Software Reengineering
Problem Detection

Martin Pinzger
Delft University of Technology

3
TU Delft

.
Outline

Introduction

Problem detection in the source code
Code Smells

Polymetric Views

Problem detection in the evolution
The Evolution Matrix

Kiviat Graphs

Conclusion

__
The Reengineering Life-Cycle

(1) requirement

analysis Requirements

(3) problem
detection

IR
-

(2) model

Ca th re f

LN

(4) problem
resolution

Designs

.
Design Problems

The most common design problems result from code that is

Unclear & complicated Duplicated (code clones)

U
Code Smells (if it stinks, change it)

A code smell is a hint that something has gone wrong
somewhere in your code.

Duplicated Code 'R'EFACT()RING

Long Method IMPROVING THE DESIGN
OF EXISTING CODE

Large Class

Long Pa rameter LISt MARTIN FOWLER
Divergent Change e A N e
Shotgun Surgery N
Feature Envy

i
How To Detect? @

Measure and visualize quality aspects of the current
implementation of a system

Source code metrics and structures

Measure and visualize quality aspects of the evolution of a
system

Evolution metrics and structures

Use Polymetric Views

.
Polymetric Views

A combination of metrics and software
visualization

Entity —
Visualize software using colored rectangles
for the entities and edges for the o
relationships Relationship

Render up to five metrics on one node:
Size (1+2)
Color (3)

Position (4+5) X Coordinate

Y Coordinate —

Height

Width

.
Smell 1: Long Method

The longer a method is, the more difficult it is to understand
It.

When is a method too long?
Heuristic: > 10 LOGCs (?)

How to detect?
Visualize LOC metric values of methods
“Method Length Distribution View"

Method Length Distribution

IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII
IIIIIIIIII
llllllllllllllll

— Metrics:

Boxes: Methods
Width: LOC
Position-Y: LOC
Sort: LOC

e
Smell 2: Switch Statement

Problem is similar to code duplication
Switch statement is scattered in different places

How to detect?

Visualize McCabe Cyclomatic Complexity metric to detect complex
methods

“Method Complexity Distribution View"

10

.
Method Complexity

- d:DDS‘E =) (=)

Metrics:

Boxes: Methods
Position-X: LOC
Position-Y: MCC
Sort: -

.
Smell 3: System Hotspots

Classes that contain too much responsibilities

When is a class too large?
Heuristic: > 20 NOM

How to detect?

Visualize number of methods (NOM) and sum of lines of code of
methods (WLOCQ)

“System Hotspots View"”

12

.
System Hotspots

E RRY risisnn)
llllllll
IIIII

(O0DOC_ 002020
00 -IIII.IIII lll ||||||||
IIIIII-IIIIIIII-IIIII-II-llllllll 1l

W 00— O
OO0 TR O Y iy

COMMMO OO IO 000
IO IO T
OO T YO T

LI A

Metrics:
Boxes: Classes
Width: NOA
Height: NOM
Color: LOC
Sort: NOM

13

.
Smell 4: Lazy Sub-Class

A class that is not doing enough to pay for itself should be
eliminated

How to detect?

Visualize inheritance structure with number of methods added (NMA),

overridden (NMO), and extended (NME)
"Inheritance Classification View"”

14

Inheritance Classification

Metrics:

Boxes: Classes
Edges: Inheritance
Width: NMA
Height: NMO
Color: NME

Sort: -

15

Evaluation: Polymetric Views

Pros
Quick insights
Scalable
Metrics add semantics
Interactivity makes the code “come nearer”

Reproducible

Industrial Validation is the acid test |

Cons
Level of granularity

Code reading is needed

16

.
RoadMap

Introduction

Problem detection in the source code
Code Smells

Polymetric Views

Problem detection in the evolution
The Evolution Matrix
Kiviat Graphs

Conclusion

17

.
Understanding Evolution

Changes can point to design problems
“Evolutionary Smells”

But
Overwhelming complexity

How can we detect and understand changes?

Solutions
The Evolution Matrix
The Kiviat Graphs

18

Visualizing Class Evolution

Visualize classes as rectangles using for
width and height the following metrics:

NOM (number of methods)
NOA (number of attributes)

The Classes can be categorized according
to their “personal evolution” and to
their “system evolution”

-> Evolution Patterns

19

The Evolution Matrix

Last Version

-_ Removed Classes
m
First Version -

[]

Added -
Classes — -
Major Leap -

[]

[]

Growth Stabilisation

» TIME (Versions)

20

e
Evolution Patterns & Smells

Day-fly (Dead Code)

Persistent

Pulsar (Change Prone Entity)
SupernovaWhite Dwarf (Dead Code)
Red Giant (Large/God Class)

Idle (Dead Code)

21

Persistent / Dayfly

A

Persistent: Has the
same lifespan as the
whole system. Part of
the original design.
Perhaps holy dead
code which no one
dares to remove.

Dayflies: Exists
during only one or
two versions.
Perhaps an idea
which was tried out
and then dropped.

22

Pulsar / Supernova

Pulsar: Repeated Modifications make it grow and shrink.
System Hotspot: Every System Version requires changes.

Supernova: Sudden increase in size. Possible Reasons:
» Massive shift of functionality towards a class.

« Data holder class for which it is easy to grow.

» Sleeper. Developers knew exactly what to fill in.

23

White Dwarf / Red Giant / Idle

White Dwarf: Lost the functionality it had and now trundles along
without real meaning. Possibly dead code -> Lazy Class.

Red Giant: A permanent god (large) class which is always very large.

Idle: Keeps size over several versions. Possibly dead code,
possibly good code.

24

.
Real Example: MooseFinder

CodeCrawbher

o Qass MSEMooseFederUl [<(NOM: S50)(-:0)> <(-:0)> <(-: 0)(-: 0)> | bodongs to mode MooseFinder 099,

st inio o o o o 2o o o o o i o Lk k2 2 2 S EREEREEES
E233822 2 2 2 2 2 2 2 2 2 2 2 2 22222 2 22 233:3¢:8¢°¢: s 5 5
ATV \EEELELLEELELELELELLEEE D DD _ perssenrcuasses

/5?:::::::5555
STAGNATION DAYFLIES S L L 2L it :o:o:

LEAP 2

e ——e 231113

25

.
Evaluation: Evolution Matrix

Pros
Understand the evolution of a system in terms of size and growth rate

Introduction of new classes
Remove of classes

Detection of Evolution Patterns & Smells
Dayflight, Persistent, White Dwarf, ...

Cons
Scalability

Limited to 3 metric values per glyph

Fragile regarding the renaming of classes

What if the name of a class was changed?

26

.
Extended Polymetric Views

Goal:

Visualize n metric values of m
releases

More semantic in graphs

More flexibility to combine metric values

Solution: Kiviat Diagrams (Radar
Charts)

Each ray represents a metric

Encode releases with different colors

®

27

B
Kiviat Diagram

M4

moduleA

28

.
Highlight the Change

M3

M2

B release 1-2

MS

M6

29

.
Size & Complexity Metrics

s ?

2
MathML

2
XPToolkit

.

3 1

Metrics:
NewHTMLStyleSystem 0:nrStmts
1:CCMPLX
2:nrFiles
3:nrClasses
4:nrMeths
5:nrAttrs
6:nrGlobFuncs
XML 7:nrGlobVars

4 o 6

s 7

£ 1

2
NewlayoutEngine

] release 0.92-1.0

] release 1.0-1.4
B release 1.4-1.7

30

.
Problem Report Metrics

NewLayoutEngine

4 s

XPTaolki
XSLT
- s
1 4 s
MathML 3 °
] 0
] release 0.92-1.0 :
[] release 1.0-1.4 NewHTMLStyleSyste
B release 1.4-1.7 !

XML

Metrics:

0:nrPrio_undef

1:nrPrio_1
2:nrPrio_2
3:nrPrio_3
4:nrPrio_4
5:nrPrio_5

31

B
Conclusions

Design Problems

Result from duplicated, unclear, complicated source code
-> Code Smells

R N WeGOray | WCE | TN MM 1T

In AU | g W Ot Mt e S e
W[LBl I -;!:%-It;t;t;tlt-?;&;?;i-;?.‘?f'
| PEERREERERE DG pRppsnsscp s
ELLELELLEELLLEL Ty : ,
: FPFFFFRFFERFRFFFiceerrrs)
: BLLLLLERbs bbb eerenrerr: | :
rua-w.- - ien]m.n--ue:- I-w»sp-:'n- * =[?5 FFTEFFTTTFTFIGF?
mostor g’ PELLITEETEL N
HEEEEEE
P
[-‘

32

