rest of line is ignored.

Can include a “documentation string” as the first
line of any new function or class that you define.

The development environment, debugger, and other
tools use it: it’s good style to include one.

my function(x, y):
““WThis i1s the docstring. This
function does blah blah blah.”””
The code would go here...

Variable assignment

Binding a variable in Python means setting a name to hold a reference
to some object.

— Assignment creates references, not copies

Names in Python do not have an intrinsic type. Objects have types.

— Python determines the type of the reference automatically based on the data
object assigned to it.

You create a name the first time it appears on the left side of an
assignment expression:

X =3

A reference is deleted via garbage collection after any names bound to
it have passed out of scope.

Multiple Assignment
— You can also assign to multiple names at the same time.
X,y=2,3

Naming rules

* Names are case sensitive and cannot start with a number. They
can contain letters, numbers, and underscores.

bob Bob bob 2 bob bob 2 BoB

 There are some reserved words:

Flow control examples

X ==
. (number of players < 5)

(*X equals 3.”) =P

X ==

(“X equals 2.")

(“X equals something
else.”)

(“This is outside the ‘if’ .”)

x in range(10):

3
> 7:
x < 10: *
x > 7: X += 2
X += 2
x=x+1
x=x+1 (“Still in the loop.”)
("Still in the loop.”) x ==

X ==

(“Outside of the loop.”) ("Outside of the loop.”)

Functions

creates a function and assigns it a name
sends aresult back to the caller
« Arguments are passed by assignment
 Arguments and return types are not declared

<name>(argl, arg2, ..., argN):
<statements>

<value>
times (x,y) :

x*y

Gotchas

All functions in Python have areturn value
— even if no return line inside the code.

Functions without a return the special value

There is no function overloading in Python.

— Two different functions can’t have the same name, even if they
have different arguments.

Functions can be used as any other data type. They
can be:

— Arguments to function

— Return values of functions
— Assigned to variables

— Parts of tuples, lists, etc

Tutorials

Reference semantics

« Assignment manipulates references
— x =y does not make a copy of the object y references
— X =Yy makes x reference the object y references

* Very useful; but beware!

« Example:

a=[1, 2, 3] # a now references the list [1, 2, 3]

b =a
(4)
(b)

What is the value of b??

b now references what a references
this changes the list a references
if we print what b references

Reference semantics (2)

There is alot going on when we type:

X =3

First, an integer 3 is created and stored in memory
A name x is created

A reference to the memory location storing the 3 is
then assigned to the name x

When we say that the value of x is 3 we mean that x
now refers to the integer 3

Mutable and immutable types

« The data 3 we created is of type integer. In Python, the datatypes
integer, float, and string (and tuple) are “immutable.”

 This doesn’t mean we can’t change the value of x, i.e. change what x
refers to ...

« For example, we could increment Xx:
x =3
Y = X
y = 4
(x)
What is the value of x?

* For other data types (lists, dictionaries, user-defined types),
assignment works differently.

— These datatypes are “mutable.”

— When we change these data, we do it in place.

— We don’t copy them into a new memory address each time.
— If we type y=x and then modify y, both x and y are changed.

Passing arguments to functions

Arguments are passed by assignment

Passed arguments are assigned to local names

Assignhment to argument names don't affect the caller

Changing a mutable argument may affect the caller
changer (x,y):

x = 2 # changes local value of
x only

y[0] = "hi® # changes shared object

Can define defaults for arguments that need not be passed
(optional arguments)

func(a, b, ¢=10, d=100):
(a, b, ¢, d)

