
Software Reengineering
OO Design Principles

Martin Pinzger
Delft University of Technology

Slides adapted from the presentation by Steve Zhang

2

Outline

Design Smells

Object-Oriented Design Principles

Conclusion

3

The Reengineering Life-Cycle

(1) requirement
analysis

(2) model
capture

(3) problem
detection (4) problem

resolution

New
Requirements

Designs

Code

Design Smells

The Odors of Rotting Software
Rigidity – The design is hard to change

Fragility – The design is easy to break

Immobility – The design is hard to reuse

Viscosity – It is hard to do the right thing

Needless complexity – Overdesign

Needless Repetition – Copy/paste

Opacity – Disorganized expression

4

Rigidity

The tendency for software to be difficult to change

Single change causes cascade of subsequent changes in
dependent modules

The more modules must be changed, the more rigid the design

5

Fragility

The tendency for a program to break in many places when a
single changes is made

The new problems in area that have no conceptual
relationship with the area that was changed

As the fragility of a module increases, the likelihood that a
change will introduce unexpected problems approaches
certainty.

6

Immobility

Difficult to reuse

A design is immobile when it contains parts that could be
useful in other systems, but the effort and risk involved with
separating those parts from the original system are too great.

This is an unfortunate but very common occurrence.

7

Viscosity

It is easy to do the wrong thing, but hard to do the right
thing.

When the design-preserving methods are more difficult to use
than the hacks, the viscosity of the design is high

When development environment is slow and inefficient,
developers will be tempted to do wrong things

8

Needless complexity

Overdesign

A design smells of needless complexity when it contains
elements that aren't currently useful

The design becomes littered with constructs that are never
used

Makes the software complex and difficult to understand.

9

Needless Repetition

The design contains repeating structures that could be unified
under a single abstraction

The problem is due to developer’s abuse of cut and paste.

It is really hard to maintain and understand the system with
duplicated code.

Duplication is Evil!
DRY – DON’T REPEAT YOURSELF

Opacity

Opacity is the tendency of a module to be difficult to read and
understand

The code does not express its intent well

The code is written in an opaque and convoluted manner

11

The Broken Window Theory

A broken window will
trigger a building into a
smashed and abandoned
derelict

So does the software

Don’t live with the Broken
window

12

S.O.L.I.D. Design Principles

S.O.L.I.D Design Principles

SRP – The Single Responsibility Principle

OCP – The Open-Closed Principle

LSP – The Liskov Substitution Principle

ISP – The Interface Segregation Principle

DIP – The Dependency Inversion Principle

14

SRP: The Single-Responsibility Principle

A class should have a single purpose and only one reason to
change

If a class has more than one responsibility, then the responsibilities
becomes coupled

SRP is one of the simplest of the principles, and the one of the
hardest to get right

15

Heuristics

Describe the primary responsibility in a single sentence

Group similar methods

Look at hidden methods (private, protected)
Many of them indicate that there is another class in the class tying to get
out

Look for decisions that can change
They should go into a separate class

Look for internal relationships
Are certain variables used by some methods and not others?

16

Exercise: SRP

17

+ evaluate(String rule) : int
- branchingExpression(Node left, Node right) : int
- causualExpression(Node left, Node right) : int
- variableExpression(Node node) : int
- valueExpression(Node node) : int
- nextTerm() : String
- hasMoreTerms() : boolean
+ addVariable(String name, int value)

- current: String
- variables: HashMap
- currentPosition: int

RuleParser

OCP: The Open-Closed Principle

Software entities(classes, modules, functions, etc.) should be
open for extension, but closed for modification

“Open for extension”

The behavior of the module can be extended (e.g., by subclassing)

“Closed for modification”

Extending the behavior of a module does not result in changes to the existing source code
or binary code of the module

18

Example: OCP – Strategy Pattern

19

LSP: Liskov Substitution Principle

Subtypes must be substitutable for their base types
LSP defines the OO inheritance principle

If a client uses a base class, then it should not differentiate the base class
from derived class, which means the derived class can substitute the base
class

LSP violation example

21

public enum ShapeType {square, circle};
public class Shape {
 public static void DrawShape(Shape s) {
 if(s.type == ShapeType.square)
 (s as Square).Draw();
 else if(s.type == ShapeType.circle)
 (s as Circle).Draw();
 }
}
public class Circle : Shape {
 public void Draw() {/* draws the circle */}
}
public class Square : Shape{
 public void Draw() {/* draws the square */}
}

 Not
substitutable

Violate OCP

Another LSP violation example

22

void g(Rectangle r)
{
 r.setWidth(5);
 r.setHeight(4);
 if(r.getArea() != 20)
 throw new Exception("Bad area!");
 }

Square’s behavior is
changed, so it is not

substitutable to
Rectangle

IS-A Relationship

Square is not
Rectangle!

DIP: The Dependency Inversion Principle

High-level modules should not depend on low-level modules
Both should depend on abstractions

Abstractions should not depend on details
Details should depend on abstractions

DIP is at the very heart of framework design

23

A DIP example

24

DIP violation

DIP

ISP: The Interface Segregation Principle

Clients should not be forced to depend on methods they do
not use

Design cohesive interfaces and avoid "fat" interfaces

The dependency of one class to another one should depend on the
smallest possible interface

The interfaces of the class can be broken up into groups of methods

Each group serves a different set of clients

25

An violation of ISP example

26

ISP violation

An ISP Violation example: solution

27

Segregated
interface

LoD - Law of Demeter

Principle of Least Knowledge

Only talk to your immediate friends

Don’t talk to strangers

Write “shy” codes

Minimize coupling

28

LoD formal definition

A method M of an object O may only invoke the methods of
the following kinds of objects

O itself

M's parameters

Any objects created/instantiated within M

O's direct component objects

29

Example LoD

30

class Demeter {
 public A a;
 public int func() {
 // do something
 }
 public void example(Arg arg) {
 C c = new C();
 int f = func(); // functions belonging to itself
 arg.invert(); // to passed parameters
 a = new A();
 a.setActive(); // to any objects it has created
 c.print(); // to any held objects
 }
}

LoD violation example

31

final String outputDir = ctxt.getOptions().getScratchDir().getAbsolutePath();

a.getB().getC().doSomething()

DRY – Don’t Repeat Yourself

Every piece of knowledge must have a single, unambiguous,
authoritative representation within a system

Following DRY will make software developments easier to
understand and maintain

Duplication is Evil

32

Summary

The OO design principles help us:
As guidelines when designing flexible, maintainable and reusable
software

As standards when identifying the bad design

As laws to argue when doing code review

