
software evolution & architecture lab

University of Zurich
Department of Informatics

Software Evolution Analysis &

Visualization

Harald C. Gall
s.e.a.l. - software evolution & architecture lab
University of Zurich, Switzerland
http://seal.ifi.uzh.ch/gall

1

http://seal.ifi.uzh.ch/gall
http://seal.ifi.uzh.ch/gall

Abstract

Software repositories such as versioning systems, defect tracking systems, and
archived communication between project personnel are used to help manage
the progress of software projects. There is great potential in mining this
information to support the evolution of software systems, improve software
design or reuse, and empirically validate novel ideas and techniques. Research
is now proceeding to uncover ways in which mining these repositories can
help to understand software development, to support predictions about
software development, and to plan various evolutionary aspects of software
projects.
This seminar presents some analysis and visualization techniques to
understand software evolution by exploiting the rich sources of artifacts that
are available. Based on the data models, that need to be developed to cover
sources such as modification and bug reports, we describe some of our recent
efforts to extract and analyze developer patterns, change couplings, and fine-
grained change types.

2

Instructor Biographies

Professor of Software Engineering,
Department of Informatics, University of Zurich,
Switzerland.
Prior, Associate Professor at the TU Vienna
Research interests are in:

software engineering with focus on
software evolution, software architecture,
reengineering, program families, and
distributed and mobile software
engineering processes.

Program chair of ESEC-FSE 2005, IWPC/ICPC
2000 & 2005, IWPSE 2004, and MSR 2006 &
2007.
Program co-chair of ICSE 2011

Harald C. Gall Michael Würsch

Research Assistant, Department of
Informatics, University of Zurich,
Switzerland
MSc in Informatics, UZH
Research interests in:

software design
software evolution analysis
developer support
search-driven software engineering

3

Objectives of the Course

Goal: Investigate means to analyze and control the evolution of object-
oriented software systems at various levels.

Specifically, the course aims to answer the following questions:
How does the architecture of a software system evolve over time? What are signs of
architectural decay and how can they be tracked down?

How can hidden dependencies in a system that complicate and hinder its evolution be
discovered?

How can the plethora of software data (such as source code, change and bug history,
release data) be filtered and visualized? What are effective visualization models and
techniques for that?

4

Agenda

I. Software Analysis
Techniques and Tools

Reengineering Patterns

II. Software Visualization
Polymetric Views

Class Blueprints

Software as a City

III. Software Evolution Analysis
Release History Data

Change Coupling

IV. Software Quality Assessment
Design Heuristics

Software Metrics

Code Clones

V. Empirical Studies
Developer networks

Cross-project failure prediction

Distributed Development

5

Background & Motivation

6

Real life is complex

7

Software evolves ...

8

Software evolves ...

Trees:

annual rings

8

Software evolves ...

Trees:

annual rings

Software:

structural

changes

8

It‘s about complexity ...

Corollary to Moore's Law:
The complexity of software doubles every two years.

IDC study
15 years ago, firms were spending 75% of their IT budget on new hardware and
software ...

... now that ratio has been reversed to fixing things

In Siemens (Reinhold Achatz, ICSE 2006)
Only 40% is new development, the rest is evolution and maintenance

80% of products is software

> 80% of Siemens internal companies are CMM 3+

9

Size of Operating Systems (LOC)

(c) Bertrand Meyer, ETH

1990
1992

1995 1998 2000

2

10

20

40

30

Lines of code (millions)

Windows 3.1: 3 M
Windows NT: 4 M

Windows 95: 15 M
Windows 98: 18 M

Windows 2000: 40 M

Red Hat 6.2
17 M

Red Hat 7.1
30 M

Linux: 10,000

Solaris 7: 12 M

Unix V7:
10,000

Windows XP: > 45 M

10

Why analyze Software Evolution?

„Nevertheless, the industrial track record raises the question, why, despite so
many advances, [...]

satisfactory functionality, performance and quality is only achieved over a lengthy
evolutionary process,

software maintenance never ceases until a system is scrapped

software is still generally regarded as the weakest link in the development of computer-
based systems“.

Lehman et al., 1997

11

Software entropy

Laws of Software Evolution [Lehman and Belady]
Continuing change

Increasing entropy/complexity

Increasing size

Maintenance increases „software entropy“
Erosion of architecture, design, modularization

Increase of interdependencies between software parts („Coupling“)

Decrease of orthogonal separation of concerns („Cohesion“)

12

What is Software Evolution Analysis?

Investigating the evolution of a software system to identify potential
shortcomings in its architecture or logical structure.

Structural shortcomings can then be subject to reengineering or restructuring.

13

Reverse Engineering: What and Why ?

Definition: Reverse Engineering is the process of analyzing a subject
system to identify the system’s components and their
interrelationships and create representations of the system in another
form or at a higher level of abstraction. — Chikofsky & Cross, ’90

Motivation: Understanding other people’s code (cf. newcomers in the
team, code reviewing, original developers left, ...)

Generating UML diagrams is NOT reverse engineering
... but it is a valuable support tool

14

I. Software Analysis

15

The Reengineering Life-Cycle

(0) req. analysis
(1) model capture

issues
• scale
• speed
• accuracy
• politics

Requirements

Design

Code

(0) requirements
analysis

(1) model
capture

(2) problem
detection

(3) problem
resolution

(4) program transformation

16

Reverse Engineering Terminology

Chikofsky, Cross ‘90

Design Implementation Requirements

Forward
Engineering

Forward
Engineering

Reverse
Engineering

Reverse
Engineering

Design
Recovery

Design
Recovery

Re-Engineering
(renovation)

Restructuring Restructuring

Re-Engineering
(renovation)

Restructuring,
Redocumentation

17

Reverse Engineering Patterns

Reverse engineering patterns encode expertise and trade-offs in extracting
design from source code, running systems and people.

Even if design documents exist, they are typically out of sync with reality.

Example:
Read all the Code in One Hour

Speculate about the Design

Interview During Demo

www.iam.unibe.ch/~scg/OORP/

18

http://www.iam.unibe.ch/~scg/OORP/
http://www.iam.unibe.ch/~scg/OORP/

Reengineering Patterns

Reengineering patterns encode expertise and trade-offs in transforming legacy
code to resolve problems that have emerged.

These problems are typically not apparent in original design but are due to architectural
drift as requirements evolve

Example:
Move Behavior Close to Data

Build a Bridge to the New Town

19

Case Study: Telecom Switching System

10 Million LOC

4 programming languages

20 releases

20

RSN

RSN

RSN ... Release Sequence Number

21

ABCDEFGH

B C

D E F G

H

TSS visualized

22

II. Software Visualization

23

Contents

Information Visualization

Software Visualization

The Reengineering Context

Examples
Static Visualizations

Dynamic Visualizations

Practical Approaches

Résumé

24

Information Visualization

The human eye and brain interpret visual information in order to “react to the world”

We want to answer questions on what we perceive

J. Bertin inferred three levels of questions
Lower perception (one element)

Medium perception (several elements)

Upper perception (all elements/the complete picture)

Information Visualization is about
how to display information

how to reduce its complexity

25

Software Visualization

“Software Visualization is the use of the crafts of typography, graphic design,
animation, and cinematography with modern human-computer interaction
and computer graphics technology to facilitate both the human understanding
and effective use of computer software.”

 Price, Baecker and Small, “Introduction to Software Visualization”

2 main fields:
(Algorithm Animation)

Program Visualization

26

Conceptual Problem

"Software is intangible, having no physical shape or size.
Software visualization tools use graphical techniques to make
software visible by displaying programs, program artifacts and
program behavior.”

Thomas Ball

27

…software is intangible, having no physical shape or size…

28

…software is intangible, having no physical shape or size…

28

…software is intangible, having no physical shape or size…

28

…software is intangible, having no physical shape or size…

29

…software is intangible, having no physical shape or size…

30

Software Visualization in Context

There are many good-looking visualization techniques, but..when it comes to
software maintenance & evolution, there are several problems:

Scalability
Information Retrieval
What to visualize
How to visualize
Reengineering context constraints

Limited time
Limited resources

31

The Reengineering Life-cycle

Requirements

Designs

Code

(0) requirement
analysis

(1) model
capture

(2) problem
detection (3) problem

resolution

(4) program transformation

(2) problem detection
issues

• Tool support
• Scalability
• Efficiency

32

Program Visualization

“The visualization of the actual program code or data structures in either static or dynamic
form” [Price, Baecker and Small, “Introduction to Software Visualization”]

Static Visualization and/or Dynamic Visualization

Overall Goal: Generate views of a system to understand it

Complex Problem Domain/Research Area
Visual Aspects

Efficient use of space, overplotting problems, layout issues, HCI issues, GUI issues, lack of conventions (colors, shapes, etc.)
Software Aspects

Level of granularity?

Complete systems, subsystems, modules, classes, hierarchies,...

When to apply?

First contact with an unknown system

Known/unknown parts?

Forward engineering?

Methodology?

33

Static Code Visualization

The Visualization of information that can be extracted from the static structure
of a software system

In other words: information obtained at compile-time

Depends on the programming language and paradigm:
Object-Oriented PL:

classes, methods, attributes, inheritance, …
Procedural PL:

procedures, invocations, …
Functional PL:

functions, function calls, …

34

Example 1: Class Hierarchies

Jun/OpenGL
The Smalltalk Class Hierarchy
Problems:

Colors are meaningless
Visual Overload
Navigation

35

Example 2: Tree Maps

Pros
100% screen
Large data
Scales well

Cons
Boundaries
Cluttered display
Interpretation
Leaves only

Useful for the display of hard
disks

36

Examples 3 & 4

Euclidean cones
Pros:

More info than 2D
Cons:

Lack of depth
Navigation

Hyperbolic trees
Pros:

Good focus
Dynamic

Cons:
Copyright

37

Example 5: UML and derivates

Pros
OO concepts
Works very well for small parts

Cons
Lack of scalability
Requires tool support
Requires mapping rules to reduce noise
Hardly extensible

38

Example 6: UML goes 3D

39

Example 6a: Rigi

Scalability problem

Entity-Relationship
visualization

Problems:
Filtering

Navigation

40

Example 6b: Rigi

Entities can be grouped

Pros:
Scales well

Applicable in other
domains

Cons:
Not enough code
semantics

41

Static SV: Evaluation

Pros
Intuitive approaches

Aesthetically pleasing results

Cons
Several approaches are orthogonal to each other

Too easy to produce meaningless results

Scaling up is sometimes possible, but at the expense of semantics

42

Dynamic Code Visualization

Visualization of dynamic behavior of a software system
Code instrumentation

Trace collection

Trace evaluation

What to visualize

Execution trace

Memory consumption

Object interaction

…

43

Example 1: JInsight

! Visualization of execution trace

44

Example 2: Inter-class call matrix

! Simple
! Scales quite well
! Reproducible

45

Dynamic SV: Evaluation

Code instrumentation problem
Logging, Extended VMs, Method Wrapping

Scalability problem
Traces quickly become very big

Completeness problem
Scenario driven

Pros:
Good for fine-tuning, problem detection

Cons:
Tool support crucial

Lack of abstraction without tool support

46

III. Software Quality Assessment

47

Visualization and Metrics

Why is visualization important at all?

Is it actually useful?
No, visualization is only a means, not the end…

Yes, visualization is only a means, not the end!!!

The question is: “What is the end?”
We want to understand systems…

Question 2: “Why are visualizations not used more?”
The “context” does not permit heavy-weight approaches

This is where reality kicks in, i.e., what is actually useful in practice?
Lightweight approaches!

48

OO Metrics in a Nutshell

49

Metrics

What is a metric?
The mapping of a particular characteristic of a measured entity to a numerical value

Why is it useful to measure?
To keep control of…complexity

Advantages
Ability to quantify aspects of quality

Possibility to automate the “measurements” of systems

Drawbacks
Numbers are just numbers: don’t trust them

Metrics capture only fine-grained symptoms, not causes of design problems

Hard for developers to deal with them

Inflation of measurements

50

What is interesting for a developer/designer?

Understanding the Code
Code outsourcing

New Hires

Evaluating & Improving the Code
Portable Design

Flexible Design

51

Understanding the Code

“Yesterday I met a system…”
How many lines of code? --> 35’000 LOC

How many functions/methods? --> 3’600 NOM

How many classes? --> 380 NOC

etc…

Is it “normal” to have a system of…
380 classes with 3’600 methods?

3600 methods with 35’000 lines of code?

What is “normal”? What about coupling or cohesion?
We need means of comparison: proportions are important

Collect more relevant numbers: the more the better…or not?

How can we characterize the design of a system?
52

Characterizing the Design of a System

How do you describe a system?
Lines of code? Classes? Methods? Megabytes? Files?

Characterizing a System with few metrics is difficult because of
Unbalanced Characterization

How “object-oriented” is a 500-class/25 kLOC system?
Misused Metrics

What can I say about a 100 kLOC system?
Uncorrelated Metrics

100-class/20kLOC vs. 100-class/1MLOC
Missing Reference Points

What is “normal”?

How do we characterize design?
The Overview Pyramid

Polymetric Views

53

The Metrics Pyramid

54

The Overview Pyramid

A metrics-based means to both describe and characterize the structure of an
object-oriented system by quantifying its complexity, coupling and usage of
inheritance

Measuring these 3 aspects at system level provides a comprehensive
characterization of an entire system

Inheritance

Size & Complexity Coupling

55

The Overview Pyramid in Detail

The left side: System Size & Complexity
Direct metrics: NOP, NOC, NOM, LOC, CYCLO

Derived metrics: NOC/P, NOM/C, LOC/M, CYCLO/LOC

56

The Overview Pyramid in Detail

The left side: System Size & Complexity
Direct metrics: NOP, NOC, NOM, LOC, CYCLO

Derived metrics: NOC/P, NOM/C, LOC/M, CYCLO/LOC

The right side: System Coupling
Direct metrics: CALLS, FANOUT

Derived metrics: CALLS/M, FANOUT/CALL

57

The Overview Pyramid in Detail

The left side: System Size & Complexity
Direct metrics: NOP, NOC, NOM, LOC, CYCLO

Derived metrics: NOC/P, NOM/C, LOC/M, CYCLO/LOC

The right side: System Coupling
Direct metrics: CALLS, FANOUT

Derived metrics: CALLS/M, FANOUT/CALL

The top: System Inheritance
Direct metrics: ANDC, AHH

58

Interpreting the Overview Pyramid

The pyramid characterizes a system in terms of size&complexity, coupling, and
inheritance; based on 8 computed proportions:

They are independent of the size of the system!

This enables an objective assessment…

Wait a second…objective? Where is the reference point?

59

Putting things in a real-world context

We measured 80+ systems written in Java and C++

Based on the obtained measurements we can now statistically assess the design of a
system

Average

High

Low

60

Overview Pyramid Example: ArgoUML

Average

High

Low

61

See(k)ing to understand

The Overview Pyramid allows us to
characterize the design of a system

But…we need to see what we are talking
about

62

Polymetric Views

63

Polymetric Views

Metrics-enriched visualizations of software entities and their relationships;
useful for

Rendering numbers in a simple, yet effective and highly condensed way

Visually characterizing a system in its own context

64

The Polymetric View - Example

Nodes = Classes
Edges = Inheritance Relationships

65

The Polymetric View - Example

Nodes = Classes
Edges = Inheritance Relationships

Width = Number of Attributes
Height = Number of Methods
Color = Number of Lines of Code

65

The Polymetric View - Example

Nodes = Classes
Edges = Inheritance Relationships

Width = Number of Attributes
Height = Number of Methods
Color = Number of Lines of Code

65

The Polymetric View - Example

Nodes = Classes
Edges = Inheritance Relationships

Width = Number of Attributes
Height = Number of Methods
Color = Number of Lines of Code

System Complexity View

65

The Polymetric View - Example (II)

System Complexity View

Nodes = Classes
Edges = Inheritance

 Relationships

Width = # attributes
Height = # methods

Color = # lines of code

66

The Polymetric View - Example (II)

System Complexity View

Reverse engineering goals

Nodes = Classes
Edges = Inheritance

 Relationships

Width = # attributes
Height = # methods

Color = # lines of code

66

The Polymetric View - Example (II)

 Get an impression (build a first raw mental
model) of the system, know the size, structure, and
complexity of the system in terms of classes and
inheritance hierarchies
 Locate important (domain model) hierarchies, see

if there are any deep, nested hierarchies
 Locate large classes (standalone, within

inheritance hierarchy), locate stateful classes and
classes with behavior

System Complexity View

Reverse engineering goals

Nodes = Classes
Edges = Inheritance

 Relationships

Width = # attributes
Height = # methods

Color = # lines of code

66

The Polymetric View - Example (II)

 Get an impression (build a first raw mental
model) of the system, know the size, structure, and
complexity of the system in terms of classes and
inheritance hierarchies
 Locate important (domain model) hierarchies, see

if there are any deep, nested hierarchies
 Locate large classes (standalone, within

inheritance hierarchy), locate stateful classes and
classes with behavior

System Complexity View

Reverse engineering goals View-supported tasks

Nodes = Classes
Edges = Inheritance

 Relationships

Width = # attributes
Height = # methods

Color = # lines of code

66

The Polymetric View - Example (II)

 Get an impression (build a first raw mental
model) of the system, know the size, structure, and
complexity of the system in terms of classes and
inheritance hierarchies
 Locate important (domain model) hierarchies, see

if there are any deep, nested hierarchies
 Locate large classes (standalone, within

inheritance hierarchy), locate stateful classes and
classes with behavior

 Count the classes, look at the displayed nodes,
count the hierarchies
 Search for node hierarchies, look at the size and

shape of hierarchies, examine the structure of
hierarchies
 Search big nodes, note their position, look for tall

nodes, look for wide nodes, look for dark nodes,
compare their size and shape, “read” their name
=> opportunistic code reading

System Complexity View

Reverse engineering goals View-supported tasks

Nodes = Classes
Edges = Inheritance

 Relationships

Width = # attributes
Height = # methods

Color = # lines of code

66

Coarse-grained Polymetric Views - Example

Method Efficiency Correlation View

Nodes: Methods
Edges: -
Size: Number of method parameters
Position X: Number of lines of code
Position Y: Number of statements

LOC

NOS

Goals:
• Detect overly long methods
• Detect “dead” code
• Detect badly formatted methods
• Get an impression of the system in terms of
coding style
• Know the size of the system in # methods

67

Inheritance Classification View

Boxes: Classes
Edges: Inheritance
Width: Number of Methods Added
Height: Number of Methods Overridden
Color: Number of Method Extended

68

Polymetric View Example: ArgoUML

69

Software Architecture

Exploration

Projekt “EvoSpaces”, Tool by Wettel & Lanza

70

ArgoUML City

Projekt “EvoSpaces”, Tool by Wettel & Lanza

71

The age of a City

Projekt “EvoSpaces”, Tool by Wettel & Lanza

72

Evolution of a City

73

EvoSpaces Tool

74

EvoSpaces: a closer look

75

Metric look forms a City

76

Reflections on Visualization

Visualizations are useless…
…as pictures: Polymetric views are navigable & interactive

…if not accessible: Polymetric views are implemented in…

CodeCrawler, Mondrian, Sotograph, Jsee, etc.

It will take some time and a lot of work for them to be accepted - time will tell

“Everything must change to remain the same”
[Giuseppe Lanza Tomasi di Lampedusa, “Il Gattopardo”]

77

Evaluating the Design of a System

What entities do we measure in object-oriented design?
It depends…on the language

What metrics do we use?
It depends…on our measurement goals

What can we do with the information
obtained?

It depends…on our objectives

Simple metrics are not enough to
understand and evaluate design

Can you understand the beauty of a
painting by measuring its frame?

78

Design Heuristics

79

Professional Context

There has been excellent work in Software Design
Design Patterns

Design Heuristics

Refactorings

Quality Models

What is good design?

What is bad design?

How do we detect design?
Detection Strategies

The Class Blueprint

80

Detection Strategies

A detection strategy is a metrics-based predicate to identify candidate
software artifacts that conform to (or violate) a particular design rule

81

The Class Blueprint

A semantically rich visualization of the internal structure of classes and class
hierarchies

Useful for inspecting source code, and detecting visual anomalies which point to design
disharmonies

82

The Class Blueprint: Seeing Code & Design

83

The Class Blueprint - What do we see?

84

Nice! …but, what about the practice?

In practice the key question is where to start

We have devised a methodology to characterize, evaluate and improve the
design of object-oriented systems

It is based on:
The Overview Pyramid

The System Complexity View

Detection Strategies

Class Blueprints

85

Design Harmony

Software is a human artifact

There are several ways to implement things

The point is to find the appropriate way!

Appropriate to what?
Identity Harmony

How do I define myself?
Collaboration Harmony

How do I interact with others?
Classification Harmony

How do I define myself with respect to my ancestors and descendants?

Let’s see some examples
86

Identity Disharmony: God Class

An aggregation of different abstractions which (mis)uses other classes to
perform its functionality

The “other” classes are usually dumb data holders

Difficult to cure: only do it if it hampers evolution

Detection: Find large and complex classes on which many other classes
depend

87

Oh my God…it’s the ModelFacade

ModelFacade: The Black Hole
453 methods

114 attributes

3500 lines of code

Coupled to hundreds of ArgoUML
classes

88

Collaboration Disharmony: Shotgun Surgery

A change in a method may imply changes in many places

Detection: Find the classes in which a change would significantly affect many
other places in the system

We have to consider both the strength and the dispersion of the coupling

We focus on incoming coupling

89

I shot…the Project…

Project has several methods affected by SS
Coupled with 131 classes (ModelFacade not shown here)

Cyclic Dependencies with CoreFactory & ProjectBrowser

Changing Project may lead to problems

90

Classification Disharmony

The primary goal of inheritance: code reuse
When you add a subclass you should look at what is “already there”: add/extend-
abstract-change cycle

Detection: Find fairly complex classes with low usage of inheritance-specific
members of the superclass(es)

91

Kids never listen: The PerspectiveSupport Hierarchy

“Pipeline”-Inheritance with funky usage of abstract classes

Suspicious regularity in the leaf classes: duplicated code

TreeModelComposite ignores what is the superclasses

92

Kids never listen: The PerspectiveSupport Hierarchy

“Pipeline”-Inheritance with funky usage of abstract classes

Suspicious regularity in the leaf classes: duplicated code

TreeModelComposite ignores what is the superclasses

92

Recovering from a Design Disharmony

Misery loves company:
The Design Disharmonies do not exist
alone, they are correlated

Where to start?

How to start?

Recovering can be a lengthy process
and must be evaluated in terms of
effort/benefit

93

A Catalogue of Design Disharmonies

For each Design Disharmony, we
provide

Description

Context

Impact

Detection Strategy

Examples

Refactoring

94

Tools

“A fool with a tool is still a fool”, but…

Better a fool with a tool than just a fool…

Everything presented is based on extensive tooling
Moose

CodeCrawler

iPlasma

Free and open source - take it or leave it

(Parts of) these tools are now making it into industry
The Disharmonies are now part of “Borland Together”

95

Software Visualization: Conclusions

Software Visualization is very useful when used correctly

An integrated approach is needed, just having nice pictures is not enough

Most tools still at prototype level

In general: only people that know what they see can react on that: SV is for
expert/advanced developers

The future of software development is coming…and SV is part of it

96

