
Software Reengineering P1: Intro & Organization

Martin Pinzger Delft University of Technology

Greenfield software development

Non-greenfield software development

How often did you ...

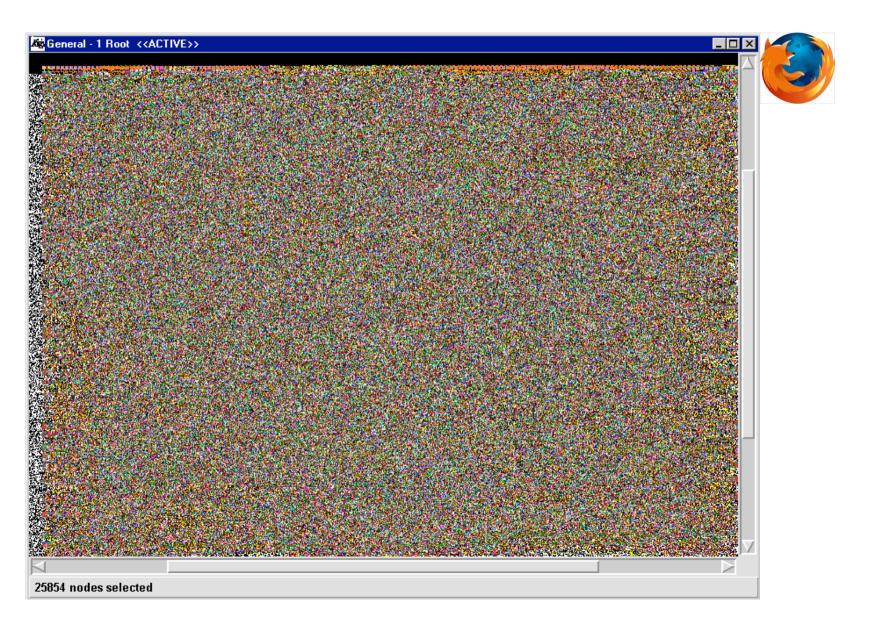
... encounter greenfield and non-greenfield software engineering?

Why non-greenfield engineering?

Because existing software, often called legacy software, is valuable

Often business-critical

A huge amount of money has already been invested in it


Has been tested and runs

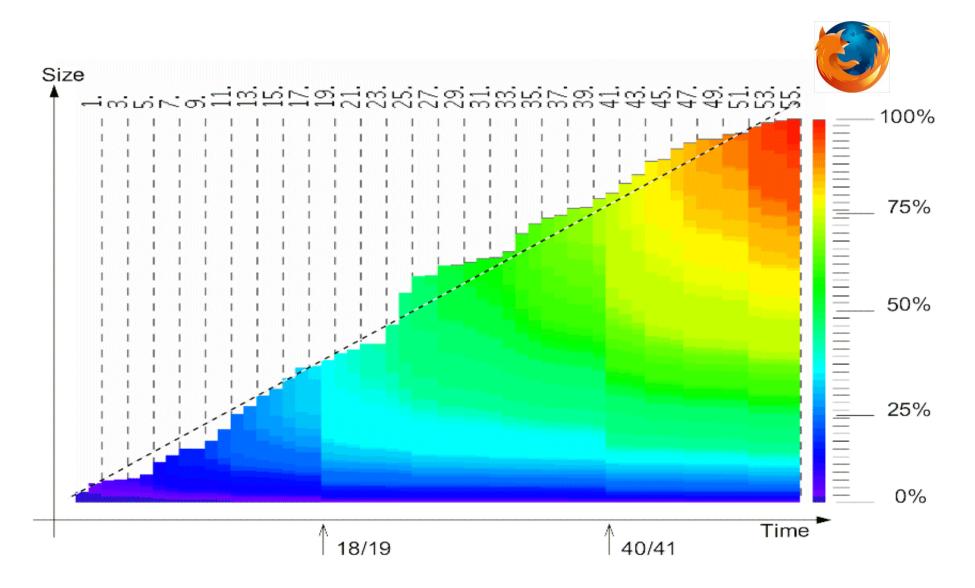
Does (mainly) what it should do

Would you replace such a system?

Why do we (often) start from a mess?

Lehman's Laws of software evolution

Continuing change


A program that is used in a real-world environment **must change**, or become progressively less useful in that environment.

Increasing complexity

As a program evolves, it **becomes more complex**, and extra resources are needed to preserve and simplify its structure.

For more information read Lehman and Belady, 1985

Evolution of Mozilla source code

Lehman's Laws in practice

Existing software Is often modified in an ad-hoc manner (quick fixes)

Lack of time, resources, money, etc.

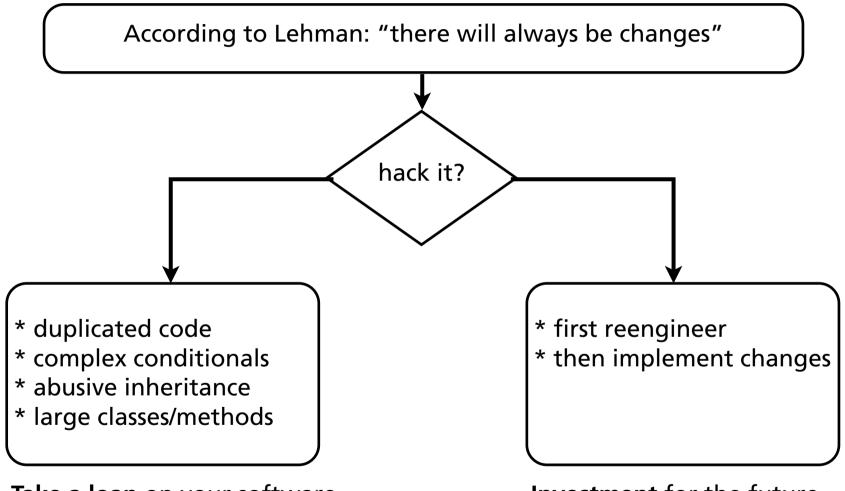
Initial good design is not maintained

Spaghetti code, copy/paste programming, dependencies are introduced, no tests, etc.

Documentation is not updated (if there is one) Architecture and design documents

Original developers leave and with them their knowledge

Typical result of such practices


Implications of the results

Software maintenance costs continuously increase

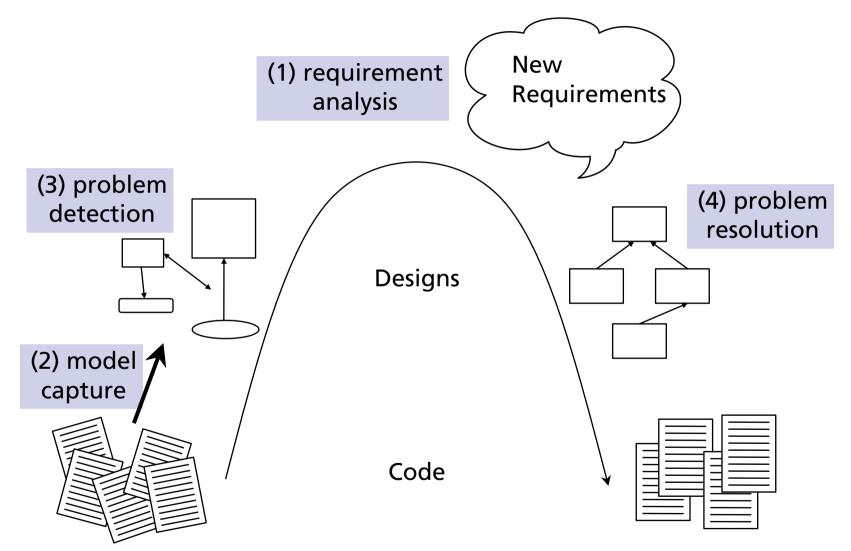
Between 50% and 75% of global software development costs are spent on maintenance!

Up to 60% of a maintenance effort is spent on understanding the existing software

What is your decision?

Take a loan on your software pay back via reengineering

Investment for the future paid back during maintenance


Let's reengineer

Definition:

"Reengineering is the examination and alteration of a subject system to reconstitute it in a new form and the subsequent implementation of the new form."

[Demeyer, Ducasse, Nierstrasz]

Reengineering Life-Cycle

Goals of reengineering

Goals of reengineering (conrete)

Unbundling

Split a monolithic system into parts that can be separately marketed

Performance

"First do it, then do it right, then do it fast"

Design extraction

To improve maintainability, portability, etc.

Exploitation of New Technology

I.e., new language features, standards, libraries, etc.

In this course, you will learn and apply

Best practices to analyze and understand software systems (i.e., reverse engineering)

Heuristics and tools to detect shortcomings in the design and implementation of software systems

Testing and re-factoring techniques to systematically resolve these shortcomings

Course Organization

General information

LV Info

Block course

1st block: 20.09. -- 24.09.2010 each from 12:15 -- 13:45 2nd block: 2.11. -- 5.11.2010 each from 12:15 -- 13:45 3rd block: 16.12. -- 17.12.2010 Language: English AP (ECTS): 4 Subscription until: 15. October 2010

Attend the lectures and prepare for each lecture!

Latest news always at: <u>http://seal.ifi.uzh.ch/reeng/</u>

Overview of the course

Block 1

Today	Overview of the course and the lab, Setting direction & Initial understanding
21.09.2010	Reverse engineering Detailed model capture DA4Java demo
22.09.2010	Code smells and design principles
23.09.2010	Problem Detection Findbugs, PMD, Metrics tool
24.09.2010	Code Clone Detection CCFinderX Demo

Overview of the course (cont.)

Block 2

02.11.2010	Tests - The Basis for Re-engineering Feedback on Assignment I: Problem Detection
03.11.2010	Working Effectively with Legacy Code Refactoring
04.11.2010	Refactoring to Patterns
05.11.2010	Guest lecture

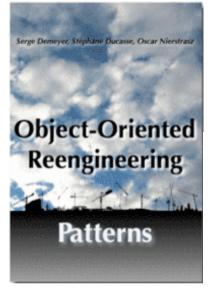
Overview of the course (cont.)

Lab presentations & exams

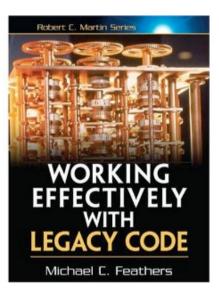
16.12.2010	Lab presentations & exams
17.12.2010	Lab presentations & exams

How will you be assessed?

Lab assignments

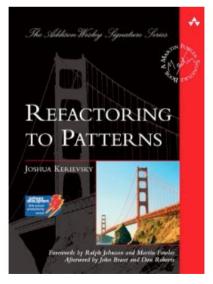

Assignment I: Problem Detection (30%) Assignment II: Re-engineering (30%)

Final presentation of your results (20%)

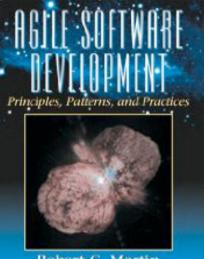

Oral examination after/during the final presentation (20%)

Your contribution to the lecture (+/- 5%)

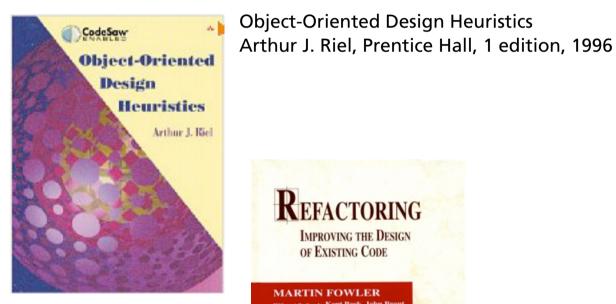
Reading material



Object-Oriented Reengineering Patterns Serge Demeyer, Stephane Ducasse, and Oscar Nierstrasz free copy from: <u>http://scg.unibe.ch/download/oorp/</u>



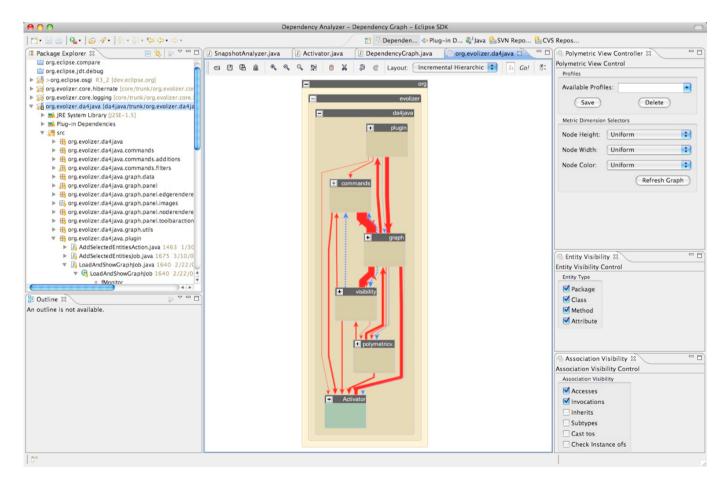
Refactoring to Patterns Joshua Kerievsky, Addison-Wesley Professional, 2004 I will provide copies of selected chapters


Working Effectively with Legacy Code Michael Feathers, Prentice Hall, 1 edition, 2004

Additional reading

Robert C. Martin

Refactoring: Improving the Design of Existing Code Martin Fowler, Addison-Wesley Professional, 1999


Agile Software Development: Principles Patterns, and Practices Robert C. Martin, Prentice Hall

> REFACTORING IMPROVING THE DESIGN OF EXISTING CODE MARTIN FOWLER Kent Beck, John Br n Opdyke, ant Don Rober RUMBAUGI

The Reengineering Lab

The system: DA4Java

Interactive visualization of Java source code with leveled directed graphs

Lab outline

Reengineering of a DA4Java

Part I: Reverse Engineering & Problem Detection

Initial understanding, detailed model capture

Code smells, violations of class and package design principles

Part II: Testing & Refactoring

Develop a test harness

Refactor to improve the design and implementation

Implementation hints

Eclipse Plugin

Running on Eclipse >= 3.4

Download DA4Java source code from TBA

Add sources to an Eclipse workspace and install MySQL server

Used libraries

Evolizer FAMIX Importer for parsing Java source code

MySQL for storing extracted FAMIX models

Hibernate for data access

see <u>www.hibernate.org</u> yFiles for graph representation

see <u>www.yworks.com</u>

Phase 1: Reverse Engineering

First Contact

Install the system and find out what its features are Is a reengineering feasible or should we re-implement it from scratch?

Reverse Engineering

What are the building blocks of DA4Java? What is the design of DA4Java (package level, class level)

Problem Detection

Where do you expect implementation design shortcomings?

See also http://seal.ifi.uzh.ch/reeng_uebung/

TODO for you

Exercise 1:

Perform First Contact and Reverse Engineering

Detect problems in the design of DA4Java

Problems on the code level (smells): Duplicated Code, Solution Sprawl, Long Method, Conditional Complexity, Large Class,

Violations of class design principles: Single Responsibility, Open/Closed, Dependency Inversion

Violations of package design principles: Reuse-Release Equivalence, Common-Reuse, Common-Closure, Acyclic-Dependencies, Stable-Dependencies, Stable-Abstractions

-> Simple problems in the source code do not count (e.g., naming)!

Write up a report

Template can be found on the web-site

Deadline for submission of report: 25.10.2010, 18:00 sharp!