
Formal Methods II: Brief intro to Python

K. Dermitzakis

11.10.2013

Heavily based on presentation given by Nico Schmidt (AI

Lab) and slides from Harvard’s telescope data center (TDC)

Python, current version 3.3.2

• open source

• general purpose, high-level programming language

• philosophy: easy, intuitive coding, readability

• comes with large standard library

• object oriented, procedural, functional

• scripting or executables

• dynamic type system

Interactive shell

useful for:

• learning python

• playing around with python and the libs

• testing your own modules

other python-shells:

• ipython (http://ipython.org)

• IDLE (written in python with GUI-toolkit Tkinter)

• Pythonxy (Qt and Spyder based)

Eclipse - PyDev

• Eclipse IDE integration

• highlighting, tab-completion, shows errors/warnings
while typing

• useful for larger projects/ programs with multiple
source files

• easy to debug your code

Modules

NumPy:

• scientific computing with
python

• sophisticated array facility
(matrix algebra)

• numeric linear algebra
algorithms (QR-
decomposition, Eigen
value-decomposition,...)

• random number
capabilities

Matplotlib:

• plotting library

• generate plots,

histograms, power

spectra, bar charts, error

charts, scatter plots, etc

• similar to Matlab plotting

functions

Installation

Python: http://python.org/download/

IPython: http://ipython.org/download.html

PyDev: http://pydev.org/download.html

NumPy: http://new.scipy.org/download.html

Matplotlib: http://matplotlib.sourceforge.net/

http://python.org/download/
http://ipython.org/download.html
http://pydev.org/download.html
http://new.scipy.org/download.html
http://matplotlib.sourceforge.net/

Documentation

http://python.org/doc/:

– Standard library reference:

http://docs.python.org/library/

– Language Reference
http://docs.python.org/reference/

– Grammar
http://docs.python.org/reference/grammar.html

http://python.org/doc/
http://docs.python.org/library/
http://docs.python.org/reference/
http://docs.python.org/reference/grammar.html

A code example

x = 34 - 23 # A comment.

y = “Hello” # Another one.

z = 3.45

if z == 3.45 or y == “Hello”:

 x = x + 1

 y = y + “ World” # String concat.

print(x)

print(y)

The basics

• Assignment uses = and comparison uses ==.

• For numbers + - * / % are as expected.
– Special use of + for string concatenation.

– Special use of % for string formatting (as with printf in
C)

• Logical operators are words (and, or, not)
not symbols

• The basic printing command is print.

• The first assignment to a variable creates it.
– Variable types don’t need to be declared, variable

types are automatically chosen by Python on
assignment.

Basic datatypes

• Integers (default for numbers)

 z = 5 / 2 # Answer is 2, integer division.

• Floats

 x = 3.456

• Strings
– Can use “” or ‘’ to specify.

 “abc” ‘abc’ (Same thing.)
– Unmatched can occur within the string.

 “matt’s”
– Use triple double-quotes for multi-line strings or strings than

contain both ‘and “ inside of them:

 “““a‘b“c”””

Whitespace and indentation

Whitespace is meaningful in Python: especially for
indentation and placement of newlines.

• Use a newline to end a line of code.
– Use \ when must go to next line prematurely.

• No braces { } to mark blocks of code in Python… Use
consistent indentation instead.
– The first line with less indentation is outside of the block.

– The first line with more indentation starts a nested block

• Often a colon appears at the start of a new block.
(E.g. for function and class definitions.)

Comments

• Start comments with # – the rest of line is ignored.

• Can include a “documentation string” as the first
line of any new function or class that you define.

• The development environment, debugger, and other
tools use it: it’s good style to include one.

 def my_function(x, y):

 “““This is the docstring. This

 function does blah blah blah.”””

 # The code would go here...

Variable assignment

• Binding a variable in Python means setting a name to hold a reference
to some object.

– Assignment creates references, not copies

• Names in Python do not have an intrinsic type. Objects have types.
– Python determines the type of the reference automatically based on the data

object assigned to it.

• You create a name the first time it appears on the left side of an
assignment expression:

 x = 3

• A reference is deleted via garbage collection after any names bound to
it have passed out of scope.

• Multiple Assignment
– You can also assign to multiple names at the same time.

 x, y = 2, 3

Naming rules

• Names are case sensitive and cannot start with a number. They
can contain letters, numbers, and underscores.

 bob Bob _bob _2_bob_ bob_2 BoB

• There are some reserved words:

 and, assert, break, class, continue, def, del,
 elif, else, except, exec, finally, for, from,
 global, if, import, in, is, lambda, not, or,
 pass, print, raise, return, try, while

Flow control examples

if x == 3:

 print(“X equals 3.”)

elif x == 2:

 print(“X equals 2.”)

else:

 print(“X equals something
else.”)

print(“This is outside the ‘if’.”)

x = 3

while x < 10:

 if x > 7:

 x += 2

 continue

 x = x + 1

 print (“Still in the loop.”)

 if x == 8:

 break

print (“Outside of the loop.”)

assert(number_of_players < 5)

for x in range(10):

 if x > 7:

 x += 2

 continue

 x = x + 1

 print(“Still in the loop.”)

 if x == 8:

 break

print(“Outside of the loop.”)

Functions

• def creates a function and assigns it a name

• return sends a result back to the caller

• Arguments are passed by assignment

• Arguments and return types are not declared

 def <name>(arg1, arg2, ..., argN):

 <statements>

 return <value>

 def times(x,y):

 return x*y

Gotchas

• All functions in Python have a return value
– even if no return line inside the code.

• Functions without a return return the special value
None.

• There is no function overloading in Python.
– Two different functions can’t have the same name, even if they

have different arguments.

• Functions can be used as any other data type. They
can be:
– Arguments to function

– Return values of functions

– Assigned to variables

– Parts of tuples, lists, etc

Tutorials

…

Reference semantics

• Assignment manipulates references
– x = y does not make a copy of the object y references

– x = y makes x reference the object y references

• Very useful; but beware!

• Example:

 a = [1, 2, 3] # a now references the list [1, 2, 3]

 b = a # b now references what a references

 a.append(4) # this changes the list a references

 print(b) # if we print what b references

What is the value of b??

Reference semantics (2)

• There is a lot going on when we type:

 x = 3

• First, an integer 3 is created and stored in memory

• A name x is created

• A reference to the memory location storing the 3 is
then assigned to the name x

• When we say that the value of x is 3 we mean that x
now refers to the integer 3

Mutable and immutable types

• The data 3 we created is of type integer. In Python, the datatypes
integer, float, and string (and tuple) are “immutable.”

• This doesn’t mean we can’t change the value of x, i.e. change what x
refers to …

• For example, we could increment x:

 x = 3

 y = x

 y = 4

 print(x)

What is the value of x?

• For other data types (lists, dictionaries, user-defined types),
assignment works differently.

– These datatypes are “mutable.”

– When we change these data, we do it in place.

– We don’t copy them into a new memory address each time.

– If we type y=x and then modify y, both x and y are changed.

Passing arguments to functions

• Arguments are passed by assignment

• Passed arguments are assigned to local names

• Assignment to argument names don't affect the caller

• Changing a mutable argument may affect the caller

 def changer (x,y):

 x = 2 # changes local value of
x only

 y[0] = 'hi‘ # changes shared object

• Can define defaults for arguments that need not be passed
(optional arguments)

 def func(a, b, c=10, d=100):

 print(a, b, c, d)

