
Software Reenineering
Reverse Engineering

Martin Pinzger
Delft University of Technology

Tuesday, September 21, 2010



2

Outline

What is and Why?

Initial understanding

Detailed model capture

DA4Java demo

Tuesday, September 21, 2010



3

What is Reverse Engineering and why?

Reverse Engineering is the process of analysing a subject system
to identify the system’s components and their interrelationships and

create representations of the system in another form or at a higher level 
of abstraction [Chikofsky & Cross, ’90]

Motivation
Understanding other people’s code, the design and architecture in order 
to maintain and evolve them

Tuesday, September 21, 2010



Reengineering Life-Cycle

4

(1) requirement
analysis

(2) model
capture

(3) problem
detection (4) problem

resolution

New
Requirements

Designs

Code

Tuesday, September 21, 2010



Initial understanding

Tuesday, September 21, 2010



6

Initial understanding patterns

Goal: Get initial understanding of the design and 
implementation of the system

Forces
Data is deceptive

Always double-check your sources

Understanding entails iteration
Plan iteration and feedback loops

Knowledge must be shared
“Put the map on the wall”

Teams need to communicate
“Use their language”

Tuesday, September 21, 2010



7

Initial understanding patterns

Top down

Speculate about Design

Analyze the 
Persistent Data

Study the 
Exceptional 

Entities

understand ⇒
higher-level model

Bottom up

ITERATION

Recover 
design

Recover 
database

Identify 
problems

Tuesday, September 21, 2010



8

Analyze the persistent data

Problem: Which objects represent valuable data?

Solution: Analyze the database schema

Prepare Model
Table ⇒ class

Columns ⇒ class attributes

Candidate keys 
Naming conventions + unique indices

Foreign keys ⇒ class associations

Use explicit foreign key declarations

Infer from column types + naming conventions + view declarations + join clauses

Tuesday, September 21, 2010



9

Analyze the persistent data (cont.)

Incorporate Inheritance
One to one; rolled down; rolled up

Incorporate Associations
Determine association classes (e.g., many-to-many associations)

Merge complementary associations

Identify qualified associations

Verification
Data samples + SQL statements

Tuesday, September 21, 2010



10

Example: One To One

Patient
id: char(5)
insuranceID: char(7)
insurance: char(5)

Salesman
id: char(5)
company: char(40)

Person
id: char(5)
name: char(40)
addresss: char(60)

Patient
id: char(5)
insuranceID: char(7)
insurance: char(5)

Salesman
id: char(5)
company: char(40)

Person
id: char(5)
name: char(40)
addresss: char(60)

Tuesday, September 21, 2010



11

Example: Rolled Down

Patient
id: char(5)
name: char(40)
addresss: char(60)
insuranceID: char(7)
insurance: char(5)

Salesman
id: char(5)
name: char(40)
addresss: char(60)
company: char(40)

Patient
id: char(5)
insuranceID: char(7)
insurance: char(5)

Salesman
id: char(5)
company: char(40)

Person
id: char(5)
name: char(40)
addresss: char(60)

Tuesday, September 21, 2010



Excercise: Analyze the peristent data

12

Analyze the given ER diagram

Draw a class simple diagram

Tuesday, September 21, 2010



13

Speculate about design

Problem: How do you recover the design from source code?

Solution: Develop hypotheses and check them
Develop a plausible class diagram and iteratively check and refine your 
design against the actual code

Variants
Speculate about Business Objects

Speculate about Design Patterns

Speculate about Architecture

Tuesday, September 21, 2010



14

Study the exceptional entities

Problem: How can you quickly identify design problems?

Solution: Measure software entities and study the anomalous 
ones

Visualize metrics to get an overview

Use simple metrics
Lines of code

Number of methods

...

Tuesday, September 21, 2010



Use simple 
metrics and 
layout 
algorithms.

(x,y) width

height colour

Visualize up 
to 5 metrics 
per node

Example: Exceptional entities

Use simple 
metrics and 
layout 
algorithms

15

Tuesday, September 21, 2010



Detailed model capture

Tuesday, September 21, 2010



17

Detailed model capture patterns

Goal: Build a detailed model of parts that will be important for 
reengineering

Forces
Details matter

Pay attention to the details

Design remains implicit
Record design rationale when you discover it

Design evolves
Important issues are reflected in changes to the code

Code only exposes static structure
Study dynamic behaviour to extract detailed design

Tuesday, September 21, 2010



18

Detailed model capture patterns

Expose the design & make sure it 
stays exposed

Tie Code and Questions

Refactor to Understand

Keep track of
your understanding

Expose design

Step through the Execution

Expose collaborations

• Use Your Tools
• Look for Key Methods
• Look for Constructor Calls
• Look for Template/Hook Methods
• Look for Super Calls

Look for the Contracts

Expose contracts

Learn from the Past

Expose evolution

Write Tests
to Understand

Tuesday, September 21, 2010



19

Tie code and questions

Problem: How do you keep track of your understanding?

Solution: Annotate the code
List questions, hypotheses, tasks and observations

Identify yourself

Use conventions to locate/extract annotations
E.g., ‘To: Jasmine By: Martin On: 10.10.05 Comment...’

Annotate as comments or as methods

Tuesday, September 21, 2010



20

Refactor to understand

Problem: How do you decipher cryptic code?

Solution: Refactor it till it makes sense
Goal (for now) is to understand, not to reengineer

Hints
Work with a copy of the code

Refactoring requires an adequate test base
If this is missing, “Write Tests to Understand”

Tuesday, September 21, 2010



21

Refactor to understand (cont.)

Guidelines
Rename attributes to convey roles

Rename methods and classes to reveal intent

Remove duplicated code

Replace condition branches by methods

Tuesday, September 21, 2010



22

Step through the execution

Problem: How do you uncover the run-time architecture?
Collaborations are spread throughout the code

Polymorphism may hide which classes are instantiated

Solution: Execute scenarios of known use cases and step 
through the code with a debugger

Hints
Set breakpoints

Change internal state to test alternative paths

Tuesday, September 21, 2010



23

Look for the contracts

Problem: What does a class expect from its clients?
Interfaces are visible in the code but how to use them?

Solution: Look for common programming idioms
Look for “key methods”

Method name, parameter types (important type -> important method)

Constructor calls
Shows which parameters to pass

Template/hook methods
Shows how to specialize a sub-class

Tuesday, September 21, 2010



Example: yFiles Contract

24

public SNACockpit(DataProvider dataProvider, boolean animated) {
	 super(new BorderLayout());

	 this.fGraphModel = new SocialNetworkGraph(dataProvider);
	 view = new Graph2DView();
	 view.setAntialiasedPainting(true);
	 ((DefaultGraph2DRenderer) view.getGraph2DRenderer()).setDrawEdgesFirst(true);

...

	 view.setGraph2D(fGraphModel);
	 this.add(view, BorderLayout.CENTER);
}

Initializing a Swing component with a yFiles graph

Tuesday, September 21, 2010



25

Learn from the past

Problem: How did the system get the way it is? Which parts are 
stable and which aren’t?

Solution: Compare versions to discover where code was 
removed

Removed functionality is a sign of design evolution

Use or develop appropriate tools

Look for signs of:
Unstable design — repeated growth and refactoring

Mature design — growth, refactoring, and stability

Tuesday, September 21, 2010



26

Examples: Unstable design

Pulsar: Repeated Modifications make it grow and shrink. 
System Hotspot: Every System Version requires changes. 

Tuesday, September 21, 2010



27

Summary

Setting Direction + First Contact
⇒ First Project Plan

Initial Understanding + Detailed Model Capture
Plan the work … and work the plan

Frequent and short iterations

Issues
Scale, speed vs. accuracy, politics

Tools?

Tuesday, September 21, 2010



DA4Java demo

Tuesday, September 21, 2010



Other visualization tools/prototypes

Structural Analysis for Java
http://www.alphaworks.ibm.com/tech/sa4j

X-Ray
http://xray.inf.usi.ch/xray.php

Code City
http://www.inf.usi.ch/phd/wettel/codecity.html

29

Tuesday, September 21, 2010

http://xray.inf.usi.ch/xray.php
http://xray.inf.usi.ch/xray.php


Homework

Read the copies (pdfs) about
Code Smells

Object-Oriented Design Principles (class design)

30

Tuesday, September 21, 2010


