
Software Reengineering
Problem Detection

Martin Pinzger
Delft University of Technology



2

Outline

Introduction

Problem detection in the source code
Code Smells 

Polymetric Views

Problem detection in the evolution
The Evolution Matrix

Kiviat Graphs

Conclusion



3

The Reengineering Life-Cycle

(1) requirement
analysis

(2) model
capture

(3) problem
detection (4) problem

resolution

New
Requirements

Designs

Code



4

Design Problems

The most common design problems result from code that is

Unclear & complicated Duplicated (code clones)



5

Code Smells (if it stinks, change it)

Duplicated Code
Long Method
Large Class
Long Parameter List
Divergent Change
Shotgun Surgery
Feature Envy
...

A code smell is a hint that something has gone wrong 
somewhere in your code.



6

How To Detect?

Measure and visualize quality aspects of the current 
implementation of a system

Source code metrics and structures

Measure and visualize quality aspects of the evolution of a 
system

Evolution metrics and structures

Use Polymetric Views



7

Polymetric Views

A combination of metrics and software 
visualization

Visualize software using colored rectangles 
for the entities and edges for the 
relationships

Render up to five metrics on one node:

Size (1+2)

Color (3)

Position (4+5)

7

Relationship

Entity

Y Coordinate

Height Color tone

Width

X Coordinate



8

Smell 1: Long Method

The longer a method is, the more difficult it is to understand 
it.

When is a method too long?
Heuristic: > 10 LOCs (?)

How to detect?
Visualize LOC metric values of methods

“Method Length Distribution View”



9

Method Length Distribution

Metrics:
Boxes: Methods
Width: LOC
Position-Y: LOC
Sort: LOC



10

Smell 2: Switch Statement

Problem is similar to code duplication
Switch statement is scattered in different places

How to detect?
Visualize McCabe Cyclomatic Complexity metric to detect complex 
methods 

“Method Complexity Distribution View”



11

Method Complexity

Metrics:
Boxes: Methods
Position-X: LOC
Position-Y: MCC
Sort: -



12

Smell 3: System Hotspots

Classes that contain too much responsibilities

When is a class too large?
Heuristic: > 20 NOM

How to detect?
Visualize number of methods (NOM) and sum of lines of code of 
methods (WLOC)

“System Hotspots View”



13

System Hotspots

Metrics:
Boxes: Classes
Width: NOA
Height: NOM
Color: LOC
Sort: NOM



14

Smell 4: Lazy Sub-Class

A class that is not doing enough to pay for itself should be 
eliminated

How to detect?
Visualize inheritance structure with number of methods added (NMA), 
overridden (NMO), and extended (NME)

“Inheritance Classification View”



15

Inheritance Classification

Metrics:
Boxes: Classes
Edges: Inheritance
Width: NMA
Height: NMO
Color: NME
Sort: -



Pros
Quick insights

Scalable

Metrics add semantics

Interactivity makes the code “come nearer”

Reproducible

Industrial Validation is the acid test

Cons
Level of granularity

Code reading is needed

16

Evaluation: Polymetric Views



17

RoadMap

Introduction

Problem detection in the source code
Code Smells 

Polymetric Views

Problem detection in the evolution
The Evolution Matrix

Kiviat Graphs

Conclusion



18

Understanding Evolution

Changes can point to design problems
“Evolutionary Smells”

But
Overwhelming complexity

How can we detect and understand changes?

Solutions
The Evolution Matrix

The Kiviat Graphs



19

Visualizing Class Evolution

Visualize classes as rectangles using for 
width and height the following metrics:

NOM (number of methods) 

NOA (number of attributes) 

The Classes can be categorized according 
to their “personal evolution” and to 
their “system evolution” 

-> Evolution Patterns

Foo

Bar



First Version

Major Leap

TIME (Versions)
Growth Stabilisation

Added 
Classes

20

The Evolution Matrix

Last VersionRemoved Classes



21

Evolution Patterns & Smells

Day-fly (Dead Code)

Persistent

Pulsar (Change Prone Entity)

SupernovaWhite Dwarf (Dead Code)

Red Giant (Large/God Class)

Idle (Dead Code)



22

Persistent / Dayfly

Persistent: Has the 
same lifespan as the 
whole system. Part of 
the original design. 
Perhaps holy dead 
code which no one 
dares to remove.

Dayflies: Exists 
during only one or 
two versions. 
Perhaps an idea 
which was tried out 
and then dropped.



23

Pulsar / Supernova

Pulsar: Repeated Modifications make it grow and shrink. 
System Hotspot: Every System Version requires changes. 

Supernova: Sudden increase in size. Possible Reasons:
• Massive shift of functionality towards a class.
• Data holder class for which it is easy to grow.
• Sleeper: Developers knew exactly what to fill in. 



24

White Dwarf / Red Giant / Idle

White Dwarf: Lost the functionality it had and now trundles along 
without real meaning. Possibly dead code -> Lazy Class. 

Red Giant: A permanent god (large) class which is always very large. 

Idle: Keeps size over several versions. Possibly dead code,
possibly good code. 



25

Real Example: MooseFinder



26

Evaluation: Evolution Matrix

Pros
Understand the evolution of a system in terms of size and growth rate

Introduction of new classes

Remove of classes

Detection of Evolution Patterns & Smells

Dayflight, Persistent, White Dwarf, ...

Cons
Scalability

Limited to 3 metric values per glyph

Fragile regarding the renaming of classes

What if the name of a class was changed?



27

Extended Polymetric Views

Goal: 
Visualize n metric values of m 
releases 

More semantic in graphs

More flexibility to combine metric values

Solution: Kiviat Diagrams (Radar 
Charts)

Each ray represents a metric

Encode releases with different colors



Kiviat Diagram

28



29

Highlight the Change



30

Size & Complexity Metrics

Metrics:
0:nrStmts
1:CCMPLX
2:nrFiles
3:nrClasses
4:nrMeths
5:nrAttrs
6:nrGlobFuncs
7:nrGlobVars

release 0.92-1.0
release 1.0-1.4
release 1.4-1.7



31

Problem Report Metrics

Metrics:
0:nrPrio_undef
1:nrPrio_1
2:nrPrio_2
3:nrPrio_3
4:nrPrio_4
5:nrPrio_5

release 0.92-1.0
release 1.0-1.4
release 1.4-1.7



Design Problems
Result from duplicated, unclear, complicated source code 
-> Code Smells

32

Conclusions


